Forest-regular Languages and Tree-regular
Languages

MURATA Makoto
May 26, 1995

1 Introduction

Forest-regular languages were studied by Pair et al[PQ68] and Takahashi [Tak75].
They are extensions of tree-regular languages [Tha87]. We borrow some con-
cepts from these papers but adopt definitions more similar to those for string-
regular languages.

2 Forests and trees

Definition 2.1 (forest). A forest over ¥ is:
(1) € (the null forest),
(2) a(u), where a is a symbol in ¥ and u is a forest, or
(3) ww, where u and v are forests.

The set of forests over ¥ is denoted by Fy,. For any forest u, v, w € Fx,u(vw) =
(uv)w and ue = eu = u. We abbreviate a(e) as a.

Remark. Since abc--- = ale)b(e)c(e) ..., a string is also a forest.

Definition 2.2 (tree). A treeis a forest of the form a(u). The set of trees over
Y is denoted by T

Definition 2.3 (forest width). The width of a forest u, denoted |ul, is the
number of trees at the top level of u. That is, |e] = 0,]a(u)| = 1, and |uv| =
|uf + o]

Definition 2.4 (forest domain). We assign to each u € Fs; asubset of {1,2,3,...}7,
denoted Dom(u), such that:

(1) if u =€, then Dom(u) = 0,

(2) if w = a(v), then Dom(u) = {1} U {lvvz...v5| k > 0,0102...0; €
Dom(v)},

Copyright by Fuji Xerox 2

(3) if u = vw, then Dom(u) = Dom(v) U {(w1 + |v|)waws ... wy | k >0,
wiws ... w; € Dom(w)}

Dom(u) is called the forest domain of u and the elements of Dom(u) are
called addresses.

Example 2.5. Dom(a) = {1}. Dom(ab) = {1,2}. Dom(a(bc)d) = {1,11,12,2}.
Remark. If d € Dom(u) and d1 ¢ Dom(u), then d is the address of a leaf node.

Definition 2.6 (forest function). Corresponding to each u € Fy, there is a
function @ from Dom(u) to X as follows:

(1) If u = a(v), then w(1) = a and T(lv1ve...v;) = T(v10s ... VE).
(2) If u = vw and uius . ..ug € Dom(v), then w(uius ... ux) = v(urusg - . . ug).

(3) If u = vw and uyusy ... u, ¢ Dom(v), then T(uus . .. u,) = W((u1 <|v|)us
U3.. UL)-
Example 2.7. For u = a(be)d, u(l) = a, u(11) = b, u(12) = ¢, and u(2) = d.
Definition 2.8 (subtree). Given a forest u and a forest address d in Dom/(u),

the subtree rooted at d in u, denoted u/d, is a tree such that Dom(u/d)
{lvivy...v5 | dvivs ... v € Dom(f)} and u/d(lvivs...v;) = w(dvive ... vg).

Example 2.9. (a(bc)d)/1 = a(bc) and (a(bc)d)/2 = d.

3 Forest automaton and tree automaton

Definition 3.1 (deterministic forest automaton). A deterministic forest au-
tomaton (DFA) is a quadruple <@, %, a, F>, where:

(1) @ is a finite set of states,
(2) X is an alphabet,

(3) « is a function (called transition function) from ¥ x Q* to @ such that
for every g € Q and z € X, {q1¢q2.-.q | k > 0,a(x,q1G2 ... q1) = q} is
string-regular, and

(4) F is a string-regular set over Q).

Remark. As a convention, instead of {qiq2...qx | k > 0,a(z,q1q2 ... qr) = ¢},
we write &(x,q). & may be assumed as a function from X x @) to the power set

of Q*.

Definition 3.2 (deterministic tree automaton). A DFA <Q,%,a, F > is
a deterministic tree automaton (DTA) if F C Q.

Definition 3.3 (transition function extension). The domain of a transi-
tion function a can be extended to Fx x Q* as follows:

Copyright by Fuji Xerox 3

(1) ifu=e alu,qq...q) =¢,
(2) if u=a(v) (a € Z,v € Fy), a(u,q1q2 ... qx) = ala,a(v,q1q2 - . . q))
(3) if u =vw (an € FE)v Oé(uathl]Q .- -‘Zk) = 04(”:‘11(]2 .- -qk)a(waqqu . --Qk)-

Definition 3.4 (accepted language). A DFA M =<Q,X,«,F > accepts a
forest u (€ Fy) if a(u,€) € F. The language accepted by M, L(M), is the set of
forests accepted by M.

