
Forest-regular Languages and Tree-regular

Languages

MURATA Makoto

May 26, 1995

1 Introduction

Forest-regular languages were studied by Pair et al[PQ68] and Takahashi [Tak75].

They are extensions of tree-regular languages [Tha87]. We borrow some con-

cepts from these papers but adopt de�nitions more similar to those for string-

regular languages.

2 Forests and trees

De�nition 2.1 (forest). A forest over � is:

(1) � (the null forest),

(2) ahui, where a is a symbol in � and u is a forest, or

(3) uv, where u and v are forests.

The set of forests over � is denoted by F�. For any forest u; v; w 2 F�; u(vw) =
(uv)w and u� = �u = u. We abbreviate ah�i as a.

Remark. Since abc � � � = ah�ibh�ich�i : : : , a string is also a forest.

De�nition 2.2 (tree). A tree is a forest of the form ahui. The set of trees over
� is denoted by T�.

De�nition 2.3 (forest width). The width of a forest u, denoted juj, is the

number of trees at the top level of u. That is, j�j = 0; jahuij = 1, and juvj =
juj+ jvj.

De�nition 2.4 (forest domain). We assign to each u 2 F� a subset of f1; 2; 3; : : :g+,
denoted Dom(u), such that:

(1) if u = �, then Dom(u) = ;,

(2) if u = ahvi, then Dom(u) = f1g [f1 v1v2 : : : vk j k � 0; v1v2 : : : vk 2

Dom(v)g,

1

Copyright by Fuji Xerox 2

(3) if u = vw, then Dom(u) = Dom(v) [f(w1 + jvj)w2w3 : : : wk j k � 0;
w1w2 : : : wk 2 Dom(w)g

Dom(u) is called the forest domain of u and the elements of Dom(u) are
called addresses.

Example 2.5. Dom(a) = f1g. Dom(ab) = f1; 2g. Dom(ahbcid) = f1; 11; 12; 2g.

Remark. If d 2 Dom(u) and d1 =2 Dom(u), then d is the address of a leaf node.

De�nition 2.6 (forest function). Corresponding to each u 2 F�, there is a
function u from Dom(u) to � as follows:

(1) If u = ahvi, then u(1) = a and u(1 v1v2 : : : vk) = v(v1v2 : : : vk).

(2) If u = vw and u1u2 : : : uk 2 Dom(v), then u(u1u2 : : : uk) = v(u1u2 : : : uk).

(3) If u = vw and u1u2 : : : uk =2 Dom(v), then u(u1u2 : : : uk) = w((u1� jvj)u2
u3:::uk).

Example 2.7. For u = ahbcid, u(1) = a, u(11) = b, u(12) = c, and u(2) = d.

De�nition 2.8 (subtree). Given a forest u and a forest address d in Dom(u),
the subtree rooted at d in u, denoted u=d, is a tree such that Dom(u=d) =

f1 v1v2 : : : vk j d v1v2 : : : vk 2 Dom(f)g and u=d(1 v1v2 : : : vk) = u(d v1v2 : : : vk).

Example 2.9. (ahbcid)=1 = ahbci and (ahbcid)=2 = d.

3 Forest automaton and tree automaton

De�nition 3.1 (deterministic forest automaton). A deterministic forest au-

tomaton (DFA) is a quadruple <Q;�; �; F>, where:

(1) Q is a �nite set of states,

(2) � is an alphabet,

(3) � is a function (called transition function) from � � Q� to Q such that

for every q 2 Q and x 2 �, fq1q2 : : : qk j k � 0; �(x; q1q2 : : : qk) = qg is

string-regular, and

(4) F is a string-regular set over Q.

Remark. As a convention, instead of fq1q2 : : : qk j k � 0; �(x; q1q2 : : : qk) = qg,
we write �̂(x; q). �̂ may be assumed as a function from ��Q to the power set

of Q�.

De�nition 3.2 (deterministic tree automaton). A DFA <Q;�; �; F > is

a deterministic tree automaton (DTA) if F � Q.

