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ABSTRACT- The paper aims to analyze the equivalent kinematic chains of a family of three-degree-of-freedom 
(3-DOF) tripod mechanisms with planar-spherical bonds in order to determine the platform motions generated 
by the mechanisms. After a short introduction to mechanical generators of Lie subgroups of displacement, the 
mobility formula of a general 3-DOF tripod mechanism based on the modified Grüebler’s criterion is given. 
Using displacement group theory theorems, the analyzed closed-loop system becomes finally equivalent to a 3 
sphere-plane contacts. This will enable further design of new parallel mechanisms based on the task 
requirements. A prototype of a 3-DOF 3-RPS type parallel mechanism is designed and fabricated based on the 
equivalent kinematic chain analysis and the simulation result of workspace volume computation. 
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1 INTRODUCTION 
During the past few years, there has been an increasing 
demand in the field of precision engineering for fine 
motion of multi-degrees of freedom. This motivates the 
development of a new robotics application field, parallel 
mechanism in the Mechanical Engineering Division at 
NgeeAnn Polytechnic, Singapore. The choice of parallel 
structures for high precision applications is justified by 
numerous advantages: 
• High stiffness and structural frequency. 
• Precision. 
• Mobility and compactness. 
• Fixed actuators. 
• Uniform distribution of the load. 
However, the main disadvantage is a limited working 
space. The simplest way to cumulate precision and 
working volume consists in the utilization of a parallel 
manipulator combined with classic-serial robots, as the 
active wrist [1]. The parallel manipulator thus 
compensates the static errors of the sequential robot with 
serial structure. This principle is often described by the 
name “Macro-/mini-manipulator” [2]. 
Most researchers are concerned with kinematic properties 
of the general 6-DOF parallel platform architecture. The 
design of in-parallel actuated mechanisms with less than 
6-DOF is less developed. Besides, some application tasks 
don’t require all 6-DOF of the platform motion. In many 
respects, the paper focuses on theoretical design based on 
displacement group theory and fabrication of a 3-DOF 
linear type tripod mechanism evolved from previous 
researches and experiences of the authors concerning the 
design and control of parallel robotic platform 
manipulators [3]. This mechanism has been studied in-
principle by several researchers [1, 5-7], but the nature of 
motions, which can be generated by the mechanism, is 

not analyzed in depth. This type of parallel mechanism 
has the potential to produce high precision, a desirable 
attribute for a wrist robotic device. Hence, the ideal 
application of such special parallel mechanism is a 
micro-motion manipulator [1]. The major goals of this 
research supported by NgeeAnn Polytechnic are: 
• Development of the technology for new generation of 

robot systems carrying out dexterous manipulation 
tasks. 

• To train Mechanical Engineering staff and students in 
kinematics modeling and motion control of closed-loop 
chain mechanisms attracting more and more attention 
as a competent device for robotics and automation. 

• To support research and promote interest and skill 
development in robot manipulator design and control 
issues. 

In this paper, the mechanical generators of Lie subgroups 
of Euclidean displacement, which have proved to be a 
useful tool to model displacements of a mechanism, are 
first introduced. Then the formula of modified Grüebler 
mobility allowing to calculate the theoretical number of 
degrees-of-freedom within a mechanism is presented. 
Next, the equivalent kinematic chains of a family of 
mechanical generators of a planar-spherical bond can be 
derived. Finally, as an application of the above method 
the mechanical design of a 3-DOF 3-RPS tripod 
belonging to this family is described for model 
technology demonstration. 
 
