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Upper-bound for the Pairwise Error Probability of
Space-time Codes in Physical Channel Scenarios

Tharaka A. Lamahewa, Rodney A. Kennedy and Thushara D. Abhayapala

Abstract—In this paper, we derive an upper-bound for the scattering distributions. We quantify the number of antennas
pair-wise error probability of space-time codes which captures that can be employed in a given antenna aperture, without

the _effects of the transmit_ter and the receiver antenna config- diminishing the diversity advantage of a space-time code, and
urations (antenna separation and antenna geometry) and the h it is limited by the si f h t t '
surrounding scattering distributions at the transmitter and the show it is 'm' ed by . esize o e_an gnna aper urf'

receiver antenna arrays. This new upper-bound allows inves- I he following notations are used in this paper., []* and
tigation of the individual effects of antenna configuration and [-]T denote the transpose, complex conjugate and conjugate
scattering environment parameters on the performance of space- transpose operations, respectively. The symidls and ®

time codes. Using this upper-bound, we quantify the degree of yonnte the Dirac delta function and Matrix Kronecker product,
the effect of antenna configuration on the diversity advantage tivelv. Th trisl.- is th identit i
given by a space-time code. Simulation results show that as the respectively. The matrid,, 1S theén x n iaentity matrix.

number of antennas increase within a fixed aperture, the diversity
advantage of a space-time code is upper-limited by the size of Il. SYSTEM MODEL

the antenna aperture. Consider a MIMO system consisting efr transmit an-

Index Terms— Chernoff upper-bound, modal correlation, tennas andhy receive antennas. Data transmitted frem

MIMO system, non-isotropic scattering, space-time trellis code. transmit antennas are encoded by a space-time Xgdehere
X is nr x L, L is the code length. Assuming quasi-static

I. INTRODUCTION fading, the signals received at; receiver antennas during

The Chernoff upper-bound on pairwise error probabilit;s/ymbOI periods can be expressed in matrix form as

(PEP) over uncorrelated MIMO channels was originally de- Y=VEHX+N,
rived in [1], by Tarokh et al Based upon this upper-bound

design rules for space-time trellis codes were proposed. transmit antennaf is the np x ny zero-mean complex

Several approaches have been found in literature, Wh?/raqued channel gain matrix)N' is the noise represented

the upper-bound for PEP is applied to correlated N”M(B)r/ ngrx L complex matrix in which entries are zero-mean
d

channels, [2,3]. However, with these approaches, the UPBf ependent Gaussian distributed random variables with

bound is constrained by one of the following: the CorrelatiovnarianceNo/z per dimension and” is ng x L
is restricted to one end of the channel; antenna configuration '

is restricted to uniform linear arrays; the scattering distribution By taking into account physical aspects of scattering, the

around the antenna aperture is confined to a particular S annel matrixE can be decomposed into deterministic and
tering distribution. In [4,5], an upper-bound for the PEP iFandom parts as [6] [7]

derived considering correlations at both ends of the channel. ;
However the bound presented there does not allow investi- H =JrHsJr, (1)

gation of the individual effects of antenna spacing, antenpa,qre Jr and J; are deterministic andH s is a random
placement and scattering environments on space-time cod@Sairix with complex normal Gaussian distributed entries.
In this paper, we present a generalized upper-bound for Pﬁgcording to the channel model proposed in [@, is
on correlated MIMO channels, where the bound can be appligd { g channel matrix, which has zero-mean unit variance
to any kind of antenna geometry and wide variety of scatteri%mmex Gaussian entries, whilé; and J; are associated
distributions at the receiver and the transmitter antennas. Y¥eine receiver and transmitter antenna correlation matrices,
discuss how this upper-bound deviates from the global UppgEzpectively. In [7],H, represents the random non-isotropic
bound derived bﬁ' arokh et alwith the introduction of space scattering environment, whild ; and J - represent the effect
(antenna separation and antenna placement) and surroundiigntenna geometries at the receiver and transmitter antenna
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Grant DP0343804. noff upper-bound applied to correlated MIMO channels where
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where E, is the transmitted power per symbol at each
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is employed at the receiver. Assume that the codewSdrdias
transmitted, but the ML-decoder chooses another codeword Ry = (Jp®Jr)Rs(JE® J}), (5)
Then the PEP, conditioned on the channel, is upper bounded
by the Chernoff bound1]