Example 3.5. Consider a DFA M =<{qo,q1 }, {a, b}, a, {qoq1 } >, where:

&(a,q0) = L((qolq1)"),
a(a,q1) =0,

a(b,qo) = 0, and
a(b,q1) = L((q0]q1)")

Then, L(M) is the set of forests u over {a,b} such that |u| = 2, w(1) = a and
u(2) = b.

Remark. If DFA M is also a DTA, L(M) C Tx.

Definition 3.6 (forest-regular language). A language L (C Fy) is forest-
reqular if L is accepted by a DFA.

Definition 3.7 (tree-regular language). A language L (C T¥x) is tree-regular
if L is accepted by a DTA.

Definition 3.8 (state forest). For a DFA M =<Q,%,a, F >, the state for-
est for u (€ Fy) is a forest uar (€ Fg) such that Dom(un) = Dom(u) and
a(u/d,e) = ups(d) for every d € Dom(u).

Example 3.9. Let u be a(b)b(a(ab)). Then, for the DFA M in Example 3.5,
unr is qo(q1)q1(q0{q0q1))-

Remark. L(M) = {u|upar(1)uar(2) ... unr(|ul) € Fyu € Fx}.

Definition 3.10 (non-deterministic forest automaton). A non-deterministic
forest automaton (NDFA) is a quadruple <@, X, a, F'>, where:

(1) @,%, and F are as specified in the definition of DFA, and

(2) « is a relation (called transition relation) from ¥ x @Q* to @ such that

for every ¢ € Q and z € I, {quqz...qx | k¥ > 0,0(z,q102 ... qr, @)} is
string-regular.

Remark. As a convention, instead of {q1¢2...q; | k > 0,a(z,q1q2 ... qx,q)}, we
write &(z,q). & may be assumed as a function from ¥ x @) to the power set of

Q"

Definition 3.11 (non-deterministic tree automaton). A NDFA < @, %, a, F >
is a non-deterministic tree automaton (NDTA) if F C Q.

Copyright by Fuji Xerox 4

Definition 3.12 (transition relation extension). A transition relation « can
be extended as a relation from Fy, x Q* to () as follows:

(1) ifu=c¢€, a(u,qiq2---qx, 172 ...17) if and only if rire...17 =,

(2) if u =a(v) (a € X,v € Fy), a(u,q1q2 ... qr,m172 -..77) if and only if | =
1,a(a,s152...8m,r1)and a(v,q1qs - . - Qk, S1S2 - - - Sy,) fOr some s159 ... 8, €
Q*
(3) if u=vw (v,w € Fx), a(u,q1¢2 - -.qx, 7172 - . .77) if and only if, for some
J1<j<n),a(v,q1q2 .- qr,m172 ... 75) and (W, q1Ga - - - Qs Tjp1 Tjk2 - - T1).
Definition 3.13 (accepted language). An NDFA M =<Q,%,a,F > ac-

cepts a forest u (€ Fy) if a(u,€,q1q2...qx) for some qig2...qx € F (k > 0).
The language accepted by M, L(M), is the set of forests accepted by M.

Example 3.14. Consider an NDFA M =<{qo}, {a, b}, a, {qo}* >, where:

a(a, q0) = L(q), and

Then, L(M) is the set of forests over {a, b} such that nodes labeled by b always
have more than one subordinate node.

Remark. If NDFA M is also a NDTA, L(M) C Tx.

Theorem 3.15 (equivalence of DFA’s and NDFA’s). A language L (C F¥)
is accepted by a NDFA if and only if L is forest-reqular.

Proof of “if”. Straightforward. O

Proof of “only if”. Asin the string case, subset construction provides this proof.
Assume that L is accepted by an NDFA M =<Q,%,«, F>. Let R = 2% and
let f be a character-substitution® such that f(q) = {r € R| q € r}. We define
a function f§ from ¥ X R* to R as B(z,m172...1) = {g € Q| a(z,q1¢2 . . . q1, q) for
some g; € ri(1 < i <1)}. Observe that 3(z,1) = ey F(6(2,0)8U e, /(a(z,q)
and is thus string-regular. Let M’ be a DFA <R, X, 3, f(F)>. Then, L(M') =
L(M).

O

Corollary 3.16 (equivalence of DTA’s and NDTA’s). A language L (C
Ts) is accepted by a NDTA if and only if L is tree-reqular.