2 MECHANICAL GENERATORS OF LIE 

SUBGROUPS OF DISPLACEMENTS 
The algebraic structure of Lie group of the set of 
Euclidean displacements {D} is a fundamental tool in the 
analysis of general properties of mechanisms. The 
comprehensive list of Lie subgroups of {D} is given in 



[8, 9]. For sake of succinctness, only four exemplary Lie 
subgroups of dimension less than or equal to three, 
namely planar displacements, rotations, linear 
translations and spherical motions, are explained here. 
Using intrinsic geometrical entities instead of coordinates 
and components in a given frame of reference, the 
previous subgroups can be denoted as {G (Pl)}, {R (N, 
u)}, {T (v)}, {S (N)}. Curly brackets are used for 
indicating sets. The capital characters G, R, T, S 
designate a type of motion, more precisely a class of 
conjugacy employing the vocabulary of group theory. {G 
(Pl)} means planar gliding parallel to the plane Pl 
representing the direction of a plane of the 3-dimensional 
Euclidean affine space. One can write also {G (w)} 
where w is a unit vector perpendicular to the plane Pl. {R 
(N, u)} holds for rotations around the axis determined by 
the pair (N, u) where N is a point and u a unit vector, {T 
(v)} for translations parallel to the given unit vector v and 
{S (N)} for spherical motions around the point N. u is a 
unit vector of the 3-dimensional Euclidean vector space, 
and N is a point of the 3-dimensional Euclidean affine 
space. Hence all the theorems of the group theory can be 
used to establish the mechanical properties of 
mechanisms. 
The set of allowed relative displacements between two 
rigid bodies, which belong to a given kinematic chain, is 
called mechanical bond. When a mechanical bond is 
given, a kinematic chain, which generates the bond will 
be named mechanical generator of the bond. The cases of 
mechanical bonds that are not manifolds of the 
displacement group {D} are out of the scope of this 
paper. Bonds, which are Lie subgroups of {D}, play a 
key role in the theory of mechanisms. A very important 
property of a subgroup is the closure of the product: the 
product of two elements of a given subgroup belongs to 
this subgroup. A serial arrangement of two mechanical 
generators of two bonds produces a new bond between 
the first rigid body and the end body and the new bond is 
the product of the serialized bonds. 
As an example, let us consider a sequence of two revolute 
pairs R and a prismatic pair P. The first R pair produces 
the subgroup {R (M, u)}, the second P pair the subgroup 
{T (v)}, and the last R pair the subgroup {R (N, w)}. M is 
a point on the first axis of rotation, u is a unit vector 
parallel to this axis, v is a unit vector parallel to the 
translation direction, N is a point on the second axis of 
rotation, and w is a unit vector parallel to this axis. The 
two points M and N are distinct. The bond between the 
first body and the end body, is given by the following 
product: 
{R (M, u)•T (v)•R (N, w)} = {R (M, u)}•{T (v)}•{R (N, 
w)}, where • is a symbol for the product of 
transformations. Generally {R (M, u)}•{T (v)}•{R (N, 
w)} is not a subgroup and is just a 3-dimensional 
manifold of {D}. In a possible special case the two R 
pairs are parallel: u = w and v is perpendicular to u, then 
the subgroups {R (M, u)}, {R (N, u)} and {T (v)} are 
included in the subgroup {G (u)} of planar motions, 
which combines rotations {R (M, u)} and {R (N, u)} 
about the axis (M, u), respectively (N, u) with 
translations {T (v)} parallel to v. We can write: 

{R (M, u)} ⊆  {G (u)} 
{R (N, u)} ⊆  {G (u)} 
     {T (v)} ⊆  {G (u)} 

This implies {R (M, u)}•{T (v)}•{R (N, u)} ⊆  {G (u)} 
because of the product closure in the subgroup {G (u)}. 
{R (M, u)}•{T (v)}•{R (N, u)} is a 3-dimensional 
manifold included in the 3-dimensional subgroup {G 
(u)}. Considering only motion types and neglecting the 
possible difference of motion amplitude, we can say that 
the sequence RPR is a mechanical generator of the 
subgroup {G (u)} or {G (Pl)} if the two R axes are 
parallel to u, i.e. perpendicular to the plane Pl, and the P 
direction is perpendicular to u: 

{R (M, u)}•{T (v)}•{R (N, u)} = {G (u)}     (1) 
Equation (1) can be illustrated by Fig. 1, which shows the 
mechanical generator of a planar subgroup {G (Pl)} 
obtained by a sequence RPR of lower kinematic R, P and 
R pairs between the bodies A and B. 
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Fig. 1 Generator of subgroup {G (Pl)} 
 

