Forest-regular Languages and Tree-regular Languages

MURATA Makoto

May 26, 1995

1 Introduction

Forest-regular languages were studied by Pair et al[PQ68] and Takahashi [Tak75]. They are extensions of tree-regular languages [Tha87]. We borrow some concepts from these papers but adopt definitions more similar to those for string-regular languages.

2 Forests and trees

Definition 2.1 (forest). A *forest* over Σ is:

- (1) ϵ (the null forest),
- (2) $a\langle u\rangle$, where a is a symbol in Σ and u is a forest, or
- (3) uv, where u and v are forests.

The set of forests over Σ is denoted by F_{Σ} . For any forest $u, v, w \in F_{\Sigma}$, u(vw) = (uv)w and $u\epsilon = \epsilon u = u$. We abbreviate $a\langle \epsilon \rangle$ as a.

Remark. Since $abc \cdots = a\langle \epsilon \rangle b\langle \epsilon \rangle c\langle \epsilon \rangle \dots$, a string is also a forest.

Definition 2.2 (tree). A tree is a forest of the form $a\langle u \rangle$. The set of trees over Σ is denoted by T_{Σ} .

Definition 2.3 (forest width). The *width* of a forest u, denoted |u|, is the number of trees at the top level of u. That is, $|\epsilon| = 0$, $|a\langle u\rangle| = 1$, and |uv| = |u| + |v|.

Definition 2.4 (forest domain). We assign to each $u \in F_{\Sigma}$ a subset of $\{1, 2, 3, \dots\}^+$, denoted Dom(u), such that:

- (1) if $u = \epsilon$, then $Dom(u) = \emptyset$,
- (2) if $u = a\langle v \rangle$, then $Dom(u) = \{1\} \cup \{1 \ v_1 v_2 \dots v_k \mid k \geq 0, v_1 v_2 \dots v_k \in Dom(v)\}$,

(3) if u = vw, then $Dom(u) = Dom(v) \cup \{(w_1 + |v|)w_2w_3 \dots w_k \mid k \ge 0, w_1w_2 \dots w_k \in Dom(w)\}$

Dom(u) is called the *forest domain* of u and the elements of Dom(u) are called addresses.

Example 2.5. $Dom(a) = \{1\}.$ $Dom(ab) = \{1, 2\}.$ $Dom(a\langle bc \rangle d) = \{1, 11, 12, 2\}.$

Remark. If $d \in Dom(u)$ and $d1 \notin Dom(u)$, then d is the address of a leaf node.

Definition 2.6 (forest function). Corresponding to each $u \in F_{\Sigma}$, there is a function \overline{u} from Dom(u) to Σ as follows:

- (1) If $u = a\langle v \rangle$, then $\overline{u}(1) = a$ and $\overline{u}(1 \ v_1 v_2 \dots v_k) = \overline{v}(v_1 v_2 \dots v_k)$.
- (2) If u = vw and $u_1u_2 \dots u_k \in Dom(v)$, then $\overline{u}(u_1u_2 \dots u_k) = \overline{v}(u_1u_2 \dots u_k)$.
- (3) If u = vw and $u_1u_2 \dots u_k \notin Dom(v)$, then $\overline{u}(u_1u_2 \dots u_k) = \overline{w}((u_1 \Leftrightarrow |v|)u_2 u_3 \dots u_k)$.

Example 2.7. For $u = a\langle bc \rangle d$, $\overline{u}(1) = a$, $\overline{u}(11) = b$, $\overline{u}(12) = c$, and $\overline{u}(2) = d$.

Definition 2.8 (subtree). Given a forest u and a forest address d in Dom(u), the subtree rooted at d in u, denoted u/d, is a tree such that $Dom(u/d) = \{1 \ v_1 v_2 \dots v_k \mid d \ v_1 v_2 \dots v_k \in Dom(f)\}$ and $\overline{u/d}(1 \ v_1 v_2 \dots v_k) = \overline{u}(d \ v_1 v_2 \dots v_k)$.

Example 2.9. $(a\langle bc\rangle d)/1 = a\langle bc\rangle$ and $(a\langle bc\rangle d)/2 = d$.

3 Forest automaton and tree automaton

Definition 3.1 (deterministic forest automaton). A deterministic forest automaton (DFA) is a quadruple $\langle Q, \Sigma, \alpha, F \rangle$, where:

- (1) Q is a finite set of states,
- (2) Σ is an alphabet,
- (3) α is a function (called transition function) from $\Sigma \times Q^*$ to Q such that for every $q \in Q$ and $x \in \Sigma$, $\{q_1q_2 \dots q_k \mid k \geq 0, \alpha(x, q_1q_2 \dots q_k) = q\}$ is string-regular, and
- (4) F is a string-regular set over Q.