Definition 3.17 (state forest). For an NDFA M =< Q,%,a,F >, a state
forest for u (€ Fx) is a forest v (€ Fg) such that Dom(v) = Dom(u) and
a(u/d,e,v(d)) for every d € Dom(u).

LA function h from A to the power set of ®* is a character-substitution if h(x) is string-
regular for every x € A, where A and ® are alphabets. The domain of h can be extended
to A* by h(z1x2...2,) = h(z1)h(z2) ... h(zg) (K > 0) and then to the power set of A* by
h(L) = U,er{M(®)}. Asis well known, the image of a string-regular set under a character-
substitution is string-regular.

Copyright by Fuji Xerox)

Definition 3.18 (unambiguous NDFA). An NDFA M =<Q,%,a,F > is
unambiguous if for every u € Fy, there exists at most one state forest u,; such
that war(1) @ar(2) ... war(|u]) € F.

Example 3.19. The NDFA M in Example 3.14 is unambiguous. For example,
if u = a(b)b, then unrr = qo{(qo)qo-

4 Forest-regular expression and tree-regular ex-
pression

Definition 4.1 (forest with substitution symbols). Let S be a finite set of
substitution symbols. We define Fy;[S] as the set of forests u € Fy g such that if
d1 € Dom(u) then u(d) ¢ S (in other words, substitution symbols appear only
as leaf nodes). Elements in Fx[S] are called forests over ¥ with substitution
symbols in S.

Definition 4.2 (vertical concatenation). For s € S and sets U, V(C Fx[S]),
U o, V is the set of all forests w € Fx[S] for which there exists u € U such that
w is obtained by replacing each occurrence of s in u by some element of V.
Various occurrences of s may be replaced by different elements of V.

Remark. U os (Vos W) = (U os V) o, W, but U os (V o, W) may be different
from (U oz V) o, W. For example, ({a(st)}os{b})o:{c} = {a(bc)} but {a(st)} o,
({b} ot {c}) = {a(bt)}.

Definition 4.3 (vertical closure). For s € S and aset U(C Fx[S]), we define
U*® as XoU X1 U X>..., where Xo = {s} and Xp41 = X, U (U o5 X,,).

Example 4.4. {a(sbs)}** = {s, a(sbs), a(a(sbs)bs), a(sba(sbs)), a(a(sbs)ba(sbs)),
a(sba{a(sbs)bs)), a{a(sbs)ba(sbs)),...}

Definition 4.5 (forest-regular expression). A forest-reqular expression (FRE)
over X with substitution symbols in S is:

0,

€,

1
2

3) s, where s € S,

4) a(r), where r is an FRE,

5) r1|ra, where r; and ro are FRE’s,

6) rirs, where ry and ro are FRE’s,

7) r*, where r is an FRE,

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

8) rq og 19, where s € S and 71,72 are FRE’s, or

Copyright by Fuji Xerox 6

(9) r*°, where s € S and r is an FRE.
Remark. A string-regular expression over ¥ is also an FRE.

Definition 4.6 (tree-regular expression). A FRE r over ¥ with substitu-
tion symbols in S is a tree-reqular expression (TRE) if r is:

1) 0
2) s, where s € S,
3) a(r), where r is a FRE,
)
)

5

(

(

(

(4) 71 |re, where ry and ry are TRE’s,

(5) ri ogro, where s € S, r; is a TRE and ry is a FRE, or
(

6) r*°, where s € S and r is a TRE.

Definition 4.7 (represented language). The set of forests represented by

an FRE r, denoted L(r) (C Fx[S]), is inductively defined as follows:
L)y=0
L(e) = {e}
L(s) = {s}
L(a(r)) = {a(u)| v € L(r)}
L(ry|r2) = L(ry) U L(r2)
L(rir2) = {urus | uy € L(ry),us € L(r2)}
L(r*) ={e} U{ujuz...ux | k> 0,f; € L(r)(1 <i<k)}
L(ry osr2) = L(r1) 05 L(r2)
L(r**) = L(r)™

Example 4.8. L(a(s)"* o,) = {b,a(8), a(a(8)), alala(b)), afa(ala(®))), .. }
and L(a(s*) og b) = {a, a(b), a(bb), a(bbb), a(bbbb), ... }.

Remark. If a FRE r is also a TRE, then L(r) C Fx[S]N Txus.

Remark. When an FRE r is also a string-regular expression, L(r) coincides with
the set of strings represented by r.

Theorem 4.9 (equivalence of FRE’s and (N)DFA’s). A language L (C
Fy)) is represented by a FRE if and only if L is forest-reqular.