The other generators of planar gliding motion {G (u)} are 
readily obtained through the same reasoning and they are 
RRP, RRR, PRP, PPR, provided the R pair axes are 
parallel to u and the P pairs perpendicular to u (Fig. 2). 
The ordering inversion of a sequence, for example PRR, 
remains a generator of {G (u)}. 
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Fig. 2 Other generators of subgroup {G (Pl)} 
 

In the same manner, one can prove that a sequence of 
three revolute pairs RRR with intersecting axes is a 
mechanical generator of the subgroup {S (N)}, N being 
the common point of the intersecting axes. Schematic 
drawing of the corresponding equivalent kinematic chain 
is shown in Fig. 3. 
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Fig. 3 Generator of subgroup {S (N)} 
 

In order to obtain all the mechanical bonds of a kinematic 
chain, from the given mechanical bonds of the kinematic 
pairs, two operations between the mechanical bonds are 
used. There are the composition and the intersection of 
bonds. The composition of bonds results of the ordering 



in series of two bonds. The resulting subset of possible 
displacements is the composition product of the subsets, 
which are associated to the bonds in series. The 
intersection of mechanical bonds is obtained when two 
bodies are connected in parallel by two mechanical 
bonds. In this case there is a closed loop of the 
mechanism. The intersection bond is obtained by taking 
the intersection set of subsets that represent the in-
parallel bonds. So, group theory provides useful theorems 
that implement the composition and intersection of 
mechanical bonds. In a subgroup, the composition 
product is a closed product. The intersection set of two 
subgroups is always a subgroup. 
 
3 MOBILITY ANALYSIS OF A GENERAL 3-

DOF TRIPOD MECHANISM 
By definition, the mobility M of a mechanism is the 
actual number of degrees-of-freedom in a mechanism. 
The number of degrees-of-freedom is the number of 
independent joint variables, which must be specified in 
order to define the position of all links within a 
mechanism. A classical way to obtain the mobility of a 
kinematic chain consists of employing the modified 
Grüebler’s criterion based on the Graphs theory, which 
calculates the theoretical number of degrees-of-freedom 
within a mechanism. Let b the number of rigid bodies in 
the mechanism including the fixed body, n the number of 
bonds, fi the number of degrees of freedom for ith bond, Ec 
the number of independent loops in a kinematic chain or 
number of kinematic equations, and Ic the unknown 
kinematic variables (for example joint velocities). If all of 
the bonds define independent constraints, M is given by 

   M = Ic - Ec  (2) 

Where Ec = λ (n – b + 1) and Ic = ∑
=

n

1i
fi  

λ = 3 for planar mechanism and 6 for spatial mechanism. 
Equation (2) is called modified Grüebler’s criterion. In 
the Hervé generalized formula [8], λ becomes the 
dimension of a Lie subgroup of  {D} and may be 1, 2, 3, 
4 or 5 depending on the possible inclusion of all 
mechanical bonds in a given Lie subgroup of {D}. For 
example in planar mechanisms, any bond between any 
couple of rigid body is included in a subgroup of the type 
{G (u)}, which is a 3-dimensional manifold. 
If M < 0, the system is hyperstatic, i.e. the mechanism 
becomes a statically indeterminate structure. If M = 0, the 
system is isostatic, i.e. the mechanism is in equilibrium. 
Finally if M > 0, the system is mobile, i.e. if any M 
kinematic variables between the constituent bodies are 
known, then all other kinematic variables can be 
determined. For example, the four bar linkage, which is 
considered as a basic planar mechanism, has a mobility 
M = 1. 
Using this criterion for non over-constrained mechanisms 
(λ=6), it is easy to prove in Fig. 4 for the case of a 
general 3-DOF tripod with equal limbs that Ic = 15, i.e. 
each limb of the tripod is endowed 5 degrees of freedom. 
Otherwise, each limb has to generate a 5-dimensional 
manifold of the displacement group. In the special case of 
orientational tripod studied by Karouia and Hervé [10], 
the 5-dimensional manifold has to include the Lie 
subgroup {S (N)} of the Lie group {D} of displacements. 
In a general 3-DOF tripod, the moving platform 

undergoes a 3-dimensional manifold of screw motions, 
which can't be reduced into a product of independent sets 
of pure rotations or pure translations. 
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b = 5, n = 6, λ = 6  ⇒   Ec = λ (n – b + 1) = 12 