B R where Rg = E{hTSZ:)} For the channel model in [6],

4]\;Odi(X,X)>, 2 si_ncg the elements 5 are independent and_ identically
distributed, Rs = I. For the channel model in [7]Rs

where d%(X,X) = hlI,, ® C’A]hT, Cr = (X — represents the covariance matrix of the scattering environment,

X)(X — X)T, h = (vec(HT))” a row vector andH has which can either be correlated or uncorrelated, unlikefhe

the decomposition given in (1). To compute the average Pélq-’1[6]'h, K . dini N he i
we average (2) over the joint distribution bf Assume that '™ this work, we are interested in Investigating the impact

h is a proper compléxnynp-dimensional Gaussian randomOf antenna separation, antenna geometry and the scattering

vector with mearD and covariance matriR,, = E {hTh}, e_nvwonment on the Qhernoff uppe_r—boun.d. The channel model
o given in [6] is restricted to a uniform linear array antenna
then the pdf ofh is given by [8]

configuration and a finite number of scatterers around the
(h) = 1 transmitter and receiver antenna arrays. However, the channel
PUY) = "rnr det [R/] model given in [7], is capable of capturing different antenna
eometries as well as various non-isotropic power distribu-
ions. Therefore, from here onwards, we use the 2-D spatial
. channel modélgiven in [7] to investigate the Chernoff upper-

)< - _pp-lpt bound.
P(XHX)_T[_”T”R det [Rar] /exp{ hR™"h'}dh (3)

P(X — X|h) <exp (—

exp{—hR;h'},

provided thatR,, is non-singular. Then the average PEP i
bounded as follows

where R~! — (ETZInR ® Ca + Ry}). Assume Ry, is A. Spatial Channel Model .

non-singular (positive definite), therefore the invelg) is [N the channel model of [7]J7 is the nyx(2Mr +
positive definite, since the inverse matrix of a positive definite fransmitter antenna configuration matrix add; is the
matrix is also positive definite [9, page 142]. Also note thdtr* (2Mr + 1) receiver antenna configuration matrix, where

C  is Hermitian and it has positive eigenvalues (through codéMr + 1) and (2Mp + 1) are the number of effective
construction, e.g. [1]), therefoi® 4 is positive definite, hence communication modésavailable at the transmitter and the

I,,®Cax is also positive definite. Therefol® " is positive €Celver regions, respectively. Note thatlr and My are
definite and hence® is non-singular. Using the normalizationdétermined by the size of the antenna aperture [10], but not

property of Gaussian pdf from _the r_1umber of antennas encompassed i_n an ante_n_na array,

and is given byM = [mer/\], where [.] is the ceiling
— 1 /exp{—hR_lhT}dh =1, operator,r is the minimum radius of the antenna aperture,
mrr det [R] e ~ 2.7183 and X is the wave-length. FinallyH s is the
we can simplify (3) to (2Mpr+1) x (2Mr+1) random scattering matrix witf¢, m)-
th element given by
“det[Ry]  det [R7' Ry {Hs}em = / / 9(¢, p)e M Delm= =0 dipdg
0 0

or equivalently (6)
. fore =1,--- ,2Mg+1, m = 1,--- ,2M7 + 1. Note that

. @) {Hg},m represents the complex gain of the scattering

det [InTnR + £ RuflLa, ®CA]} channel between then-th mode of the transmitter region
and the/-th mode of the receiver region, whetgo, p) is

the scattering gain function which gives the effective random

P(X - X)<

Substituting (1) for H in h = (vec(H"))T with complex gain for signals leaving the transmitter aperture with
Kronecker product identity [9, page 18Gkc(AXB) = angle of departure and arriving at the receiver aperture with
(BT ® A)vec(X), we may write angle of arrivalg.