Remark. As a convention, instead of $\{q_1q_2 \dots q_k \mid k \geq 0, \alpha(x, q_1q_2 \dots q_k) = q\}$, we write $\hat{\alpha}(x, q)$. $\hat{\alpha}$ may be assumed as a function from $\Sigma \times Q$ to the power set of Q^* .

Definition 3.2 (deterministic tree automaton). A DFA $< Q, \Sigma, \alpha, F >$ is a deterministic tree automaton (DTA) if $F \subseteq Q$.

Definition 3.3 (transition function extension). The domain of a transition function α can be extended to $F_{\Sigma} \times Q^*$ as follows:

- (1) if $u = \epsilon$, $\alpha(u, q_1 q_2 \dots q_k) = \epsilon$,
- (2) if $u = a\langle v \rangle$ $(a \in \Sigma, v \in F_{\Sigma}), \alpha(u, q_1q_2 \dots q_k) = \alpha(a, \alpha(v, q_1q_2 \dots q_k))$
- (3) if $u = vw \ (v, w \in F_{\Sigma}), \ \alpha(u, q_1 q_2 \dots q_k) = \alpha(v, q_1 q_2 \dots q_k) \alpha(w, q_1 q_2 \dots q_k).$

Definition 3.4 (accepted language). A DFA $M = \langle Q, \Sigma, \alpha, F \rangle$ accepts a forest $u \in F_{\Sigma}$ if $\alpha(u, \epsilon) \in F$. The language accepted by M, L(M), is the set of forests accepted by M.

Example 3.5. Consider a DFA $M = <\{q_0, q_1\}, \{a, b\}, \alpha, \{q_0q_1\}>, \text{ where:}$

$$\hat{\alpha}(a, q_0) = L((q_0|q_1)^*),$$

$$\hat{\alpha}(a, q_1) = \emptyset,$$

$$\hat{\alpha}(b, q_0) = \emptyset, \text{ and }$$

$$\hat{\alpha}(b, q_1) = L((q_0|q_1)^*).$$

Then, L(M) is the set of forests u over $\{a,b\}$ such that |u|=2, $\overline{u}(1)=a$ and $\overline{u}(2)=b$.

Remark. If DFA M is also a DTA, $L(M) \subseteq T_{\Sigma}$.

Definition 3.6 (forest-regular language). A language $L \subseteq F_{\Sigma}$ is forest-regular if L is accepted by a DFA.

Definition 3.7 (tree-regular language). A language $L \subseteq T_{\Sigma}$ is tree-regular if L is accepted by a DTA.

Definition 3.8 (state forest). For a DFA $M = \langle Q, \Sigma, \alpha, F \rangle$, the state forest for $u \in F_{\Sigma}$ is a forest $u_M \in F_Q$ such that $Dom(u_M) = Dom(u)$ and $\alpha(u/d, \epsilon) = \overline{u_M}(d)$ for every $d \in Dom(u)$.

Example 3.9. Let u be $a\langle b\rangle b\langle a\langle ab\rangle \rangle$. Then, for the DFA M in Example 3.5, u_M is $q_0\langle q_1\rangle q_1\langle q_0\langle q_0q_1\rangle \rangle$.

Remark. $L(M) = \{u \mid \overline{u_M}(1) \overline{u_M}(2) \dots \overline{u_M}(|u|) \in F, u \in F_{\Sigma} \}.$

Definition 3.10 (non-deterministic forest automaton). A non-deterministic forest automaton (NDFA) is a quadruple $\langle Q, \Sigma, \alpha, F \rangle$, where:

- (1) Q, Σ , and F are as specified in the definition of DFA, and
- (2) α is a relation (called *transition relation*) from $\Sigma \times Q^*$ to Q such that for every $q \in Q$ and $x \in \Sigma$, $\{q_1q_2 \dots q_k \mid k \geq 0, \alpha(x, q_1q_2 \dots q_k, q)\}$ is string-regular.

Remark. As a convention, instead of $\{q_1q_2 \dots q_k \mid k \geq 0, \alpha(x, q_1q_2 \dots q_k, q)\}$, we write $\hat{\alpha}(x, q)$. $\hat{\alpha}$ may be assumed as a function from $\Sigma \times Q$ to the power set of Q^* .

Definition 3.11 (non-deterministic tree automaton). A NDFA $< Q, \Sigma, \alpha, F >$ is a non-deterministic tree automaton (NDTA) if $F \subseteq Q$.