Proof of “if”. Assume that L is accepted by a DFA M =<@Q,%,a, F'>. As in
the string case, we inductively construct an FRE from M.
In preparation we extend the domain of a to Fx[Q] x Q* as follows:

(1) Ifu=q (€ @), then a(u,q1g2 ... qr) = g

(2) If u = av) (v € Fx[Q]), then a(u,q1qgz - . .qr) = a(a, a(v,q192 - . - qr))-

Copyright by Fuji Xerox 7

(3) Ifu = vw (v,w € Fx[Q)), then a(u,q1q2 - .. qr) = a(u, q1G2 - . . qx)a(v, q1G2 - - - qx.)

Now, for each ¢ € @ and sets @1, Q2 C @, let R[q, @1, Q2] be the set of trees
u in Fx[Q2] such that a(u,e) = ¢ and a(u/d,€) € Q1 for non-leaf address d
(d € Dom(u) and d1 ¢ Dom(u)). In other words, R[q, Q1, Q2] is the set of trees
carrying M from Q2 U to g through ;. By induction on the cardinality of (4
we prove that R[q, Q1, Q2] is represented by some FRE over ¥ with substitution
symbols in Q).

Base case) Since R|q,), Q2] consists of trees of depth <1,

R[q,0,Q2] = {z € Q2U X | a(z,€) = q}
U (J{z() |u € (Q:UX) and a(x(u),e) = q}.

T€EX

Since {x € Q2 U X | a(x,€) = ¢} is finite, some FRE 1 represents this set.
Let Ulz] be {u € (Q2U X)*| a(x(u),e) = q}. Consider a homomorphism? g
from (@2 U X)* to Q5 such that g(q) = ¢ when ¢ € Q2 and ¢(y) = a(y,e¢)
when y € . Then, g(Ulz]) = a(z,q) N Q5. By the definition of DFA, g(U[x])
is string-regular. Since g is a homomorphism, Ulz] is also string-regular. Let
u[z] be a string-regular expression over 3 U X that represents U[z]. Then, an
FRE 71 | ai(ufa1]) | az(ufaz]) | ... | Gearacs)(u[@cara(s)]) represents Rlg, 0, Q2],
where {al, az, ..., acmd(z)} =3X.

Inductive case) Observe that the following equation holds.

R[Qa Ql U {p}7 QQ] = R[Qa Ql: Q2 U {p}] Op R[p7 Qh QQ U {p}]*p Op R[p7 Ql: QQ]

Intuitively, this equation implies “to go from Q2 UX to ¢ through @, U {p},
go from @ U X to p through @1, go from Q2 U {p} UX to p through @, for
zero or more times, and finally go from Q2 U {p} U X to ¢ through @,.” By
the induction hypOtheSiS> R[Q: Ql: Q2 U {p}]) R[pa Ql: Q2 U {p}]) R[pa Ql) QZ] can
be represented by FRE’s over ¥ with substitution symbols in Q, say r1,72,73.
Thus, R[g, Q1 Up, Q2] can be represented by 71 o, 7, 0, r3. This completes the
inductive proof.

Having proved that R[p, Q1, Q2] is represented by some FRE, we are ready
to prove that L(M) is as well. For every ¢ € @, consider an FRE r; over ¥
with substitution symbols in @ such that L(r,) = R[g, @, 0]. Let 7 be a string-
regular expression which represents F'. By replacing each ¢ in ry with r,, we
obtain an FRE that represents L(M).

O

Proof of “only if”. Let r be an FRE over ¥ with substitution symbols in S (a
finite set) such that r represents a forest language L (C Fyx). We are going to
construct an NDFA that accepts L.

2 A homomorphism h is a character-substitution such that h(z) contains a single string for
each z. An inverse homomorphic image of a language L is {z | h(z) € L}. It is known that
an inverse homomorphic image of a string-regular set is string-regular.

Copyright by Fuji Xerox 8

For each sub-expression 7’ of r, we inductively construct an NDFA M[r'] that
accepts L(r"). Since L(r") might not be a subset of Fx, we use ¥ U S rather than
¥ as an alphabet. If this inductive construction yields M[r] =< ZUS,Q,a, F >,
the NDFA we want is <X, Q,aN (X x Q* x Q), F>.

Inductive construction
Case 1 r' =0.

M0 =<0,2US,0,0> .
Case 2 1’ =e.

Mle] =<0,2U S,0,{e}>.
Case 3 ' =35(€9).