De�nition 3.3 (transition function extension). The domain of a transi-

tion function � can be extended to F� �Q� as follows:

Copyright by Fuji Xerox 3

(1) if u = �, �(u; q1q2 : : : qk) = �,

(2) if u = ahvi (a 2 �; v 2 F�), �(u; q1q2 : : : qk) = �(a; �(v; q1q2 : : : qk))

(3) if u = vw (v; w 2 F�), �(u; q1q2 : : : qk) = �(v; q1q2 : : : qk)�(w; q1q2 : : : qk).

De�nition 3.4 (accepted language). A DFA M =<Q;�; �; F > accepts a

forest u (2 F�) if �(u; �) 2 F . The language accepted by M , L(M), is the set of

forests accepted by M .

Example 3.5. Consider a DFA M =<fq0; q1g; fa; bg; �; fq0q1g>, where:

�̂(a; q0) = L((q0jq1)
�);

�̂(a; q1) = ;;

�̂(b; q0) = ;, and

�̂(b; q1) = L((q0jq1)
�):

Then, L(M) is the set of forests u over fa; bg such that juj = 2, u(1) = a and

u(2) = b.

Remark. If DFA M is also a DTA, L(M) � T�.

De�nition 3.6 (forest-regular language). A language L (� F�) is forest-

regular if L is accepted by a DFA.

De�nition 3.7 (tree-regular language). A languageL (� T�) is tree-regular
if L is accepted by a DTA.

De�nition 3.8 (state forest). For a DFA M =<Q;�; �; F >, the state for-

est for u (2 F�) is a forest uM (2 FQ) such that Dom(uM) = Dom(u) and
�(u=d; �) = uM (d) for every d 2 Dom(u).

Example 3.9. Let u be ahbibhahabii. Then, for the DFA M in Example 3.5,

uM is q0hq1iq1hq0hq0q1ii.

Remark. L(M) = fu j uM (1)uM (2) : : : uM (juj) 2 F; u 2 F�g.

De�nition 3.10 (non-deterministic forest automaton). A non-deterministic

forest automaton (NDFA) is a quadruple <Q;�; �; F>, where:

(1) Q;�, and F are as speci�ed in the de�nition of DFA, and

(2) � is a relation (called transition relation) from � � Q� to Q such that

for every q 2 Q and x 2 �, fq1q2 : : : qk j k � 0; �(x; q1q2 : : : qk; q)g is

string-regular.

Remark. As a convention, instead of fq1q2 : : : qk j k � 0; �(x; q1q2 : : : qk; q)g, we
write �̂(x; q). �̂ may be assumed as a function from ��Q to the power set of

Q�.

De�nition 3.11 (non-deterministic tree automaton). A NDFA< Q;�; �; F >
is a non-deterministic tree automaton (NDTA) if F � Q.

Copyright by Fuji Xerox 4

De�nition 3.12 (transition relation extension). A transition relation � can

be extended as a relation from F� �Q� to Q as follows:

(1) if u = �, �(u; q1q2 : : : qk; r1r2 : : : rl) if and only if r1r2 : : : rl = �,

(2) if u = ahvi (a 2 �; v 2 F�), �(u; q1q2 : : : qk; r1r2 : : : rl) if and only if l =
1; �(a; s1s2 : : : sm; r1) and �(v; q1q2 : : : qk; s1s2 : : : sm) for some s1s2 : : : sm 2

Q�

(3) if u = vw (v; w 2 F�), �(u; q1q2 : : : qk; r1r2 : : : rl) if and only if, for some

j(1 � j � n), �(v; q1q2 : : : qk; r1r2 : : : rj) and �(w; q1q2 : : : qk; rj+1 rj+2 : : : rl).

De�nition 3.13 (accepted language). An NDFA M =< Q;�; �; F > ac-

cepts a forest u (2 F�) if �(u; �; q1q2 : : : qk) for some q1q2 : : : qk 2 F (k � 0).

The language accepted by M , L(M), is the set of forests accepted by M .