Definition 3.12 (transition relation extension). A transition relation α can be extended as a relation from $F_{\Sigma} \times Q^*$ to Q as follows:

- (1) if $u = \epsilon$, $\alpha(u, q_1 q_2 \dots q_k, r_1 r_2 \dots r_l)$ if and only if $r_1 r_2 \dots r_l = \epsilon$,
- (2) if $u = a\langle v \rangle$ $(a \in \Sigma, v \in F_{\Sigma})$, $\alpha(u, q_1q_2 \dots q_k, r_1r_2 \dots r_l)$ if and only if $l = 1, \alpha(a, s_1s_2 \dots s_m, r_1)$ and $\alpha(v, q_1q_2 \dots q_k, s_1s_2 \dots s_m)$ for some $s_1s_2 \dots s_m \in Q^*$
- (3) if u = vw $(v, w \in F_{\Sigma})$, $\alpha(u, q_1q_2 \dots q_k, r_1r_2 \dots r_l)$ if and only if, for some $j(1 \le j \le n)$, $\alpha(v, q_1q_2 \dots q_k, r_1r_2 \dots r_j)$ and $\alpha(w, q_1q_2 \dots q_k, r_{j+1} r_{j+2} \dots r_l)$.

Definition 3.13 (accepted language). An NDFA $M = \langle Q, \Sigma, \alpha, F \rangle$ accepts a forest $u \in F_{\Sigma}$ if $\alpha(u, \epsilon, q_1 q_2 \dots q_k)$ for some $q_1 q_2 \dots q_k \in F$ $(k \geq 0)$. The language accepted by M, L(M), is the set of forests accepted by M.

Example 3.14. Consider an NDFA $M = \{q_0\}, \{a, b\}, \alpha, \{q_0\}^* >$, where:

$$\hat{\alpha}(a, q_0) = L(q_0^*), \text{ and }$$

 $\hat{\alpha}(b, q_0) = L(q_0^+)$

Then, L(M) is the set of forests over $\{a,b\}$ such that nodes labeled by b always have more than one subordinate node.

Remark. If NDFA M is also a NDTA, $L(M) \subseteq T_{\Sigma}$.

Theorem 3.15 (equivalence of DFA's and NDFA's). A language $L \subseteq F_{\Sigma}$ is accepted by a NDFA if and only if L is forest-regular.

Proof of "if". Straightforward. $\hfill\Box$

Proof of "only if". As in the string case, subset construction provides this proof. Assume that L is accepted by an NDFA $M = < Q, \Sigma, \alpha, F >$. Let $R = 2^Q$ and let f be a character-substitution such that $f(q) = \{r \in R \mid q \in r\}$. We define a function β from $\Sigma \times R^*$ to R as $\beta(x, r_1 r_2 \dots r_l) = \{q \in Q \mid \alpha(x, q_1 q_2 \dots q_l, q) \text{ for some } q_i \in r_i (1 \leq i \leq l)\}$. Observe that $\hat{\beta}(x, r) = \bigcap_{q \in r} f(\hat{\alpha}(x, q)) \Leftrightarrow \bigcup_{q \in Q - r} f(\hat{\alpha}(x, q))$ and is thus string-regular. Let M' be a DFA $< R, \Sigma, \beta, f(F) >$. Then, L(M') = L(M).

Corollary 3.16 (equivalence of DTA's and NDTA's). A language L ($\subseteq T_{\Sigma}$) is accepted by a NDTA if and only if L is tree-regular.

Definition 3.17 (state forest). For an NDFA $M = \langle Q, \Sigma, \alpha, F \rangle$, a state forest for $u \in F_{\Sigma}$ is a forest $v \in F_{Q}$ such that Dom(v) = Dom(u) and $\alpha(u/d, \epsilon, \overline{v}(d))$ for every $d \in Dom(u)$.

¹A function h from Δ to the power set of Φ^* is a *character-substitution* if h(x) is string-regular for every $x \in \Delta$, where Δ and Φ are alphabets. The domain of h can be extended to Δ^* by $h(x_1x_2\dots x_k)=h(x_1)h(x_2)\dots h(x_k)$ $(k\geq 0)$ and then to the power set of Δ^* by $h(L)=\bigcup_{x\in L}\{h(x)\}$. As is well known, the image of a string-regular set under a character-substitution is string-regular.

Definition 3.18 (unambiguous NDFA). An NDFA $M = \langle Q, \Sigma, \alpha, F \rangle$ is unambiguous if for every $u \in F_{\Sigma}$, there exists at most one state forest u_M such that $\overline{u_M}(1) \overline{u_M}(2) \dots \overline{u_M}(|u|) \in F$.

Example 3.19. The NDFA M in Example 3.14 is unambiguous. For example, if $u = a\langle b \rangle b$, then $u_M = q_0 \langle q_0 \rangle q_0$.

4 Forest-regular expression and tree-regular expression

Definition 4.1 (forest with substitution symbols). Let S be a finite set of substitution symbols. We define $F_{\Sigma}[S]$ as the set of forests $u \in F_{\Sigma \cup S}$ such that if $d1 \in Dom(u)$ then $\overline{u}(d) \notin S$ (in other words, substitution symbols appear only as leaf nodes). Elements in $F_{\Sigma}[S]$ are called forests over Σ with substitution symbols in S.