M = Ic - Ec = 3  ⇒   Ic = ∑
=

n

1i
fi  = 15 

Fig. 4 Mobility of a general 3-DOF tripod 
 
4 3-DOF TRIPOD MECHANISMS WITH 

PLANAR-SPHERICAL BONDS 
 
 4.1 Generators of a Planar-Spherical Bond 
Based on the previous study in sections 2 and 3, we will 
focus our attention to the special case of tripod, each limb 
of which generates a 5-dimensional manifold of the 
displacement group, otherwise a 5-DOF kinematic bond, 
and this bond can be represented by {G (u)}•{S (N)}. 
This is the product of two subgroups but not a subgroup. 
This kinematic bond is produced evidently by the serial 
setting of a planar pair Pl and a spherical pair S (Fig. 
5(a)) and therefore can be called planar-spherical bond. 
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Fig. 5 planar-spherical bond 
 
However the bond representation {G (u)}•{S (N)} use 6 
parameters, 3 for {G (u)} and 3 for {S (N)}, whereas 5 
parameters are enough to characterize any 5-dimensional 
bond. The superfluous parameter can be eliminated by 
considering the intersection {G (u)}∩{S (N)}, which can 
be readily proven equal to {R (N, u)}. {R (N, u)} is the 
subgroup of rotations around the unit vector u, which is 
perpendicular to the plane Pl drawn from point N. These 
rotations are passive in the bond. In the following we will 
find two families of generators, which don't have passive 
mobility. Because of the product closure in the subgroup 
{G (u)}, we can write 

{G (u)} = {R (M, u)}•{T (v)}•{R (N, u)}     (3) 
where M and N are distinct points, v is a unit vector 
perpendicular to the unit vector u. Also, because of the 
product closure in the subgroup {S (N)}, we can write 

{S (N)} = {R (N, u)}•{R (N, i)}•{R (N, j)}       (4) 
where N is the common point of the intersecting axes, 
and the vectors u, i and j are linearly independent. A 
possible representation of the mechanical bond {G 
(u)}•{S (N)} is as follows. 
{G (u)}•{S (N)} = {R (M, u)}•{T (v)}•{R (N, u)}• 

{R (N, u)}•{R (N, i)}•{R (N, j)}     (5) 



Equation (5) is illustrated by Fig. 5(b). 
Because of the product closure in the subgroup {R (N, 
u)}, we can write: 

{R (N, u)}•{R (N, u)}= {R (N, u)}2 = {R (N, u)}. 
Equation (5) becomes: 
{G (u)}•{S (N)} = {R (M, u)}•{T (v)}•[{R (N, u)}• 

{R (N, i)}•{R (N, j)}] 
= {R (M, u)}•{T (v)}•{S (N)}        (6) 

The passive mobility is eliminated in this new 
representation of the given bond. This first way for 
obtaining a regular generator of a planar-spherical bond 
is explained by Fig. 6(b). 
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Fig. 6 Two families of generators of a planar-spherical bond 
 
Equation (6) leads to a limb chain, namely the family 
RP(S) illustrated in Fig. 6(a). In this kinematic chain, the 
P pair direction is perpendicular to the axis of R pair. The 
underline denotes a planar system and the parenthesis 
denotes a spherical system. Similarly, we can find other 
mechanical generators of the same bond {G (u)}•{S (N)} 
with the following list of possible limbs: RR(S), PR(S) 
and PP(S), where (S) can be replaced by a sequence of 
(RRR). The above-described family of equivalent 
kinematic chains is made of sequences of a 2-DOF planar 
system and a 3-DOF spherical motion generator. This 
family can be designated by one of its representative, 
namely RP(S). 
Rewriting Eq. (5) as follows. 
{G (u)}•{S (N)} = [{R (M, u)}•{T (v)}•{R (N, u)}] 

