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ABSTRACT 
 
Kinematic performance characteristics for parallel 
mechanisms in terms of working space volume, singularity 
points and maximum velocity are presented. Using these 
performance characteristics which are basically important 
issues in kinematic design and control of parallel 
manipulators, the performance comparison can be made 
between a 6 d.o.f conventional Gough-Stewart Platform 
(GSP) and a 6 d.o.f Hexaslide Parallel Mechanism (HPM) 
with fixed linear actuators. This study can serve as a basic 
guide for the design of parallel manipulators in the sense of 
achieving kinematic performances, and has been applied to 
the design and motion control of the Hexaslide. 
 
KEY WORDS: Parallel Mechanism, Workspace, Singularity, 
Maximum Velocity, Kinematic Performance, Motion Control. 
 
 
1 INTRODUCTION 
 
 In order to design a high performance motion controlled 
parallel manipulators, kinematic performance characteristics 
of parallel mechanisms in terms of workspace volume, 
singular configurations and maximum velocity are 
investigated. There are many other performance characteristics 
based on kinematics [1]. Here, workspace, singularities and 
velocity zones are only considered because they are basically 
important issues in kinematic design and control of parallel 
manipulators. 
 In this paper, the methods allowing to determine these 
characteristics are briefly presented. They have been 
developed and particularly applied to parallel manipulators. 
The working space of a manipulator is one of the most 
important specifications for the designers, as it can be used to 
evaluate the kinematic performance of a designed robotic 
mechanism [2-6]. For example, J.P. Merlet [4] compares four 
different parallel robot geometries based on their numerical 
workspace volumes and shows that for robot of similar 
dimensions the joints layout has a large influence on the 
workspace volume. Clément M. Gosselin et al. [5] use one of 
their comparison criteria which is the working volume in 
Cartesian space to compare four different architectures of 6 
d.o.f parallel mechanisms. Their results show that although 
different architectures have certain advantages in specific 
performance measures, the Gough-Stewart platform offers the 
most balanced performance. F.C. Park et al. [6] analyse the 
machine tool workspace by introducing a volume form on the 
space of homogeneous transformations, in order to compare 
for CNC machining applications the kinematic performance of 
the 6 d.o.f conventional Gough-Stewart platform and a hybrid 
6 d.o.f serial-parallel structure called 3-PRPS. In general, the 
positioning workspace volume of the 3-PRPS Mechanism is 
much larger than that of the Gough-Stewart platform assuming 
machines of approximately the same physical dimension. 

Different methods to determine the workspace of a parallel 
mechanism have been proposed by many researchers, either by 
using a numerical method [7,8,9], or a geometrical algorithm 
[10,11]. Here, we use the numerical procedure based on a 
complete discretization of the Cartesian space to calculate the 
workspace volume for a fixed orientation and altitude of the 
mobile platform. Singular configurations are identified by 
using Grassmann geometry approach which has been proposed 
by Merlet [12,13] in order to find all the singular 
configurations of a parallel mechanism. Finally, the 
determination of the maximum velocity is based on the 
analysis of the algebraic inequalities describing the constraints 
on the kinematics model [14]. 
 Using these performance characteristics, the comparison 
and evaluation can be made between a 6 d.o.f conventional 
Gough-Stewart Platform (GSP) which has been well known as 
a moving linear type parallel mechanism [15], and a 6 d.o.f 
Hexaslide Parallel Mechanism (HPM) which is considered as 
a new type parallel mechanism with fixed linear actuators 
[16]. By taking merits of simulation results, a Hexaslide 
prototype was designed and constructed in Japan and Korea 
for underground excavation and tire carving, and an optimal 
velocity based control method [17] for high speed straight line 
trajectory of the Hexaslide has been proposed. The proposed 
control algorithm is then implemented in real time trajectory 
planning and position servoing in order to satisfy the 
requirements in the actual manufacturing automation. 
 
 
2 DETERMINATION OF THE WORKSPACE 

AREA AND VOLUME 
 
 We consider a general 6 d.o.f parallel mechanism 
represented in Fig.1. It is composed of 2 rigid bodies 
connected by 6 actuated variable-length links. The stationary 
body is referred to as the base (frame b) and the moving body 
is referred to as the mobile platform (frame m). The position 
and orientation of the mobile platform can be controlled with 
respect to the base by changing the 6 link lengths. 

 
 

Fig.1: A general 6 d.o.f parallel mechanism 



The factors, which limit the workspace of a parallel 
mechanism, are the limit of the link lengths, mechanical limits 
on the passive joints and the links interference. The algorithm 
to compute the workspace area and volume is described as 
follows. 
• The orientation is fixed to normal direction (Z axis), i.e. 
three Euler angles are zeros. 
 