Definition 4.2 (vertical concatenation). For $s \in S$ and sets $U, V \subseteq F_{\Sigma}[S]$, $U \circ_s V$ is the set of all forests $w \in F_{\Sigma}[S]$ for which there exists $u \in U$ such that w is obtained by replacing each occurrence of s in u by some element of V. Various occurrences of s may be replaced by different elements of V.

Remark. $U \circ_s (V \circ_s W) = (U \circ_s V) \circ_s W$, but $U \circ_s (V \circ_t W)$ may be different from $(U \circ_s V) \circ_t W$. For example, $(\{a \langle st \rangle\} \circ_s \{b\}) \circ_t \{c\} = \{a \langle bc \rangle\}$ but $\{a \langle st \rangle\} \circ_s \{b\} \circ_t \{c\}) = \{a \langle bt \rangle\}$.

Definition 4.3 (vertical closure). For $s \in S$ and a set $U \subseteq F_{\Sigma}[S]$, we define U^{*s} as $X_0 \cup X_1 \cup X_2 \dots$, where $X_0 = \{s\}$ and $X_{n+1} = X_n \cup (U \circ_s X_n)$.

Example 4.4. $\{a\langle sbs\rangle\}^{*s} = \{s, a\langle sbs\rangle, a\langle a\langle sbs\rangle bs\rangle, a\langle sba\langle sbs\rangle\rangle, a\langle a\langle sbs\rangle ba\langle sbs\rangle\rangle, a\langle sba\langle a\langle sbs\rangle bs\rangle, a\langle a\langle sbs\rangle ba\langle sbs\rangle\rangle, \dots\}$

Definition 4.5 (forest-regular expression). A forest-regular expression (FRE) over Σ with substitution symbols in S is:

- $(1) \emptyset,$
- $(2) \epsilon$
- (3) s, where $s \in S$,
- (4) $a\langle r\rangle$, where r is an FRE,
- (5) $r_1 \mid r_2$, where r_1 and r_2 are FRE's,
- (6) r_1r_2 , where r_1 and r_2 are FRE's,
- (7) r^* , where r is an FRE,
- (8) $r_1 \circ_s r_2$, where $s \in S$ and r_1, r_2 are FRE's, or

(9) r^{*s} , where $s \in S$ and r is an FRE.

Remark. A string-regular expression over Σ is also an FRE.

Definition 4.6 (tree-regular expression). A FRE r over Σ with substitution symbols in S is a tree-regular expression (TRE) if r is:

- $(1) \emptyset,$
- (2) s, where $s \in S$,
- (3) $a\langle r \rangle$, where r is a FRE,
- (4) $r_1 \mid r_2$, where r_1 and r_2 are TRE's,
- (5) $r_1 \circ_s r_2$, where $s \in S$, r_1 is a TRE and r_2 is a FRE, or
- (6) r^{*s} , where $s \in S$ and r is a TRE.

Definition 4.7 (represented language). The set of forests represented by an FRE r, denoted $L(r) \subseteq F_{\Sigma}[S]$, is inductively defined as follows:

$$\begin{split} L(\emptyset) &= \emptyset \\ L(\epsilon) &= \{\epsilon\} \\ L(s) &= \{s\} \\ L(a\langle r \rangle) &= \{a\langle u \rangle \mid u \in L(r)\} \\ L(r_1 \mid r_2) &= L(r_1) \cup L(r_2) \\ L(r_1r_2) &= \{u_1u_2 \mid u_1 \in L(r_1), u_2 \in L(r_2)\} \\ L(r^*) &= \{\epsilon\} \cup \{u_1u_2 \dots u_k \mid k > 0, f_i \in L(r) (1 \leq i \leq k)\} \\ L(r_1 \circ_s r_2) &= L(r_1) \circ_s L(r_2) \\ L(r^{*s}) &= L(r)^{*s} \end{split}$$

Example 4.8. $L(a\langle s \rangle^{*s} \circ_s b) = \{b, a\langle b \rangle, a\langle a\langle b \rangle \rangle, a\langle a\langle a\langle b \rangle \rangle \rangle, a\langle a\langle a\langle a\langle b \rangle \rangle \rangle \rangle, \dots \}$ and $L(a\langle s^* \rangle \circ_s b) = \{a, a\langle b \rangle, a\langle bb \rangle, a\langle bbb \rangle, a\langle bbb \rangle, \dots \}.$

Remark. If a FRE r is also a TRE, then $L(r) \subseteq F_{\Sigma}[S] \cap T_{\Sigma \cup S}$.

Remark. When an FRE r is also a string-regular expression, L(r) coincides with the set of strings represented by r.