M[s] =<{s},5U S, {(s,€,5)},{s}> .
Case 4 ' = a(r1) (@ € £, is an FRE). Let M[r1] be <Q1,X U
S,ay, F1>. Then,
Mla(r1)] =<Q1U{qr},2US,B,{qr}> , where:
A F if g=qr and x = a,

Blx,q) =<0 if = qr and = # a,
dl(xaq) if qe Ql-

Case 5 1/ =1y |ry (r1,ry are FRE’s). Let M[ri] be <@Q1,XU S, a1, Fi >,
and let M[ra] be <Q2,X U S, as, F»>. By renaming states not contained in S,
we can assume Q1 N Q2 C S. Then,

M[’I”l |T2] =<Q@1UQ2,XUS, 3, Fy UFy>, where:
dl(myq) lfqul <:>Sa
ﬂ(m7Q): d2(1l)q) ifq€Q2<:>Sa
{e} ifge SN(Q1UQ1).

Case 6 1’ =ryry (r1,ro are FRE’s). Let M[r] be <Q1,X2U S, a1, Fi >,
and let M[rs] be <Q2,XU S, az, F»>. Again, we assume)1 N Q2 C S. Then,
M{ry72] is the same as M|[ry | r2] except that the last constituent is Fj F» rather
than F1 U F2.

Mrime] =<@Q1 U Q2,2 U S, 3, F1 F»> | where:
021(‘2;7Q) lfqul <:>Sa
ﬁ(ll7q): 022(‘2;7Q) 1fqu2<:>Sa
{e} if g€ SN(Q1UQ2).

Copyright by Fuji Xerox 9

Case 7 7/ =7} (r; isan FRE). Let M[r;] be <Q1,XU S, a1, F1 >. Then,
M[’I”x] :<Q1,EUS,041,F1*>.

Case 8 1/ = riosr2 (s € S,and r,r, are FRE’s). Let M]ry] be
<Q1,ZUS a1, Fi>, and let M[rs] be <Q2,X U S, as, F»>. Again, we assume
Q1N Q2 € S. Let f be a character-substitution such that f(x) = F, when
x=5€ Q1, and f(z) = {z} when z € Q1 &{s}. Then,

M[Tl Og 7“2] =<(Q1 C){S}) UQ2,XUS, 3, f(F)>, where:

. f(dl(xaq)) if qe Ql <:>S)
6(1.7(1) = dQ(.’II,Q) lf q € QQ <:>Sa
{e} if g€ SN (Q1UQ2).

Case 9 ' =rj° (s € S,r; isan FRE). Let M[ri] be <@Q1,2US,ay, F1 >.
Let f be a character-substitution such that f(z) = Fy U {z} when z = s € @1,
and f(x) = {z} when z € Q; ©{s}. Then,

M[r*°l =<@1,2US,3,FU{s}>, where:

2 _ f(dl(xaq)) if qe Ql <:>Sa
ﬁ(m’q)_{{q} ifgeSNQu.

O

Corollary 4.10 (equivalence of TRE’s and (N)DTA’s). A language L (
Ts) is represented by a TRE if and only if L is tree-regular.

N

5 Forest-regular grammar and tree-regular gram-
mar

Definition 5.1 (forest-regular grammar). A forest-regular grammar (FRG)
is a quadruple <N, X, P, X >, where:

(1) N is a finite set of non-terminals,
(2) ¥ is an alphabet,

(3) P is a finite set of production rules, each of which is of the form A —
z(r) (A € N,z € ¥, and r is a string-regular expression over N),

(4) X is a string-regular set over N.

Definition 5.2 (tree-regular grammar). An FRG <N, X, P, X > is a tree-
reqular grammar if X C N.

Copyright by Fuji Xerox 10

Definition 5.3 (derivation). For an FRG G =< N,X, P, X > and u,v €
Fy;[N]), u = v or v is directly derived from u if for some A — a(r) € P, v is ob-
tained by replacing an occurence of A in u by an element of {a(w) | w € L(r)}.
The transitive closure of — is denoted by —-.

Definition 5.4 (generated language). The language generated by G, L(G),
is {tltz...tk € Fy, | k> 0,A1A2...Ak S X,Al —)ti(]. <1< k’)}

Example 5.5. Consider an FRG G =< {4},{a,b}, P,{A}* >, where P =
{A = a(4*),A — b(A")}. Then, L(G) is the language accepted by G in
Example 3.14.