•{R (N, i)}•{R (N, j)} 
= {G (u)}•{R (N, i)}•{R (N, j)}        (7) 

Equation (7) is another way to eliminate the passive 
mobility represented by {R (N, u)}, and leads to another 
family of equivalent limb chains, namely the family Pl-
(RR), which generates the same planar-spherical bond 
(Fig. 6(c)). In this family, the two R axes of the notation 
(RR) have to intersect at a point and we can obtain the 
following list of possible limbs: RRR(RR), RRP(RR), 
PRR(RR), RPR(RR), RPP(RR) and PPR(RR). 
Since we are more interested in the design of parallel-
mechanism limbs that implement a spherical pair S, the 
family RP(S) is only considered for further study (Fig. 7). 
It is worth noting that spherical pairs can be simply 
realized employing commercially available spherical 
plain bearings. 
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Fig. 7 Limbs of the family RP(S) 

 4.2 Parallel Arrangement of 3-RP(S) Tripod 
Because of potential applications in assembly 
automation, we will emphasize the special arrangement 
3-RP(S) with three planes that are parallel to a straight 
line. As a matter of fact, the intersection of two distinct 
subgroups of planar gliding motions is a subgroup of 
linear translations, which are parallel to the straight line 
of the plane intersection. If the third plane is also parallel 
to this line, linear translations will be produced by the 
parallel mechanism. Such a translation is useful to insert 
a peg in a bored hole. 
Let us consider three limbs of the structural type RP(S) 
connecting a fixed base to a moving platform. The three 
limbs produce three kinematic bonds {G (w1)}•{S (B1)}, 
{G (w2)}•{S (B2)} and {G (w3)}•{S (B3)}. Let us 
suppose that the third limb is removed for theoretical 
purpose. The platform can undergo motions that are 
represented by {G (w1)}•{S (B1)} ∩ {G (w2)}•{S (B2)}. 
It is straightforward to prove that 
{G (w1)}•{S (B1)}∩{G (w2)}•{S (B2)}⊆  {G (w1)} ∩ {G 
(w2)} because the identical transformation E belongs to 
{S (B1)} and {S (B2)}, and replacing {S (B1)} and {S 
(B2)} by E gives a subset of {G (w1)}•{S (B1)} ∩ {G 
(w2)}•{S (B2)}. We have {G (w1)} ∩ {G (w2)} = {T 
(z0)}, z0 being a unit vector that is perpendicular to the 
plane (w1, w2). We can conclude that the subgroup 
{T (z0)} is included in the manifold 
{G (w1)}•{S (B1)} ∩ {G (w2)}•{S (B2)}, which is not a 
subgroup but a 4-dimensional manifold of {D}. 
If {G (w1)} ∩ {G (w3)} is also equal to {T (z0)}, then 
{G (w2)} ∩ {G (w3)} will be equal to {T (z0)}. The 
whole tripod will produce platform 3-DOF motions 
represented by 
{G (w1)}•{S (B1)} ∩ {G (w2)}•{S (B2)} ∩ {G (w3)}•{S (
B3)}, which includes {G (w1)} ∩ {G (w2)} ∩ {G (w3)} = 
{T (z0)}. 
We can conclude that the moving platform has 
translational 1-DOF motion parallel to z0. The remaining 
2-DOF motion set is made of screw motions. Any screw 
motion being a combination of translation and rotation, 
the platform can rotate with 2-DOF but generally the 
allowed rotations are not pure and therefore imply 
dependent translations. 
 Any rotation (or screw motion) having an axis parallel 
to z0 is forbidden. Let us consider a virtual revolute pair 
connecting the base to the moving platform. This R pair 
generates the bond {R (P, z0)}, P being any point, and the 
motion set of the platform will become (set operation ∩ 
is associative): 
{G (w1)}•{S (B1)}∩{G (w2)}•{S (B2)}∩{G (w3)}•{S (B3
)} ∩ {R (P, z0)} 
The above-written intersection is included in the partial 
intersection {G (w1)}•{S (B1)} ∩ {R (P, z0)}. This last 
intersection of two kinematic bonds symbolizes a single-
loop chain. Neglecting the 1-DOF passive mobility in 
{G (w1)}•{S (B1)}, the addition of DOF in the loop is 6, 
hence generally the single loop is a static structure and 
{G (w1)}•{S (B1)} ∩ {R (P, z0)} = {E}, {E} being the 
improper subgroup that contains only the identical 
transformation E. Exceptions may happen if 
{S (B1)} ∩ {R (P, z0)} ≠ {E} or if {G (w1)} ∩ {R (P, z0)} 
≠ {E}. The first exception can occur if and only if the 
point B1 belongs to the axis (P, z0), the second exception 