Theorem 4.9 (equivalence of FRE's and (N)DFA's). A language $L \subseteq F_{\Sigma}$ is represented by a FRE if and only if L is forest-regular.

Proof of "if". Assume that L is accepted by a DFA $M=<\!Q,\Sigma,\alpha,F\!>$. As in the string case, we inductively construct an FRE from M.

In preparation we extend the domain of α to $F_{\Sigma}[Q] \times Q^*$ as follows:

- (1) If $u = q \ (\in Q)$, then $\alpha(u, q_1 q_2 \dots q_k) = q$.
- (2) If $u = a\langle v \rangle$ $(v \in F_{\Sigma}[Q])$, then $\alpha(u, q_1q_2 \dots q_k) = \alpha(a, \alpha(v, q_1q_2 \dots q_k))$.

(3) If
$$u = vw$$
 $(v, w \in F_{\Sigma}[Q])$, then $\alpha(u, q_1q_2 \dots q_k) = \alpha(u, q_1q_2 \dots q_k)\alpha(v, q_1q_2 \dots q_k)$

Now, for each $q \in Q$ and sets $Q_1, Q_2 \subseteq Q$, let $R[q, Q_1, Q_2]$ be the set of trees u in $F_{\Sigma}[Q_2]$ such that $\alpha(u, \epsilon) = q$ and $\alpha(u/d, \epsilon) \in Q_1$ for non-leaf address d $(d \in Dom(u))$ and $d \not\in Dom(u)$. In other words, $R[q, Q_1, Q_2]$ is the set of trees carrying M from $Q_2 \cup \Sigma$ to q through Q_1 . By induction on the cardinality of Q_1 we prove that $R[q, Q_1, Q_2]$ is represented by some FRE over Σ with substitution symbols in Q.

Base case) Since $R[q, \emptyset, Q_2]$ consists of trees of depth ≤ 1 ,

$$\begin{split} R[q,\emptyset,Q_2] &= \{x \in Q_2 \cup \Sigma \mid \alpha(x,\epsilon) = q\} \\ &\quad \cup \bigcup_{x \in \Sigma} \{x \langle u \rangle \mid u \in (Q_2 \cup \Sigma)^* \text{ and } \alpha(x \langle u \rangle,\epsilon) = q\}. \end{split}$$

Since $\{x \in Q_2 \cup \Sigma \mid \alpha(x,\epsilon) = q\}$ is finite, some FRE r_1 represents this set. Let U[x] be $\{u \in (Q_2 \cup \Sigma)^* \mid \alpha(x\langle u\rangle,\epsilon) = q\}$. Consider a homomorphism² g from $(Q_2 \cup \Sigma)^*$ to Q_2^* such that g(q) = q when $q \in Q_2$ and $g(y) = \alpha(y,\epsilon)$ when $y \in \Sigma$. Then, $g(U[x]) = \hat{\alpha}(x,q) \cap Q_2^*$. By the definition of DFA, g(U[x]) is string-regular. Since g is a homomorphism, U[x] is also string-regular. Let u[x] be a string-regular expression over $Q_2 \cup \Sigma$ that represents U[x]. Then, an FRE $r_1 \mid a_1\langle u[a_1]\rangle \mid a_2\langle u[a_2]\rangle \mid \dots \mid a_{card(\Sigma)}\langle u[a_{card(\Sigma)}]\rangle$ represents $R[q,\emptyset,Q_2]$, where $\{a_1,a_2,\dots,a_{card(\Sigma)}\} = \Sigma$.

Inductive case) Observe that the following equation holds.

$$R[q,Q_1 \cup \{p\},Q_2] = R[q,Q_1,Q_2 \cup \{p\}] \circ_p R[p,Q_1,Q_2 \cup \{p\}]^{*p} \circ_p R[p,Q_1,Q_2]$$

Intuitively, this equation implies "to go from $Q_2 \cup \Sigma$ to q through $Q_1 \cup \{p\}$, go from $Q_2 \cup \Sigma$ to p through Q_1 , go from $Q_2 \cup \{p\} \cup \Sigma$ to p through Q_1 for zero or more times, and finally go from $Q_2 \cup \{p\} \cup \Sigma$ to q through Q_1 ." By the induction hypothesis, $R[q,Q_1,Q_2 \cup \{p\}], R[p,Q_1,Q_2 \cup \{p\}], R[p,Q_1,Q_2]$ can be represented by FRE's over Σ with substitution symbols in Q, say r_1, r_2, r_3 . Thus, $R[q,Q_1 \cup p,Q_2]$ can be represented by $r_1 \circ_p r_2^{*p} \circ_p r_3$. This completes the inductive proof.