Example 3.14. Consider an NDFA M =<fq0g; fa; bg; �; fq0g
�>, where:

�̂(a; q0) = L(q�0), and

�̂(b; q0) = L(q+0)

Then, L(M) is the set of forests over fa; bg such that nodes labeled by b always
have more than one subordinate node.

Remark. If NDFA M is also a NDTA, L(M) � T�.

Theorem 3.15 (equivalence of DFA's and NDFA's). A language L (� F�)
is accepted by a NDFA if and only if L is forest-regular.

Proof of \if". Straightforward.

Proof of \only if". As in the string case, subset construction provides this proof.

Assume that L is accepted by an NDFA M =<Q;�; �; F >. Let R = 2Q and

let f be a character-substitution1 such that f(q) = fr 2 R j q 2 rg. We de�ne

a function � from ��R� to R as �(x; r1r2 : : : rl) = fq 2 Q j �(x; q1q2 : : : ql; q) for

some qi 2 ri(1 � i � l)g. Observe that �̂(x; r) =
T
q2r f(�̂(x; q))�

S
q2Q�r f(�̂(x; q))

and is thus string-regular. Let M 0 be a DFA <R;�; �; f(F)>. Then, L(M 0) =

L(M).

Corollary 3.16 (equivalence of DTA's and NDTA's). A language L (�

T�) is accepted by a NDTA if and only if L is tree-regular.

De�nition 3.17 (state forest). For an NDFA M =<Q;�; �; F >, a state

forest for u (2 F�) is a forest v (2 FQ) such that Dom(v) = Dom(u) and

�(u=d; �; v(d)) for every d 2 Dom(u).

1A function h from � to the power set of �� is a character-substitution if h(x) is string-
regular for every x 2 �, where � and � are alphabets. The domain of h can be extended
to �� by h(x1x2 : : : xk) = h(x1)h(x2) : : : h(xk) (k � 0) and then to the power set of �� by
h(L) =

S
x2L

fh(x)g. As is well known, the image of a string-regular set under a character-
substitution is string-regular.

Copyright by Fuji Xerox 5

De�nition 3.18 (unambiguous NDFA). An NDFA M =<Q;�; �; F > is

unambiguous if for every u 2 F�, there exists at most one state forest uM such

that uM (1)uM (2) : : : uM (juj) 2 F .

Example 3.19. The NDFA M in Example 3.14 is unambiguous. For example,

if u = ahbib, then uM = q0hq0iq0.

4 Forest-regular expression and tree-regular ex-

pression

De�nition 4.1 (forest with substitution symbols). Let S be a �nite set of

substitution symbols. We de�ne F�[S] as the set of forests u 2 F�[S such that if

d 1 2 Dom(u) then u(d) =2 S (in other words, substitution symbols appear only

as leaf nodes). Elements in F�[S] are called forests over � with substitution

symbols in S.

De�nition 4.2 (vertical concatenation). For s 2 S and sets U; V (� F�[S]),
U �s V is the set of all forests w 2 F�[S] for which there exists u 2 U such that

w is obtained by replacing each occurrence of s in u by some element of V .
Various occurrences of s may be replaced by di�erent elements of V .

Remark. U �s (V �s W) = (U �s V) �s W , but U �s (V �t W) may be di�erent

from (U �sV)�tW . For example, (fahstig�s fbg)�tfcg = fahbcig but fahstig�s
(fbg �t fcg) = fahbtig.

De�nition 4.3 (vertical closure). For s 2 S and a set U(� F�[S]), we de�ne
U�s as X0 [X1 [X2 : : : ; where X0 = fsg and Xn+1 = Xn [(U �s Xn).