• For a given Z height from Zmin to Zmax in ∆Z increments, 
the X-Y range of the area workspace Az is computed. The area 
Az is composed of Nθ "slices" from θ = 0 to 2π in ∆θ = 2π / Nθ 
increments, and the radius rz of each "slice" is incremented 
until the boundary is attained by solving the inverse geometry 
to determine the link lengths. After the link lengths are 
computed, they are first checked to verify the limit of the 
actuators motion range. Then, the configuration area is 
evaluated by taking into account the links interference and 
motion range of passive joints. 
 

Thus,   ∑
∆−

=
=

θπ

θ θ

θπ2

0

2 )(

N
r z

zA .         (1) 

 
• The total volume V is calculated as the sum of the 
incremental volumes of Az . ∆Z 
 

Thus,   ZAV
Z

ZZ
z Δ.

max

min
∑

=
= .         (2) 

 
 
3 DETERMINATION OF THE SINGULAR 

CONFIGURATIONS 
 
 A single Jacobian matrix J  of general parallel 
mechanisms can be defined as 
 

    xJl = ,          (3) 

where x  is the end effector velocity vector and l  is the 
articular velocity vector. Singular configurations are 
determined by finding the roots of the symbolic determinant of 
J  which is a huge non-linear expression, since each Jacobian 
element is quite complicated. Merlet [12,13] proposed an 
original method based on Grassmann line geometry which is 
briefly described in the followings. 
A line ∆  can be described by its 6 Plücker coordinates as 

[ ]Tzyxzyx MMMSSSP =∆ , where ∆P  is 

Plücker vector of the line ∆ , [ ] 21MMSSSS T
zyx == , 

[ ] .SOMSOMOMOMMMMM T
zyx ∧=∧=∧== 2121

∧  is the cross product of two vectors, 1M  and 2M  are two 
points belonging to ∆  in the reference frame oℜ  whose 
origin is o (Fig. 2). 
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Fig.2: Plücker coordinates representation 
 
The normalized vector is defined as 

[ ]Tyyxzyx MMMSSS
S

P
P ''''''' == ∆

∆ . 

Let F  be the force vector in operational space acting on the 
mobile platform and [ ]Tf 61 ff=  articular force vector in 

the links. It has been shown in [12] that fJF T=  and the 

Jacobian matrix J  is defined as [ ]T'' PPJ 61= , where '
iP  is 

the normalized Plücker coordinates vector of line i (i = 1,6) 
associated to the link i and defined as 
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where  iz  : unit vector of the link i, 
   C   : origin point of the mobile platform frame, 
   Bi   : attachment point i of the mobile platform, 
   ∧   : cross product of two vectors. 
 
Consequently, a singular configuration of a parallel 
mechanism corresponds to a configuration where the rank of 
the matrix Jacobian J  is less than 6, i.e. the 6 Plücker vectors 

'
iP (i = 1,6) can be described by the Grassmann geometry 

which consists of finding the geometric characterization of 
linear varieties of lines associated to the links of the parallel 
mechanism. Table 1 summarizes the geometrical description 
of Grassmann varieties of lines classified by rank from 1 to 5. 
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Table 1: Linear varieties of line systems 

 
 
4 DETERMINATION OF THE MAXIMUM 

VELOCITY 
 
 We choose the bounded limit ρ of articular velocities il  

(i= 1,6), define the Jacobian J  and the velocity x  of the 
mobile platform as follows: ]6,1[∈∀≤ ili ρ , 

( )( )
6,1
6,1

=
==
j
iijcJ  and [ ]Tzyxzyx ωωωvvv=x , 

where cij is the ith and jth element of the Jacobian matrix J , 
(vx, vy, vz) are the three translational components and (ωx, ωy, 



ωz) three rotational components of the operational velocity. At 
every configuration point 

[ ]Tccc θψzyx ϕ=cx  of the mobile platform 
where (xc, yc, zc) are the three translational components of the 
position vector of the mobile platform and (ψ, θ, ϕ) three 
Euler angles defining the orientation of the mobile platform 
with respect to the fixed base, we try to find in the hyper-plane 
the frontier limiting possible velocities of the mobile platform. 
From Eq. (3), every point of the permitted zone must satisfy 
the following constraints 
 
   ρωωωρ ≤≤− +++++ ziyixiziyixi cccvcvcvc ...... 654321 .       (5) 
 

]6,1[∈∀i , there are totally 12 constraint equations. Each 
equation defines a permitted half hyper-plane and the final 
zone is the intersection of these half hyper-planes. 
 It is difficult to imagine in six dimensions the nature of 
this intersection zone. Thus, in case of 2D we fix for example 
four components of the velocity and represent in a plane the 
frontier limiting two remaining components of velocity of the 
mobile platform. As an example, supposing vz = 0 and ωx = ωy 
= ωz = 0, equation (5) yields 
 