Having proved that $R[p,Q_1,Q_2]$ is represented by some FRE, we are ready to prove that L(M) is as well. For every $q \in Q$, consider an FRE r_q over Σ with substitution symbols in Q such that $L(r_q) = R[q,Q,\emptyset]$. Let r_F be a string-regular expression which represents F. By replacing each q in r_F with r_q , we obtain an FRE that represents L(M).

Proof of "only if". Let r be an FRE over Σ with substitution symbols in S (a finite set) such that r represents a forest language L ($\subseteq F_{\Sigma}$). We are going to construct an NDFA that accepts L.

²A homomorphism h is a character-substitution such that h(x) contains a single string for each x. An inverse homomorphic image of a language L is $\{x \mid h(x) \in L\}$. It is known that an inverse homomorphic image of a string-regular set is string-regular.

For each sub-expression r' of r, we inductively construct an NDFA M[r'] that accepts L(r'). Since L(r') might not be a subset of F_{Σ} , we use $\Sigma \cup S$ rather than Σ as an alphabet. If this inductive construction yields $M[r] = \langle \Sigma \cup S, Q, \alpha, F \rangle$, the NDFA we want is $\langle \Sigma, Q, \alpha \cap (\Sigma \times Q^* \times Q), F \rangle$.

Inductive construction

Case 1 $r' = \emptyset$.

$$M[\emptyset] = \langle \emptyset, \Sigma \cup S, \emptyset, \emptyset \rangle$$
.

Case 2 $r' = \epsilon$.

$$M[\epsilon] = <\emptyset, \Sigma \cup S, \emptyset, \{\epsilon\}>.$$

Case 3 $r' = s \ (\in S)$.

$$M[s] = <\{s\}, \Sigma \cup S, \{(s, \epsilon, s)\}, \{s\}>.$$

Case 4 $r' = a\langle r_1 \rangle$ $(a \in \Sigma, r_1 \text{ is an FRE})$. Let $M[r_1]$ be $\langle Q_1, \Sigma \cup R_1 \rangle$ $S, \alpha_1, F_1 >$. Then,

$$M\left[a\langle r_1
angle
ight] = < Q_1 \cup \{q_F\}, \ \Sigma \cup S, eta, \{q_F\}>, \ ext{where}$$
 $\hat{eta}(x,q) = egin{cases} F_1 & ext{if } q = q_F \ ext{and } x = a, \ \hat{eta}(x,q) & ext{if } q = q_F \ ext{and } x
eq a, \end{cases}$

$$\hat{\beta}(x,q) = \begin{cases} \hat{\beta}(x,q) & \text{if } q = q_F \text{ and } x \neq a, \\ \hat{\alpha}_1(x,q) & \text{if } q \in Q_1. \end{cases}$$

Case 5 $r' = r_1 | r_2 (r_1, r_2 \text{ are FRE's})$. Let $M[r_1]$ be $\langle Q_1, \Sigma \cup S, \alpha_1, F_1 \rangle$, and let $M[r_2]$ be $\langle Q_2, \Sigma \cup S, \alpha_2, F_2 \rangle$. By renaming states not contained in S, we can assume $Q_1 \cap Q_2 \subseteq S$. Then,

$$M[r_1 | r_2] = < Q_1 \cup Q_2, \Sigma \cup S, \beta, F_1 \cup F_2 >$$
, where:

$$\hat{\beta}(x,q) = \begin{cases} \hat{\alpha_1}(x,q) & \text{if } q \in Q_1 \Leftrightarrow S, \\ \hat{\alpha_2}(x,q) & \text{if } q \in Q_2 \Leftrightarrow S, \\ \{\epsilon\} & \text{if } q \in S \cap (Q_1 \cup Q_2). \end{cases}$$

Case 6 $r' = r_1 r_2 \ (r_1, r_2 \text{ are FRE's}).$ Let $M[r_1]$ be $< Q_1, \Sigma \cup S, \alpha_1, F_1 >$, and let $M[r_2]$ be $\langle Q_2, \Sigma \cup S, \alpha_2, F_2 \rangle$. Again, we assume $Q_1 \cap Q_2 \subseteq S$. Then, $M[r_1r_2]$ is the same as $M[r_1|r_2]$ except that the last constituent is F_1F_2 rather than $F_1 \cup F_2$.

$$M[r_1r_2] = < Q_1 \cup Q_2, \Sigma \cup S, \beta, F_1F_2 >$$
, where:

$$\hat{\beta}(x,q) = \begin{cases} \hat{\alpha_1}(x,q) & \text{if } q \in Q_1 \Leftrightarrow S, \\ \hat{\alpha_2}(x,q) & \text{if } q \in Q_2 \Leftrightarrow S, \\ \{\epsilon\} & \text{if } q \in S \cap (Q_1 \cup Q_2). \end{cases}$$

Case 7 $r' = r_1^*$ $(r_1 \text{ is an FRE})$. Let $M[r_1]$ be $\langle Q_1, \Sigma \cup S, \alpha_1, F_1 \rangle$. Then,

$$M[r^*] = \langle Q_1, \Sigma \cup S, \alpha_1, F_1^* \rangle$$
.