if and only if z0 is parallel to w1. If these geometrical 
conditions are effective for one limb, they can't be 
achieved in the other two limbs when (B1, B2, B3) is a 
true triangle and the vectors w1, w2 and w3 are distinct. 
 Let us suppose now that {R (P, z0)} is replaced by 
{R (P, i)}, where i is an unknown unit vector and P an 
unknown point. In a special configuration of whole 
parallel mechanism the straight line B1B2 may be parallel 
to w3. If i is chosen equal to w3 and P on the line B1B2 
(for example P = B1), the above-mentioned conditions of 
exceptional mobility are obtained at three times because 
we have 
1.{S (B1)} ∩ {R (B1, i)}={S (B1)} ∩ {R (B1, w3)} 
           ={R (B1, w3)} 
2. {S (B2)} ∩ {R (B2, w3)}={R (B2, w3)}={R (B1, w3)} 
3. {G (w3)} ∩ {R (B1, w3)}={R (B1, w3)} 
The subgroup {R (B1, w3)} is included in the three bonds 
generated by the three limbs and therefore included in the 
three bonds intersection. The moving platform can rotate 
around the axis of the straight line B1B2. If the 
mechanism has a ternary axis of symmetry, which is 
parallel to the three planes of the three planar-spherical 
bonds, like the prototype of the following paragraph, (B1, 
B2, B3) is an equilateral triangle, whose edges are three 
axes of allowed pure rotations. Other lines can't be axes 
of pure rotation. 
In order to explain again the platform motion in an 
intuitive manner, we may remark that the planar-
spherical bond can be obtained by a simple contact of a 
sphere on a plane. Looking at figure 5(a) we notice that 
the sphere size has no importance and that the plane is 
actually a plane direction and therefore can be replaced 
by a parallel plane. Hence the sphere can get in touch 
with the plane and then the contact is maintained. The 
possible platform motions are those of a body having 
three spheres, which remain in contact with three fixed 
planes that are parallel to a line. The following Figure 8 
shows this theoretical device. It is worth noting that the 
spheres can have a zero diameter and therefore can be 
reduced into points. 
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Fig. 8 Equivalent kinematic chains 
   of 3-DOF 3-RPS tripods 

 
5 MECHANICAL DESIGN OF A 3-DOF 

3-RPS TRIPOD 
By adopting the RPS tripod architecture, our designed 
prototype is a linear type 3-DOF parallel manipulator 
represented in Fig. 9. It composes a mobile platform end-
effector and a fixed base plate, connected by three 
variable length links representing three actuated prismatic 
joints, which are based on ball-screw system. Each of the 
three ball-screws is coupled to a base plate through a 

passive revolute joint, and to the end-effector attachment 
plate through a nut which is free to rotate about three 
perpendicular axes by virtue of a spherical joint coupling, 
which is customized using the THK spherical plain 
bearing type SA1 from Japan. Since the manipulator in 
this project is intended to be for general purpose, the base 
and mobile plates are both of equilateral triangle shape. 
The entire arrangement of attachment points on mobile 
and base plates is made as symmetric as possible to 
simplify analysis and operation. This mechanism has 
three degrees of freedom: two for orientation (pitch and 
yaw rotations) and one for translation freedom (plunging 
motion), and can provide the necessary flexibility for 
insertion operations with accuracy. 
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Fig. 9 A linear type 3-DOF parallel mechanism 