  ρρ ≤≤− + yixi vcvc .. 21  ]6,1[∈∀i .        (6) 
 

 The solution maxx=maxV  corresponds to the summit of 

the polygon farthest from the origin of the velocity frame, and 
the norm of the vector from the origin to this summit 
represents maxV . From this method of construction, we can 
also build the volume of permitted velocity by drawing 
successive cuts for different values of a third component of 
operational velocity. This type of intersection in 3D may result 
in either an empty set, or a point, or a segment, or finally a 
polygon or a convex polyhedron. 
 Figure 3 shows in the (vx, vy) plane, lines defining the 
constraint equations (6) and the permitted polygonal zone. 
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Fig. 3: Permitted zone of operational velocity in 
 the (vx, vy) plane 

 
 
5  APPLICATION TO PERFORMANCE 

COMPARISON AND CONTROL OF 
PARALLEL MECHANISMS 

 
 The mechanisms used in this example are the conventional 
Gough-Stewart Platform (GSP) and the Hexaslide Parallel 
Mechanism (HPM) with fixed linear actuators. For 
performance comparison study, the principal geometric 
parameters and the actuators of these two parallel mechanisms 
are assumed to be in the same range. They differ only from 
their mechanism architectures. The actuators used in GSP are 
mounted at the base of moving linkages, which have variable 
lengths, while those of the HPM are always fixed at the base 

and its moving linkages have the fixed lengths. The design 
parameters specifications of the HPM have been given in [16]. 
 
 5.1 GOUGH-STEWART PLATFORM (GSP) 
 
 The geometric model of the GSP and its parameters are 
shown in Fig. 5. The inverse geometric model is derived by 
solving il  representing the variable length of the link, for the 
given p  (center location vector of the mobile platform) and 
ℜℜℜℜ  (3 by 3 orthogonal matrix representing the orientation of 
the mobile platform with respect to the base) as follows. 
 
    iii OAspz −−−−++++====il ,         (7) 
 
where iz  is a unit vector of the link i (i ∈[1,6]), 

( )mii CBs ℜℜℜℜ= , ( )miCB  is the position of the center of the 
spherical joint connecting link i to the mobile platform and 
expressed in the mobile platform frame m, and iOA  
represents the position of the center of the universal joint 
connecting link i to the base platform. Fig. 6 shows a 3D view 
of the GSP manipulator workspace and its numerical volume 
from the simulation results. 
 Singular configurations can be found by using directly the 
results from Merlet [12] with the case of the Simplified 
Symmetric Manipulator (SSM). However, based on the GSP 
kinematic architecture, only a linear variety of type 5a has 
been found. In this case, the three lines belonging respectively 
to the three flat pencils spanned by the links (1,2), (3,4) and 
(5,6) and lying in the mobile platform plane intersect at a 
unique point M. Fig. 4 illustrates an example of this case. 
 

Perspective view    
 

Fig. 4: GSP singular configura
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Platform [19]. Practically, the Jacobian matrix at the 

configuration 
Tπ

m 



= 00

2
0.56900cx is 

-0.7041    0.4074    0.5816    0.1404    0.0376    0.1437 
-0.2840    0.6474    0.7073    0.0458   -0.1708    0.1747 
 0.7049    0.4061    0.5816   -0.0376   -0.1404    0.1437 
 0.7027   -0.0777    0.7073   -0.1708    0.0458    0.1747 
-0.0008   -0.8135    0.5816   -0.1028    0.1028    0.1437 
-0.4186   -0.5697    0.7073    0.1250    0.1250    0.1747 

 
and its determinant is 7.5002e-19, very close to zero. At this 
configuration the third and the last columns of the Jacobian 
are proportional, so the Jacobian is not full rank and cannot be 
inverted. The detailed calculation of the Jacobian matrix J  is 
given in [14]. 
 Figure 7 presents from simulation results in 2D (vx, vy) 
view the velocity zones and the norm of the maximum 
operational velocity of the GSP in nominal position 

[ ]Tm 000.56900 0=cx  with ωx = ωy = ωz = 0. 
 
 
 5.2 HEXASLIDE PARALLEL MECHANISM (HPM) 
 
 The geometric model of the HPM and its parameters are 
shown in Fig. 5. The inverse geometric model is derived by 
solving il , representing the variable length of the rail, when 
the position p  and the orientation ℜℜℜℜ  of the mobile platform 
are given as follows. 
 
   iiii OAspza −+=+ cli ,       (10) 

where ia  and iz are unit vectors of the linkage i (i = 1,6), c is 

a fixed length of the moving linkage, and iOA  is the position 
of the center of the linear actuator i fixed on the base platform. 
The definition of other parameters is the same as in the GSP. 
Figure 6 shows a 3D view of the HPM workspace and its 
numerical volume from the simulation result. Based on the 
HPM kinematic architecture, all types of linear varieties in 
table 1 are not successively verified. The detailed calculation 
of J  is given in [14]. 
 Numerically, the determinant of the Jacobian matrix at the 

configuration 
Tπ

m 



= 00

2
0.56900cx  is -0.0039 (not 

zero). Thus, Fichter's singular configuration is not applicable 
to this parallel mechanism. 
 The 2D (vx, vy) view of the velocity zones and the norm of 
the maximum velocity of the HPM in nominal position 

[ ]Tm 000.56900 0=cx , 
with ωx = ωy = ωz = 0, are presented in Fig. 7. 
 