Case 8 $r'=r_1\circ_s r_2$ $(s\in S, \text{ and } r_1,r_2 \text{ are FRE's})$. Let $M[r_1]$ be $< Q_1,\Sigma\cup S,\alpha_1,F_1>$, and let $M[r_2]$ be $< Q_2,\Sigma\cup S,\alpha_2,F_2>$. Again, we assume $Q_1\cap Q_2\subseteq S$. Let f be a character-substitution such that $f(x)=F_2$ when $x=s\in Q_1$, and $f(x)=\{x\}$ when $x\in Q_1\Leftrightarrow \{s\}$. Then,

$$M[r_1 \circ_s r_2] = \langle (Q_1 \Leftrightarrow \{s\}) \cup Q_2, \Sigma \cup S, \beta, f(F_1) \rangle, \text{ where:}$$

$$\hat{\beta}(x,q) = \begin{cases} f(\hat{\alpha_1}(x,q)) & \text{if } q \in Q_1 \Leftrightarrow S, \\ \hat{\alpha_2}(x,q) & \text{if } q \in Q_2 \Leftrightarrow S, \\ \{\epsilon\} & \text{if } q \in S \cap (Q_1 \cup Q_2). \end{cases}$$

Case 9 $r' = r_1^{*s}$ $(s \in S, r_1 \text{ is an FRE})$. Let $M[r_1]$ be $\langle Q_1, \Sigma \cup S, \alpha_1, F_1 \rangle$. Let f be a character-substitution such that $f(x) = F_1 \cup \{x\}$ when $x = s \in Q_1$, and $f(x) = \{x\}$ when $x \in Q_1 \Leftrightarrow \{s\}$. Then,

$$M[r^{*s}] = \langle Q_1, \Sigma \cup S, \beta, F \cup \{s\} \rangle, \text{ where:}$$

$$\hat{\beta}(x,q) = \begin{cases} f(\hat{\alpha_1}(x,q)) & \text{if } q \in Q_1 \Leftrightarrow S, \\ \{q\} & \text{if } q \in S \cap Q_1. \end{cases}$$

Corollary 4.10 (equivalence of TRE's and (N)DTA's). A language $L \subseteq T_{\Sigma}$ is represented by a TRE if and only if L is tree-regular.

5 Forest-regular grammar and tree-regular grammar

Definition 5.1 (forest-regular grammar). A forest-regular grammar (FRG) is a quadruple $\langle N, \Sigma, P, X \rangle$, where:

- (1) N is a finite set of non-terminals,
- (2) Σ is an alphabet,
- (3) P is a finite set of production rules, each of which is of the form $A \to x\langle r \rangle$ $(A \in N, x \in \Sigma, \text{ and } r \text{ is a string-regular expression over } N),$
- (4) X is a string-regular set over N.

Definition 5.2 (tree-regular grammar). An FRG $\langle N, \Sigma, P, X \rangle$ is a tree-regular grammar if $X \subseteq N$.

Definition 5.3 (derivation). For an FRG $G = \langle N, \Sigma, P, X \rangle$ and $u, v \in F_{\Sigma}[N]$), $u \to v$ or v is directly derived from u if for some $A \to a\langle r \rangle \in P$, v is obtained by replacing an occurrence of A in u by an element of $\{a\langle w \rangle \mid w \in L(r)\}$. The transitive closure of \to is denoted by \to .

Definition 5.4 (generated language). The language generated by G, L(G), is $\{t_1t_2...t_k \in F_{\Sigma} \mid k \geq 0, A_1A_2...A_k \in X, A_i \to t_i (1 \leq i \leq k)\}$.

Example 5.5. Consider an FRG $G = \{A\}, \{a,b\}, P, \{A\}^* >$, where $P = \{A \rightarrow a\langle A^* \rangle, A \rightarrow b\langle A^+ \rangle\}$. Then, L(G) is the language accepted by G in Example 3.14.

Remark. If FRG G is also a TRG, $L(G) \subseteq T_{\Sigma}$.

Theorem 5.6 (equivalence of FRG's and (N)DFA's). A language $L \subseteq F_{\Sigma}$ is generated by a FRG if and only if L is forest-regular.

Proof of "if". Assume that L is accepted by an NDFA $M = \langle Q, \Sigma, \alpha, F \rangle$. For every $q \in Q$ and $x \in \Sigma$, let $r_{q,x}$ be a string-regular expression over Q such that $L(r_{q,x}) = \hat{\alpha}(x,q)$. The set of production rules P is defined as $\bigcup_{q \in Q, x \in \Sigma} \{q \to x \langle r_{q,x} \rangle\}$. Then, $\langle Q, \Sigma, P, F \rangle$ is an FRG and generates L(M).