Example 4.4. fahsbsig�s = fs; ahsbsi; ahahsbsibsi; ahsbahsbsii; ahahsbsibahsbsii;
ahsbahahsbsibsii; ahahsbsibahsbsii; : : : g

De�nition 4.5 (forest-regular expression). A forest-regular expression (FRE)

over � with substitution symbols in S is:

(1) ;,

(2) �,

(3) s, where s 2 S,

(4) ahri, where r is an FRE,

(5) r1 j r2, where r1 and r2 are FRE's,

(6) r1r2, where r1 and r2 are FRE's,

(7) r�, where r is an FRE,

(8) r1 �s r2, where s 2 S and r1; r2 are FRE's, or

Copyright by Fuji Xerox 6

(9) r�s, where s 2 S and r is an FRE.

Remark. A string-regular expression over � is also an FRE.

De�nition 4.6 (tree-regular expression). A FRE r over � with substitu-

tion symbols in S is a tree-regular expression (TRE) if r is:

(1) ;,

(2) s, where s 2 S,

(3) ahri, where r is a FRE,

(4) r1 j r2, where r1 and r2 are TRE's,

(5) r1 �s r2, where s 2 S, r1 is a TRE and r2 is a FRE, or

(6) r�s, where s 2 S and r is a TRE.

De�nition 4.7 (represented language). The set of forests represented by

an FRE r, denoted L(r) (� F�[S]), is inductively de�ned as follows:

L(;) = ;

L(�) = f�g

L(s) = fsg

L(ahri) = fahui j u 2 L(r)g

L(r1 j r2) = L(r1) [L(r2)

L(r1r2) = fu1u2 j u1 2 L(r1); u2 2 L(r2)g

L(r�) = f�g [fu1u2 : : : uk j k > 0; fi 2 L(r)(1 � i � k)g

L(r1 �s r2) = L(r1) �s L(r2)

L(r�s) = L(r)�s

Example 4.8. L(ahsi�s �s b) = fb; ahbi; ahahbii; ahahahbiii; ahahahahbiiii; : : : g
and L(ahs�i �s b) = fa; ahbi; ahbbi; ahbbbi; ahbbbbi; : : :g.

Remark. If a FRE r is also a TRE, then L(r) � F�[S] \ T�[S .

Remark. When an FRE r is also a string-regular expression, L(r) coincides with
the set of strings represented by r.

Theorem 4.9 (equivalence of FRE's and (N)DFA's). A language L (�

F�) is represented by a FRE if and only if L is forest-regular.

Proof of \if". Assume that L is accepted by a DFA M =<Q;�; �; F >. As in
the string case, we inductively construct an FRE from M .

In preparation we extend the domain of � to F�[Q]�Q� as follows:

(1) If u = q (2 Q), then �(u; q1q2 : : : qk) = q.

(2) If u = ahvi (v 2 F�[Q]), then �(u; q1q2 : : : qk) = �(a; �(v; q1q2 : : : qk)).

Copyright by Fuji Xerox 7

(3) If u = vw (v; w 2 F�[Q]), then �(u; q1q2 : : : qk) = �(u; q1q2 : : : qk)�(v; q1q2 : : : qk)

Now, for each q 2 Q and sets Q1; Q2 � Q, let R[q;Q1; Q2] be the set of trees

u in F�[Q2] such that �(u; �) = q and �(u=d; �) 2 Q1 for non-leaf address d
(d 2 Dom(u) and d 1 =2 Dom(u)). In other words, R[q;Q1; Q2] is the set of trees

carryingM from Q2[� to q through Q1. By induction on the cardinality of Q1

we prove that R[q;Q1; Q2] is represented by some FRE over � with substitution

symbols in Q.
Base case) Since R[q; ;; Q2] consists of trees of depth � 1,

R[q; ;; Q2] = fx 2 Q2 [� j �(x; �) = qg

[
[
x2�

fxhui j u 2 (Q2 [�)� and �(xhui; �) = qg:

Since fx 2 Q2 [� j �(x; �) = qg is �nite, some FRE r1 represents this set.