 
 5.3 PERFORMANCE COMPARISONS 
  AND CONTROL ISSUE 
 
 The nominal position of the two parallel manipulators is 
bounded by the largest workspace. The workspace of the HPM 
is larger than that of the GSP. Numerically, the volume of the 
HPM is almost twice than that of the GSP. This suggests that 
the HPM design offers much better dexterous working space 
than that of the GSP. Fichter's singularity is identified for the 
GSP but not for the HPM. In this case, the HPM is easily 
controllable over the GSP. Fig. 7 shows that the norms of 
maximum operational velocity of the two parallel mechanisms 
are very close. But the polygon of the HPM is close to a circle, 
while those of the GSP is exactly a hexagon. This suggests 
that the HPM has the most uniform and isotropic velocity 

zone, which can facilitate the fine position control from this 
nominal position.  
 Based on the good kinematic performance of HPM, the 
design and fabrication of the HPM has been launched and 
tested at Mechanical Engineering Laboratory, Japan. Through 
parallel mechanism design and direct drive actuators 
utilization, an optimal velocity control based on the maximum 
velocity analysis in operational space has been implemented in 
order to achieve a high speed straight line trajectory without 
considering degree of accuracy [17]. The hardware system and 
the control block diagram are illustrated in Fig. 9. 
 
 
6  CONCLUSION 
 
 Kinematic performance characteristics of parallel 
mechanisms in terms of workspace volume, singular 
configurations and maximum velocity have been presented in 
this paper. Numerical procedure for the workspace area and 
volume calculation is given. The determination of the 
workspace is very useful for the designers to evaluate the 
kinematic properties and performances at the preliminary 
design stage. For example, Arai et al. [16] fixed the inclination 
angle of the rail in their new prototype to realize the largest 
workspace. Singular configurations are identified by utilizing 
the Grassmann geometry approach. The identification of the 
singularities represents an important issue in kinematic design 
and control of robotic mechanisms. Cleary and Arai [19] 
considered the Fichter’s configuration of their prototype called 
Modified Steward Platform as outside of the manipulator’s 
workspace and therefore the singularity does not interfere with 
the twisting operation about the z-axis. However, the 
workspace of their prototype must be reduced. The graphical 
method for computing the maximum velocity and its permitted 
zones of parallel mechanisms in operational space has been 
briefly presented. The advantage of this method is that the 
constraint equations are simple by just knowing the Jacobian 
matrix of the manipulator at a given configuration point. The 
drawing results allow the designer to achieve the kinematic 
optimal performance during trajectory generation and position 
control. 
 Based on these performance characteristics, a fictive 
conventional Gough-Stewart Platform (GSP) and a Hexaslide 
Parallel Mechanism (HPM) with fixed linear actuators can be 
evaluated for kinematic performance comparisons according 
to their workspace volume, singular configurations and 
maximum velocity zones. It has been shown that the HPM has 
got much better performance characteristics than those of the 
GSP. This study, it is believed, can serve as a basic guide for 
the design of parallel manipulators in the sense of achieving 
kinematic performances, and has been applied to the design 
and motion control of the Hexaslide Parallel Mechanism 
(HPM). 
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         GSP     HPM 

 
Fig. 5: Geometric model of the two parallel mechanisms 

 
 

  Gough-Stewart Platform     Hexaslide Parallel Mechanism 
   Workspace Volume = 56.5 litre    Workspace Volume = 93.8 litre 
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Fig. 6: Workspace comparison between the two parallel mechanisms 



     Gough-Stewart Platform       Hexaslide Parallel Mechanism 
         smx /53.5max =      Surface = 79.23 (m/s)2      smx /09.5max =      Surface = 72.24 (m/s)2 

 

 
 

Nominal position: (xc = yc = 0; zc = 0.596m), (ψ = θ = ϕ = 0) with (ωx = ωy = ωz = 0), (vz = 0) 
 

Fig. 7: Maximum velocity comparison between the two parallel mechanisms in nominal position 
 
 

 
 

Fig. 8: Hexaslide Parallel Manipulator 
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Fig. 9: Controller Architecture 
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