Remark. If FRG G is also a TRG, L(G) C Tx.

Theorem 5.6 (equivalence of FRG’s and (N)DFA’s). A language L (C
Fy)) is generated by a FRG if and only if L is forest-reqular.

Proof of “if”. Assume that L is accepted by an NDFA M =<@,%, a, FF>. For
every ¢ € @ and z € ¥, let 7y, be a string-regular expression over () such that
L(rqz) = &(z,q). The set of production rules P is defined as J,cq ,ex {0 =
z(rgz)}. Then, <Q,%, P, F> is an FRG and generates L(M).

Proof of “only if”. Assume that L is generated by an FRG G =<N, %, P, X >.
A relation «a from ¥ x N* to N is defined as a(a, A1 As ... Ay, A) < for some
A — a(r) € PyAjAs... A, € L(r). Then, <N,¥,a,X > is an NDFA and
accepts L(G). O

Corollary 5.7 (equivalence of TRG’s and (N)DTA’s). A language L (C
Tx) is generated by a NDTA if and only if L is tree-reqular.

6 Properties of forest-regular languages and tree-
regular languages

Theorem 6.1 (Boolean algebra). The class of forest-regular languages from
a Boolean algebra.

Proof. We only have to prove closure under negation and closure under union.
Let Ly and Ly be forest-regular languages over X. By definition, some DFA
M =<@Q,%,a, F> accepts L. The negation of Ly, Fx, <Ly, is accepted by
DFA <Q,%,a,Q* < F > and is thus forest-regular. By Theorem 4.9, some
FRE r; and ry represent Ly and Lo, respectively. The union of L, and Ls is
represented by 71 |73 and is thus forest-regular. O

Remark. Given two NDFA’s, it is possible to directly construct an NDFA for
the intersection of the two accepted languages.

Let NDFA M; =<Q1,%, a1, F1 > and let My =<Q2, %, az, F5>. We define
two character-substitutions f; and fs as fi(q1) = {(¢1,%2) | ¢2 € Q2} (1 € Q1)

Copyright by Fuji Xerox 11

and fo(q2) = {(¢1,%2) | ¢1 € @1} (g2 € Q2), respectively. Then, the intersection
of L(M;) and L(M,) is accepted by NDFA <@ x Q2,%, 3, F; x Fy>, where

B(z, (q1,q2)) = fildi(z,q1)) N fa(d2(z, g2)).

Corollary 6.2 (Boolean algebra). The class of tree-reqular languages from
a Boolean algebra.

Proof. The same as the previous proof except that the final state set for the
negation DTA is Q < F rather than Q* < F. O

BIBLIOGRAHICS NOTES

Our definition of FRE’s is derived from [PQ68] but differs in not using pro-
jections and not using “enracinement”. Our definition can also be considered
as a forest-version of Thatcher and Wright’s tree regular expressions [TW68].
We define FRG’s similarily to [PQ68, Tak75] but again we avoid projections.
Alternatively, our definition can be considered as a forest-version of Brainerd’s
tree regular grammars (called “tree generating regular systems”) [Bra69]. Our
definitions of NDFA’s and DFA’s are derived from (non-)deterministic tree au-
tomata of [Tha67] except that we have extended them to forests. We proved
the equivalence between FRE’s and (N)DFA’s according to Arbib and Give’on’s
proof [AG68], which is simpler than those in [TW68].

References

[AG68] M.A. Arbib and Y. Give’on. Algebra automata i: Parallel programming
as a polegomena to the categorical approach. Information and Control,
12:331-345, 1968.

[Bra69] Walter S. Brainerd. Tree generating regular systems. Information and
Control, 14:217-231, 1969.

[PQ68] C. Pair and A. Quere. Définition et etude des bilangages réguliers.
Information and Control, 13:565-593, 1968.

[Tak75] Masako Takahashi. Genelalizations of regular sets and their application
to a study of context-free languages. Information and Control, 27:1-36,
1975.

[Tha67] J. W. Thatcher. Characterizing derivation trees of context-free gram-
mars through a generalization of finite automata theory. Journal of
Computer and System Sciences, 1:317-322, 1967.

[Tha87] James W. Thatcher. Tree automata: An informal survey. In A.V. Aho,
editor, Currents in the theory of computing, pages 143—-172. Prentice-
Hall, 1987.

Copyright by Fuji Xerox 12

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata theory
with an application to a decision problem of second-order logic. Math-
ematical Systems Theory, 2(1):57-81, 1968.