Let U [x] be fu 2 (Q2 [�)� j �(xhui; �) = qg. Consider a homomorphism2 g
from (Q2 [�)� to Q�

2 such that g(q) = q when q 2 Q2 and g(y) = �(y; �)
when y 2 �. Then, g(U [x]) = �̂(x; q) \ Q�

2. By the de�nition of DFA, g(U [x])
is string-regular. Since g is a homomorphism, U [x] is also string-regular. Let

u[x] be a string-regular expression over Q2 [� that represents U [x]. Then, an
FRE r1 j a1hu[a1]i j a2hu[a2]i j : : : j acard(�)hu[acard(�)]i represents R[q; ;; Q2],

where fa1; a2; : : : ; acard(�)g = �.

Inductive case) Observe that the following equation holds.

R[q;Q1 [fpg; Q2] = R[q;Q1; Q2 [fpg] �p R[p;Q1; Q2 [fpg]
�p
�p R[p;Q1; Q2]

Intuitively, this equation implies \to go from Q2 [� to q through Q1 [fpg,
go from Q2 [� to p through Q1, go from Q2 [fpg [� to p through Q1 for

zero or more times, and �nally go from Q2 [fpg [� to q through Q1." By

the induction hypothesis, R[q;Q1; Q2[fpg], R[p;Q1; Q2[fpg], R[p;Q1; Q2] can

be represented by FRE's over � with substitution symbols in Q, say r1; r2; r3.
Thus, R[q;Q1 [p;Q2] can be represented by r1 �p r

�p
2 �p r3. This completes the

inductive proof.

Having proved that R[p;Q1; Q2] is represented by some FRE, we are ready

to prove that L(M) is as well. For every q 2 Q, consider an FRE rq over �

with substitution symbols in Q such that L(rq) = R[q;Q; ;]. Let rF be a string-

regular expression which represents F . By replacing each q in rF with rq , we
obtain an FRE that represents L(M).

Proof of \only if". Let r be an FRE over � with substitution symbols in S (a

�nite set) such that r represents a forest language L (� F�). We are going to

construct an NDFA that accepts L.

2A homomorphism h is a character-substitution such that h(x) contains a single string for
each x. An inverse homomorphic image of a language L is fx j h(x) 2 Lg. It is known that
an inverse homomorphic image of a string-regular set is string-regular.

Copyright by Fuji Xerox 8

For each sub-expression r0 of r, we inductively construct an NDFAM [r0] that
accepts L(r0). Since L(r0) might not be a subset of F�, we use �[S rather than

� as an alphabet. If this inductive construction yieldsM [r] =<�[S;Q; �; F >,
the NDFA we want is <�; Q; � \ (��Q� �Q); F >.

Inductive construction

Case 1 r0 = ;.

M [;] =<;;� [S; ;; ;> :

Case 2 r0 = �.

M [�] =<;;�[S; ;; f�g> :

Case 3 r0 = s (2 S).

M [s] =<fsg;�[S; f(s; �; s)g; fsg> :

Case 4 r0 = ahr1i (a 2 �; r1 is an FRE). Let M [r1] be <Q1;� [

S; �1; F1>. Then,

M [ahr1i] =<Q1 [fqF g;� [S; �; fqF g> , where:

�̂(x; q) =

8><
>:
F1 if q = qF and x = a;

; if q = qF and x 6= a;

�̂1(x; q) if q 2 Q1:

Case 5 r0 = r1 j r2 (r1; r2 are FRE's). Let M [r1] be <Q1;�[S; �1; F1>,
and let M [r2] be <Q2;� [S; �2; F2>. By renaming states not contained in S,
we can assume Q1 \Q2 � S. Then,

M [r1 j r2] =<Q1 [Q2;� [S; �; F1 [F2> , where:

�̂(x; q) =

8><
>:
�̂1(x; q) if q 2 Q1 � S;

�̂2(x; q) if q 2 Q2 � S;

f�g if q 2 S \ (Q1 [Q2):

Case 6 r0 = r1r2 (r1; r2 are FRE's). Let M [r1] be <Q1;� [S; �1; F1>,
and let M [r2] be <Q2;� [S; �2; F2>. Again, we assume Q1 \Q2 � S. Then,
M [r1r2] is the same as M [r1 j r2] except that the last constituent is F1F2 rather
than F1 [F2.