 
Our design objective is to obtain the smallest size of the 
mechanism based on commercially available mini-motor 
with specified torque. Using inverse kinematics described 
in [5], the workspace volume can be estimated by 
limiting the motion range of actuators ),,i(ii ),l( 321====ϕϕϕϕ . 
One of the most interesting point in this mechanism 
design is to select a value ρρρρ, representing the ratio 
between the length of equilateral triangle of end plate a1 
and that of the fixed base plate a0, which produces a large 
workspace volume. Based on available size of the three 
mini-motors, the minimum value of a0 is 89mm. The case 
ρρρρ > 1 is excluded, because end plate inertia will be higher 
than the one of base plate, and therefore the dynamic 
performance characteristics such as high speed and 
acceleration cannot be obtained. First the volume is 
estimated by limiting the actuator motion range il (i = 
1,2,3) (for actuator i, 25mm ≤≤≤≤≤≤≤≤ il 64mm). Then, the 
volume is refined by taking into account the motion range 
of the pin joints iϕϕϕϕ  (i = 1,2,3) (for pin joint i, 

oo 9055 ≤≤≤≤ϕϕϕϕ≤≤≤≤ i ). Based on computed workspace studied 
in [5] the 2/3 ratio offers the best performance. But, it 
was decided to choose ρρρρ as 1 because the individual 
contribution of each actuator to end plate motion is 
decoupled, so the kinematics analysis is simplified as 
much as possible, and therefore the mechanism can be 
used for real time control. 
A prototype parallel mechanism illustrated in Fig. 10 has 
been designed using Pro-Engineer software, and CNC 
machined for educational purpose at the NgeeAnn 
Polytechnic of Singapore. The 3D workspace of the 
parallel manipulator when ρρρρ = 1, is plotted in Fig. 11 by a 
numerical procedure explained in [4] and inverse 
kinematics described in [5]. Finally, table 1 shows the 
specification of the prototype. 



6 CONCLUSION 
In this paper, equivalent kinematic chains analysis of 3-
DOF tripod mechanisms with planar-spherical bonds 
have been presented using the group theory of 
displacements and the mobility analysis based on the 
modified Grüebler’s criterion, which are a powerful tool 
for the motion analysis and synthesis of parallel 
mechanisms. New design of parallel robotic systems can 
be obtained thanks to this method. 
Applying the above method and based on the simulation 
study of workspace volume using inverse kinematics, a 
prototype 3-RPS parallel mechanism has been designed 
and fabricated with its integrated control system for 
model technology demonstration and for educational 
purpose at the NgeeAnn Polytechnic of Singapore. 
Future research works will be carried out on the 
development of kinematics hybrid position-force control 
software for interactions between the parallel manipulator 
and hard contact environment. 
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 R a n g e  U n i t s  
B a l l - s c r e w  s t r o k e  M i n :  + 2 5  

M a x :  + 6 4  
m m  

T o t a l  l e n g t h  o f  b a l l - s c r e w  1 2 0  m m  
P i t c h  o f  b a l l - s c r e w  2 π  r a d / m m  

L e n g t h  o f  e q u i l a t e r a l  t r i a n g l e  8 9  m m  
H e i g h t  o f  t o o l  c e n t e r  p o i n t  9 0  m m  

W e i g h t  3  k g  
L o a d  c a p a c i t y  3  k g  

D C  m o t o r  o u t p u t  
M a x .  T o r q u e  

0 . 5  N m  

E n c o d e r  r e s o l u t i o n  2 5 0 0  p p r  
W o r k s p a c e  v o l u m e  0 . 2  d m 3  

R e s o l u t i o n  o f  m o t i o n :  Z  1 1  µ m  
R e s o l u t i o n  o f  m o t i o n :  X ,  Y  3 4  µ m  

V e l o c i t y  ( m a x )  o f  t h e  e n d  
e f f e c t o r  

0 . 0 1 3  m / s  

  
  Fig. 11 Workspace volume estimation (Volume = 0.2 dm3)  Table 1 Specification of the prototype 
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