Ry =E {h*h} —F {(J}} ® Jr)hihs(Jh @ J;)} ,
B. Remarks on New Upper-bound

Following remarks can be made regarding the upper-bound
(4) and its association with the space-time trellis codes.

where hs = (vec(H%))T is a row vector. In the above
equation,J r and Jr are deterministic matrices andg is
random. Therefore we write

2 The 2-dimensional case is a special case of 3-dimensional case where all
1To be proper complex, the mean of both the real and imaginary partstbge signals arrive from horizontal plane only.
H s must be zero and also the cross-correlation between real and imaginar§The set of modes form a basis of functions for representing a multipath
parts of Hg must be zero. wave field.
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i). Antenna geometries, both at the transmitter and thehere F'z and F' can be considered as correlation matrices
receiver regions are incorporated into the upper-bound througiserved at the receiver and the transmitter arrays, respec-
matricesJr and Jg in (5). Correlation effects due to thetively.
surrounding non-isotropic scattering distributions are also cap-Substituting (8) into (5) gives
tured by the inclusion of correlation matrRs in (5). Upper- . T n
bound (4) together with the channel model [7] allows us Ry =(Jr®Jr)(Fr® Fr)(Jp® J7), (9a)
to investigate the individual effects of antenna separation, = (JRFrJb) ® (JTFTJTT), (9b)
antenna placement and scattering environment parameters such . .
as mean angle-of-arrival (AOA) and angular spread on tEvhere (9b) follows from (9a) by matrix identity [9, page 180]

€ : .
performance space-time codes. Note that upper-bounds fo ﬁ4d® C)(B ® D) = AB ® CD, provided that the matrix
in [4,5] do not allow one to analyze the individual effects o

EroductsAB andC D exist. Substituting (9b) into (4) yields
above mentioned deterministic and random factors on spa

tgg upper-bound

time codes. _ é)(X - X< 1 7

ii). Tarokh et. al, in [1], has use_d the PEP gpper-boun det [IQ + 4% (J}%FRJE) ® (JTFTJ}CM}
for uncorrelated channels to derive the design rules for 0 (10)
space-time trellis codes, under the hypothesis of high SNR.
In these design rules, the overall diversity advantage of thdere@ = nyng.
system,d,, is associated with the rank of the code word In the next section, we provide the conditions pertaining to
difference matrix times the number of receiver antennas, i.@agctorization (8) for the channel model given in [7] and also
d, = ngrank(Ca). However using the new upper-boundthe precise definitions oF'  and F'r. The upper-bound (10)
it is possible to show that the quantitative degree to whichkill be used later in Section IV-B to analyze the correlation
the diversity advantage of a space-time code is reduced dafects of scattering environment.
to the size of the antenna aperture, antenna geometry and
scattering environment parameters.

D. Transmitter and Receiver Modal Correlation

At high SNRs, the upper-bound (4) becomes Using (6), we define the modal correlation between complex
) scattering gains as
P(X - X)< , @) NN *
det | /x5 Rar[In, ® Ca T = B {{HS}K*’”{HS}“”W} '

sume that the scattering from one direction is independent
of that from another direction for both the receiver and the
transmitter apertures. Then the second order statistics of the
scattering gain functiog(¢, ¢) can be defined as

and the overall diversity advantage of the system is giv
by the rank of Ry[I,,, ® Cal]. Assume that scattering
environment is uncorrelatédi.e., Rg = Tonr+1)2Mp+1)
then

dy = min {rank(J p)rank(J g), ngrank(Ca)} . E{g(o,0)g"(¢',¢")} 2 G(d,9)d(¢ — ¢")d(v — '),

If rank(Jr)rank(Jgr) < ngrank(Ca), then the diversity where G(¢,¢) = E{|g(¢,w)|2} with nc_)rmallzatlon
advantage provided by the space-time code is reduced by {héG((b’_ ‘p)d‘pd(b_:_ L V\ﬁh the above'ass.u'mptlon, the modal
effect of transmitter and receiver antenna configuration matforrelation coefficienty, ., can be simplified to

ces. Note that 7 is nyx (2Mr +1) andJ g is ngx (2Mp + oo Yo i(mm')

1), where My and My are determined by the size of the Vimom! = / /G(¢>, p)e Ye dpdg.
transmitter and receiver regions [10], but not by the number of o

antennas encompassed in the region. Therefore, it is possibld §§" the correlation betweefth and ¢'-th modes at the
have a situation where the number of effective modes availabRS€iver region due to the-th mode at the transmitter region
in a region are less than the number of antennas used“f be given as

that region. Thus, in such a scenario, rank of the antenna Re —i(e—t)p
configuration matrix is less than the number of antennas which Ve = /Pm(@)e de,
are being used for transmission or reception, which will resu
in reduction of diversity advantage from that system.