M [r1r2] =<Q1 [Q2;� [S; �; F1F2> , where:

�̂(x; q) =

8><
>:
�̂1(x; q) if q 2 Q1 � S;

�̂2(x; q) if q 2 Q2 � S;

f�g if q 2 S \ (Q1 [Q2):

Copyright by Fuji Xerox 9

Case 7 r0 = r�1 (r1 is an FRE). Let M [r1] be <Q1;�[S; �1; F1>. Then,

M [r�] =<Q1;� [S; �1; F
�

1 > :

Case 8 r0 = r1 �s r2 (s 2 S, and r1; r2 are FRE's). Let M [r1] be
<Q1;� [S; �1; F1>, and let M [r2] be <Q2;� [S; �2; F2>. Again, we assume

Q1 \ Q2 � S. Let f be a character-substitution such that f(x) = F2 when

x = s 2 Q1, and f(x) = fxg when x 2 Q1 � fsg. Then,

M [r1 �s r2] =<(Q1 � fsg) [Q2;� [S; �; f(F1)> , where:

�̂(x; q) =

8><
>:
f(�̂1(x; q)) if q 2 Q1 � S;

�̂2(x; q) if q 2 Q2 � S;

f�g if q 2 S \ (Q1 [Q2):

Case 9 r0 = r�s1 (s 2 S; r1 is an FRE). Let M [r1] be <Q1;�[S; �1; F1>.
Let f be a character-substitution such that f(x) = F1 [fxg when x = s 2 Q1,

and f(x) = fxg when x 2 Q1 � fsg. Then,

M [r�s] =<Q1;� [S; �; F [fsg> , where:

�̂(x; q) =

(
f(�̂1(x; q)) if q 2 Q1 � S;

fqg if q 2 S \Q1:

Corollary 4.10 (equivalence of TRE's and (N)DTA's). A language L (�

T�) is represented by a TRE if and only if L is tree-regular.

5 Forest-regular grammar and tree-regular gram-

mar

De�nition 5.1 (forest-regular grammar). A forest-regular grammar (FRG)

is a quadruple <N;�; P;X>, where:

(1) N is a �nite set of non-terminals,

(2) � is an alphabet,

(3) P is a �nite set of production rules, each of which is of the form A !

xhri (A 2 N; x 2 �, and r is a string-regular expression over N),

(4) X is a string-regular set over N .

De�nition 5.2 (tree-regular grammar). An FRG <N;�; P;X> is a tree-

regular grammar if X � N .

Copyright by Fuji Xerox 10

De�nition 5.3 (derivation). For an FRG G =< N;�; P;X > and u; v 2

F�[N]), u! v or v is directly derived from u if for some A! ahri 2 P , v is ob-
tained by replacing an occurence of A in u by an element of fahwi j w 2 L(r)g.
The transitive closure of ! is denoted by !

�
.

De�nition 5.4 (generated language). The language generated by G, L(G),
is ft1t2 : : : tk 2 F� j k � 0; A1A2 : : : Ak 2 X;Ai !

�
ti(1 � i � k)g.

Example 5.5. Consider an FRG G =< fAg; fa; bg; P; fAg� >, where P =

fA ! ahA�i; A ! bhA+ig. Then, L(G) is the language accepted by G in

Example 3.14.

Remark. If FRG G is also a TRG, L(G) � T�.

Theorem 5.6 (equivalence of FRG's and (N)DFA's). A language L (�

F�) is generated by a FRG if and only if L is forest-regular.

Proof of \if". Assume that L is accepted by an NDFA M =<Q;�; �; F >. For
every q 2 Q and x 2 �, let rq;x be a string-regular expression over Q such that

L(rq;x) = �̂(x; q). The set of production rules P is de�ned as
S
q2Q;x2� fq !

xhrq;xig. Then, <Q;�; P; F> is an FRG and generates L(M).