Proof of "only if". Assume that L is generated by an FRG $G = \langle N, \Sigma, P, X \rangle$. A relation α from $\Sigma \times N^*$ to N is defined as $\alpha(a, A_1A_2 \dots A_k, A) \Leftrightarrow$ for some $A \to a \langle r \rangle \in P$, $A_1A_2 \dots A_k \in L(r)$. Then, $\langle N, \Sigma, \alpha, X \rangle$ is an NDFA and accepts L(G).

Corollary 5.7 (equivalence of TRG's and (N)DTA's). A language $L \subseteq T_{\Sigma}$ is generated by a NDTA if and only if L is tree-regular.

6 Properties of forest-regular languages and treeregular languages

Theorem 6.1 (Boolean algebra). The class of forest-regular languages from a Boolean algebra.

Proof. We only have to prove closure under negation and closure under union. Let L_1 and L_2 be forest-regular languages over Σ . By definition, some DFA $M = \langle Q, \Sigma, \alpha, F \rangle$ accepts L_1 . The negation of L_1 , $F_{\Sigma} \Leftrightarrow L_1$, is accepted by DFA $\langle Q, \Sigma, \alpha, Q^* \Leftrightarrow F \rangle$ and is thus forest-regular. By Theorem 4.9, some FRE r_1 and r_2 represent L_1 and L_2 , respectively. The union of L_1 and L_2 is represented by $r_1 \mid r_2$ and is thus forest-regular.

Remark. Given two NDFA's, it is possible to directly construct an NDFA for the intersection of the two accepted languages.

Let NDFA $M_1 = \langle Q_1, \Sigma, \alpha_1, F_1 \rangle$ and let $M_2 = \langle Q_2, \Sigma, \alpha_2, F_2 \rangle$. We define two character-substitutions f_1 and f_2 as $f_1(q_1) = \{(q_1, q_2) \mid q_2 \in Q_2\}$ $\{q_1 \in Q_1\}$

and $f_2(q_2) = \{(q_1, q_2) \mid q_1 \in Q_1\}$ $(q_2 \in Q_2)$, respectively. Then, the intersection of $L(M_1)$ and $L(M_2)$ is accepted by NDFA $\langle Q_1 \times Q_2, \Sigma, \beta, F_1 \times F_2 \rangle$, where $\hat{\beta}(x, (q_1, q_2)) = f_1(\hat{\alpha}_1(x, q_1)) \cap f_2(\hat{\alpha}_2(x, q_2))$.

Corollary 6.2 (Boolean algebra). The class of tree-regular languages from a Boolean algebra.

Proof. The same as the previous proof except that the final state set for the negation DTA is $Q \Leftrightarrow F$ rather than $Q^* \Leftrightarrow F$.

BIBLIOGRAHICS NOTES

Our definition of FRE's is derived from [PQ68] but differs in not using projections and not using "enracinement". Our definition can also be considered as a forest-version of Thatcher and Wright's tree regular expressions [TW68]. We define FRG's similarily to [PQ68, Tak75] but again we avoid projections. Alternatively, our definition can be considered as a forest-version of Brainerd's tree regular grammars (called "tree generating regular systems") [Bra69]. Our definitions of NDFA's and DFA's are derived from (non-)deterministic tree automata of [Tha67] except that we have extended them to forests. We proved the equivalence between FRE's and (N)DFA's according to Arbib and Give'on's proof [AG68], which is simpler than those in [TW68].

References

- [AG68] M.A. Arbib and Y. Give'on. Algebra automata i: Parallel programming as a polegomena to the categorical approach. *Information and Control*, 12:331–345, 1968.
- [Bra69] Walter S. Brainerd. Tree generating regular systems. *Information and Control*, 14:217–231, 1969.
- [PQ68] C. Pair and A. Quere. Définition et etude des bilangages réguliers. Information and Control, 13:565–593, 1968.
- [Tak75] Masako Takahashi. Genelalizations of regular sets and their application to a study of context-free languages. *Information and Control*, 27:1–36, 1975.
- [Tha67] J. W. Thatcher. Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. Journal of Computer and System Sciences, 1:317–322, 1967.
- [Tha87] James W. Thatcher. Tree automata: An informal survey. In A.V. Aho, editor, *Currents in the theory of computing*, pages 143–172. Prentice-Hall, 1987.

[TW68] J.W. That cher and J.B. Wright. Generalized finite automata theory with an application to a decision problem of second-order logic. $Mathematical\ Systems\ Theory,\ 2(1):57–81,\ 1968.$