(11)

I\Evshere Pre(p) = [G(¢,9)d¢ is the normalized azimuth
power distribution of the scatterers surrounding the receiver
antenna region. Here we see that modal correlation at the
C. Kronecker Product Model as a Special Case receiver is independent of the mode selected from transmitter

In some circumstance®s can be expressed as Kroneckefegion. Similarly, we define the correlation betweerth and
product between two matrices [11] m’th modes at the transmitter as

Rs = E{hlhs} = Fr e Fr, ®) Vo = / Pra(¢)e' "% dg, (12)

4A similar analysis can be carried out for correlated scattering environmel\ﬂ@ere PTJE (¢) _: IG((b’ W)d‘»p 'iS the pormalized aZimUth
as done in [4] power distribution at the transmitter region. As for the receiver
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00, 01, 02, 03 @

modal correlation, we can observe that modal correlation at the
transmitter is independent of the mode selected from receiver
region. Note that, azimuth power distributio%z, () and 10,11,12,13
Pr.(¢$) can be modeled using all common power distributions

such as Uniform, Gaussian, Laplacian, Von-Mises, etc. 20,21,22,23

Denoting thep-th column of scattering matrikd s asH g,

the (2Mr +1) x (2Mg + 1) receiver modal correlation matrix
can be defined as

30,31, 32,33

Fig. 1. Trellis diagram for 4-state space-time code for QPSK constellation.

Fr2E{Hs,Hf,}|.

where (g, Z/)'th element OfFR is given by (11) above. A. Effects of antenna p|acement
Similarly, the transmitter modal correlation matrix can be

) First we consider the effect of space (antenna separation
written as

and placement) on the Chernoff upper-bound, when =
Fp—= E{H;qH&q}, Ionr11)2Mp41)- TWO tral_"nsmitter antennas are placed half
wavelength &/2) apart, which corresponds t§7e0.5] +1 =
where H s, is the ¢-th row of Hs. (m,m’)-th element of 11 effective communication modes at the transmitter aperture
Fy is given by (12) andFy is a (2Mr + 1) x (2My + 1) andrank(Jr) = 2. Here we provide the simulation results of
matrix. The correlation between two distinct modal pairs cdhe upper-bound (4) for the shortest error event path of length
be given as the product of corresponding modal correlationtas shown in Fig. 1 for one, two, three and four receiver

the transmitter and the modal correlation at the receiver, i.@ntennas. For each antenna system, the global upper-bound
(16) is also plotted for comparison.

For the single receiver antenna case, we place the receiver
antenna at the centre of the circular aperture. For the other

Facilitating (13), we may write the correlation matrix of theree cases, receiver antennas are placed in a circular aperture
scattering channel s as the Kronecker product between the .1 radius 0.1\, as shown in Fig. 2. Note that = 0.1\

rece|ver_ modal _correlatlon matrix and the transmitter mOd@Brresponds t@
correlation matrix,

o0
Vot = Vob Vo (13)

[re0.1] + 1 = 3 effective communication
modes at the receiver aperture. With three and four receiver
antenna cases, we also compare the behavior of the new
upper-bound for different antenna geomeftigsch as uniform

Note that (13) holds only for class of scattering environmengdrcular array (UCA) and uniform liner array (ULA).
where the power spectral density of modal correlation function
satisfies [11, 12]

Note that, (15) is the necessary condition in which a channel
must satisfy in order to hold the upper-bound (10), that we
derived earlier in Section IlI-C.