Proof of \only if". Assume that L is generated by an FRG G =<N;�; P;X>.
A relation � from � �N� to N is de�ned as �(a;A1A2 : : : Ak; A) , for some

A ! ahri 2 P; A1A2 : : : Ak 2 L(r). Then, <N;�; �;X > is an NDFA and

accepts L(G).

Corollary 5.7 (equivalence of TRG's and (N)DTA's). A language L (�

T�) is generated by a NDTA if and only if L is tree-regular.

6 Properties of forest-regular languages and tree-

regular languages

Theorem 6.1 (Boolean algebra). The class of forest-regular languages from

a Boolean algebra.

Proof. We only have to prove closure under negation and closure under union.

Let L1 and L2 be forest-regular languages over �. By de�nition, some DFA

M =<Q;�; �; F > accepts L1. The negation of L1, F� � L1, is accepted by

DFA <Q;�; �;Q� � F > and is thus forest-regular. By Theorem 4.9, some

FRE r1 and r2 represent L1 and L2, respectively. The union of L1 and L2 is

represented by r1 j r2 and is thus forest-regular.

Remark. Given two NDFA's, it is possible to directly construct an NDFA for

the intersection of the two accepted languages.

Let NDFA M1 =<Q1;�; �1; F1> and let M2 =<Q2;�; �2; F2>. We de�ne

two character-substitutions f1 and f2 as f1(q1) = f(q1; q2) j q2 2 Q2g (q1 2 Q1)

Copyright by Fuji Xerox 11

and f2(q2) = f(q1; q2) j q1 2 Q1g (q2 2 Q2), respectively. Then, the intersection

of L(M1) and L(M2) is accepted by NDFA <Q1 � Q2;�; �; F1 � F2>, where

�̂(x; (q1; q2)) = f1(�̂1(x; q1)) \ f2(�̂2(x; q2)).

Corollary 6.2 (Boolean algebra). The class of tree-regular languages from

a Boolean algebra.

Proof. The same as the previous proof except that the �nal state set for the

negation DTA is Q� F rather than Q� � F .

BIBLIOGRAHICS NOTES

Our de�nition of FRE's is derived from [PQ68] but di�ers in not using pro-

jections and not using \enracinement". Our de�nition can also be considered

as a forest-version of Thatcher and Wright's tree regular expressions [TW68].

We de�ne FRG's similarily to [PQ68, Tak75] but again we avoid projections.

Alternatively, our de�nition can be considered as a forest-version of Brainerd's

tree regular grammars (called \tree generating regular systems") [Bra69]. Our

de�nitions of NDFA's and DFA's are derived from (non-)deterministic tree au-

tomata of [Tha67] except that we have extended them to forests. We proved

the equivalence between FRE's and (N)DFA's according to Arbib and Give'on's

proof [AG68], which is simpler than those in [TW68].

References

[AG68] M.A. Arbib and Y. Give'on. Algebra automata i: Parallel programming

as a polegomena to the categorical approach. Information and Control,

12:331{345, 1968.

[Bra69] Walter S. Brainerd. Tree generating regular systems. Information and

Control, 14:217{231, 1969.

[PQ68] C. Pair and A. Quere. D�e�nition et etude des bilangages r�eguliers.

Information and Control, 13:565{593, 1968.

[Tak75] Masako Takahashi. Genelalizations of regular sets and their application

to a study of context-free languages. Information and Control, 27:1{36,

1975.

[Tha67] J. W. Thatcher. Characterizing derivation trees of context-free gram-

mars through a generalization of �nite automata theory. Journal of

Computer and System Sciences, 1:317{322, 1967.

[Tha87] James W. Thatcher. Tree automata: An informal survey. In A.V. Aho,

editor, Currents in the theory of computing, pages 143{172. Prentice-

Hall, 1987.

Copyright by Fuji Xerox 12

[TW68] J.W. Thatcher and J.B. Wright. Generalized �nite automata theory

with an application to a decision problem of second-order logic. Math-

ematical Systems Theory, 2(1):57{81, 1968.