RSZE{hTShS}ZFR@?FT (14)

IV. AN EXAMPLE

In this section, we compare the Chernoff bound derived
in [1] with the new upper-bound, which caters for antenna
spacing, antenna placement and surrounding scattering en-
vironments. As an example, we consider the QPSK 4-stafg 2 Receiver antenna configurations: (a) 2-Rx antennas are placed on
space-time trellis code given in [1] farr = 2 antennas, which x-axis, (b),(d) 3,4-Rx antennas are placed on an uniform circular array, (c),
is illustrated in Fig.1. The labelling of the trellis branche&) 3.4-Rx antennas are placed on an uniform linear array.

follow [1]. The QPSK signal points are mapped to the edge . , .
label symbols as shown in Fig. 1. Simulation results for 1 and 2 receiver antennas are shown

Assume that the code word associated to all-zero sequem:é:'g' 3. With the single receiver antenna, the performance

is transmitted, then the Chernoff upper-bound [1, Eq. (8)] f(gleviation between the new upper-bound and the global upper-
the shortest error event path of length — 2, as illustrated bound is not significant. With two receiver antennas, the new
by shading in Fig. 1, is found to be ' upper-bound is 1-dB away from the global upper-bound.

Fig. 3 shows that both the global upper-bound and the new

—2n

N FE R

P(X - X)< (1 + NS> . (16) 5The upper-bound developed here can be applied to any antenna configu-
0 ration.
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upper-bound have the same slope, which indicates that tmore than two antennas are aligned in a line, then further
upper-bounds of the code have the same diversity advantagjeersity reduction will be occurred (e.g. ULA case above).
However, for the2x2 system a horizontal shift of the new Note that, performance deviations we see here are due to the
upper-bound from global upper-bound is observed, whiéhtroduction of space into the analysis of MIMO system and
indicates a loss in coding gain due to the introduction of spaaee have yet to consider the correlation effects of the scattering
environment. In the next section we discuss the correlation
effects of the scattering environment on the Chernoff upper-
bound.

2-Tx and 3-Rx

2-Tx and 2-Rx 2-Tx and 4-Rx

PEP bound

Y p— “Rx -
10} 2-Tx and 1-Rx - w/o ant conf Tx and 3-Rx - w/o ant conf

—— 2- —Rx - wi : 1074 27
g_?; gﬂg ;_gi _ x}?;ﬂ‘fg&f : -~ 2-Tx and 3-Rx — UCA ant conf
10°Y ¢ 2-Tx and 2-Rx - with ant conf — L L L L Wl ? 2-Tx and 3-Rx - ULA ant conf
0 =+ o o 10 12 4 16 18 20 10°H — 2-Tx and 4-Rx - w/o ant conf
Average Symbol SNR (dB) —— 2-Tx and 4-Rx — UCA ant conf

—— 2-Tx and 4-Rx — ULA ant conf
T T T T

. ) . . 107
Fig. 3. Length 2 error event of 4-state QPSK space-time trellis code with 0 2 4 6 szrage Synlqgm SNR1(§B) 14 16 18 2
two transmit antennas andg receive antennasiz = 1, 2).

Fig. 4. Length 2 error event of 4-state QPSK space-time trellis code with
Simulation results for 3 and 4 receiver antennas are showria transmit antennas andy receive antennasiz = 3,4).

Fig. 4. First we consider the three receiver antenna case. Three
receiver antennas are placed in a UCA and are also placed in
a ULA as depicted in Fig. 2(b) and Fig. 2(c), respectively. W8 Effects of Scattering Environment Parameters
found thatrank(J z) = 3 for UCA andrank(J g) = 2(< ng) . . .
for ULA. From Fig. 4 we observed that the performance devia- We now investigate the eff(_ect (_)f_modal correlat|or_1 on the
tion between the new upper-bound and the global upper-bouq:ﬁﬂemoff uppe_r-bound. For S|-mpI|C|ty_, we only consider the
is significant for both UCA and ULA antenna configurationsﬂmdal correlation at the receiver region and assume that the
For UCA antenna configuration we only observe a coding ga?rqfective modes available at the transmitter are uncorrelated,
loss whereas for ULA antenna configuration we observe§' Fry = Iopp. It Was sho_wn n .[13]. that, ‘.”‘” a2|mut_h
coding gain loss as well as a diversity gain loss from the spad¥2Ver d|str|_but|ons (non-|sotrqp|c distributions) give very sim-
time code. Here the diversity loss from ULA is due to the lodiar correlation values for a given angular spread. Therefore,
of rank of J z, whererank(J ) is less than the number Ofwithout loss of generality, we restrict our investigation to
receiver antennas employed in the receiver array. Uniform limited azimuth power distribution (UL-APD) only.

Now we consider the four receiver antenna case, wherg’ the UL-APD, the modal correlation coefficient at the
four receiver antennas are placed in a UCA and a ULA &ECEIVer is given by
depicted in Fig. 2(d) and Fig. 2(e), respectively. Fig. 4 shows ~R2 = sine((l - l')A)efi(zfz/)w
that both antenna configurations reduce the diversity gain and bt ’
the coding gain given by the code (c.f. with the global uppewhere ¢, is the mean angle of arrival (AOA) and is the
bound). The expected diversity advantage from the 4-staten-isotropic parameter of the power distribution, which is
QPSK space-time trellis code with 2-transmit and 4-receivelated to the angular spread In this caseg = A/+/3.
antennas is 8. However, with the UCA antenna configuration,
the overall diversity advantage given by the code is reducedConsider a MIMO system consisting of two transmitter
to 6, as the rank of/p is 3 and with the ULA antenna antennas and two receiver antennas. Antennas on each aperture
configuration, it is reduced to 4 as the rank.bf is 2. This are placed()\/2) apart and they are positioned on the
indicates that the diversity gain of a space-time coded systenaigs relative to their aperture origin. Aperture radidg2
governed by the rank of the antenna configuration matrix andrresponds to 11 effective communication modes in each
the number of effective communication modes in the antenaperture and the rank of each antenna configuration matrix is 2.
aperture (directly related to the radius of the antenna aperturEherefore, this antenna configuration setup does not diminish
In fact, the upper-limit for maximum number of antennas ithe diversity advantage given by the code, however it reduces
an antenna aperture, without loosing the diversity advantaiipe coding gain due to the finite antenna spacing.
of the space-time code, is given by the number of effective Simulation results of the new upper-bound are shown in Fig.
communication modes in that antenna aperture. However5iffor mean AOAy, = 30° from broadside. Angular spreads
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of o = [180°,60°,30°,5°] have been considered. On the
same figure, the global upper-bound and the new upper-bound
without modal correlation effects are also super imposed. Note
that, upper-bound for = 180°, which represents the isotropic
scattering, is overlapped with the bound with zero modal
correlation, as expected.

AOA - 30° from broad-side

PEP

-7
10 —#— no ant conf

—o- zero modal correlation
—x- 0 =180°-Isotropic

AOA - 60° from broad-side

o

10

107

E| = no ant conf
—o— zero modal correlation
_x- 0= 180°-Isotropic
10°H — 0=60°
£z 0=30°
—4- 0=5°

T T T I I I I I I

0 2 4 6 8 10 12 14 16 18 20
Average Symbol SNR (dB)

Fig. 6. Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and two receive antennas for a Uniform limited power
distribution with mean AOA60° from broadside.

107 H — 0=60°
Xy : be used as a tool to develop a space-time pre-coder which
e T N T TR is capable of compensating (fully or partially) for effects of

Average Symbol SNR (dB)

Fig. 5. Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and two receive antennas for a Uniform limited power
distribution with mean AOA30° from broadside. [1]

As shown, the new upper-bound moves away from the
global upper-bound as the angular spreadiecreases. At
10dB SNR, the new upper-bound is 2dB, 4dB and 8dB?
away from the global upper-bound for angular spreads
60°,30°,5° respectively. The higher deviation of the new
upper-bound from the global upper-bound at small angula{?]
spreads is due to the higher concentration of energy arriving
closer to the mean AOA. This effect will make the MIMO [4]
channel to be rank deficient, hence the loss of diversity.
Note that wheno = 0°, the rank of the receiver modal
correlation matrix will be 1, which results in no diversity [5]
advantage from the code. Fig. 6 shows the simulation results
for mean AOA ¢, = 60° from broadside and angular
spreads ofc = [180°,60°,30°,5°]. We observed that as [6]
the mean AOA moves away from the broadside, the new
upper-bound moves further away from the global upper-boung;

V. CONCLUSION (8]

We derived an upper-bound for the pair-wise error prob 9]
bility of space-time codes which captures the effects of th
transmitter and the receiver antenna configurations and {hg
surrounding scattering distributions at the transmitter and the
receiver antenna arrays. Using this upper-bound, we showed
that the quantitative degree to which the diversity advantapge]
of a space-time code is reduced by the size of the antenna

antenna configuration and scattering environment.
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