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ABSTRACT

Based on the Elastic Continuum Theory[1], a new model for the nucleon structure has been
introduced in this paper.  Obtained as a cylindrically symmetric solution of elastic equilibrium
equations, the nucleons are found to consist of an oscillating strain wave core. The strong interaction
between two nucleons is computed through the axial as well as radial superposition of their cores.
The strong interaction is shown to be sensitive to the relative orientation of intrinsic spins of
interacting particles and not mediated by any meson or other particles.  The positron and electron
cores are also shown to interact strongly with the nucleon core resulting in the formation of proton
and the neutron.  Within the proton, the positron is shown to orbit in specific elliptical orbit, thereby
giving rise to its magnetic moment. The nucleus is shown to mainly consist of layers of radially
coupled deuterons arranged in hcp configuration.

Keywords.    Nucleon core; Strong interactions; Strain bubbles; Positron; Neutron; Deuteron.

Theory and Observation :    ‘It may be heuristically useful to keep in m ind what one has
actually observed.  But in princ iple it is quite wrong to try founding a theory on
observable ma gnitudes alone.  In reality, the very opposite happens.  It is the theory
which decides what we can observe... Observation is a very complicated process.’

                                                                                                                    Albert  Einstein
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1.  INTRODUCTION

1.1     The term nucleon refers to both protons and neutrons which are the main
constituents of the atomic nucleus.  The unique short range forces that bind nucleons so
securely into nuclei, constitute the strongest class of forces, known as strong interactions.
The range of strong interactions is understood to be of the order of 1.7×10-15 m or 1.7 f.
Unfortunately  nuclear forces are nowhere near as well understood as electrical forces  and
in consequence the theory of nuclear structure is still primitive as compared with the theory
of  atomic structure.  Of course, tremendous progress has been made in the experimental
and mathematical techniques employed to probe the inner details of the nucleus.  The major
experimental technique used in this regard is the scattering of high energy particle beams
from the nucleus.  Detailed interpretations of the results of scattering experiments can
provide us with deep insight into the internal structural details of the nucleons.   However, a
proper and true interpretation of the results/observations demands prior knowledge of
detailed interaction characteristics of the interacting particles involved in such scattering.
Obviously the scattering experiments alone can not  provide us complete information about
the interaction characteristics as well as the structural details of the interacting particles,
without making certain bold assumptions.  One most bold assumption which has almost
been taken for granted  for more than half a century now, is the exchange theory of
interactions.  The second related assumption is regarding the range of validity of Coulomb
interaction law, that it is assumed to be valid down to zero separation distance between the
interacting charges.  Third assumption implies that the electron and positron being point
charges are not capable of taking part in strong interactions.

1.2    As per the Elastic Continuum Theory (ECT[1]) all interactions take place through
the superposition of  strain fields of  interacting particles and are not mediated through the
exchange of any particle whatsoever.  Particle exchange might be the ‘effect’ or end result
of  certain interactions but never the cause of any.  Therefore, for developing a model of
nucleon structure and strong interactions based on ECT,  we must abandon the approach
followed in all such models which are based on exchange theory of interactions.  Further in
the model of  Electron Structure & Coulomb Interaction[2] based on ECT, it has already
been brought out that the electron and positron cores will interact mutually or with other
strain bubble cores only through strong interactions.  It is only the electron/positron strain
wave fields that interact with other such fields through Coulomb interactions.  Possibly
therefore, the current interpretations of the results/observations of various nuclear
scattering experiments may have to be revised or refined.  The model of  nucleon developed
in this paper is based on a cylindrical strain bubble solution of equilibrium equations of
elasticity in the Elastic Continuum.  This strain bubble is stable, finite in size with cylindrical
symmetry and oscillates at a frequency that matches with the oscillation frequency of
electron/positron cores.

2.  CYLINDRICAL  STRAIN  BUBBLES

2.1    Equilibrium  Equations.     As per ECT, our familiar space-time continuum,
with characteristic properties  of  permittivity ε0  and permeability  µ0,  behaves as  a perfect
isotropic Elastic Continuum with elastic constant  1/ε0  and inertial constant  µ0 .
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 The equilibrium equations of elasticity written in terms of displacement vector U in this
Continuum, turn out to be identical to the vector wave equation in electromagnetic theory.
These equations in vector and tensor form are given below,

       ∂2U/∂x2  + ∂2U/∂y2  + ∂2U/∂z2  =  ∇2U   = (1/c2) ∂2U/∂ t 2                ………...(1)

             g11ui
,11 +  g22ui

,22 +  g33ui
,33   =  gjjui

,jj  =  (1/c2) ∂2ui/∂t2                     ……….. (2)

where the displacement vector components  ui are functions of space & time coordinates
referred to a coordinate system (y1, y2, y3).  The electromagnetic field in the so called
‘vacuum’ comes out to be a  dynamic stress-strain field  in the corresponding Elastic
Continuum. A closed region of the Elastic Continuum with  boundary surface Σ, that
satisfies the specified boundary conditions and contains a finite amount of  energy stored in
its strain field, may be called  a  ‘Strain Bubble’.   From the nature of  boundary conditions
and the equilibrium equations, it turns out that all valid solutions for displacement vector
components ui are functions of space-time coordinates representing various types of strain
wave oscillations.  That is, all ‘Strain Bubbles’ contain a  constant finite amount of total
strain energy and essentially consist of various strain wave oscillations within a specific
boundary surface Σ of the Elastic Continuum.  One of the cylindrically symmetric solutions
of equilibrium equations (2), represent the ‘nucleon core’ strain bubbles consisting of
standing strain wave oscillations.

2.2    Solutions  with  Cylindrical  Symmetry.      Let us  consider  a  cylindrical
coordinate system defined by   y1 = ρ,   y2 = φ  and   y3 = z,   related  to  conventional
Cartesian coordinates  x, y, z  as,          x = ρ cosφ    ;        y = ρ sinφ        ;        z = z .
The physical components   uρ, uφ, uz  of  displacement  vector  U  are  related to  the
corresponding contravariant components  u1, u2, u3   as   uρ = u1  ;  uφ = ρ u2  ;  uz =  u3 .
The physical components of spatial strain in this coordinate system  are
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And the corresponding physical components of temporal strain are given by
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For obtaining cylindrically symmetric solutions that are independent of  φ coordinate, the
dynamic equilibrium equations of elasticity can be written in cylindrical coordinates,  in
terms of physical components (uρ, uφ, uz) of displacement  vector U, as follows
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Symmetric solutions of the above equations (4) can now be easily obtained as functions of
space-time coordinates, that satisfy the essential conditions of vanishing of displacement
vector components (uρ, uφ, uz) at the boundary  and time invariance of the strain energy
density within the boundary.

3.  THE  NUCLEON  CORE.

3.1   Displacement  Vector  Field.     One most important, lowest order,  symmetric
solution of equilibrium equations (4), that will represent the nucleon core,  is

  uρ =  An.eκ. J1(x). Cos(qz). Cos(κct)  ;                                              …………..  (5A)

        uφ =  An.eκ. J1(x). Cos(qz). Sin(κct)   ;   &           uz = 0                   ..................  (5B)

where An is a dimensionless number,   x = (κ2 - q2)½ρ  and  let y = qz .  Here x and y are not
the Cartesian coordinates but dimensionless parameters.   The boundary surface Σ is given
by  -π/2 ≤ qz ≤ π/2   &   0 ≤ x ≤ α1  with  J1(α1) = 0  or α1=3.832 .  Here  ‘e’  is the
magnitude of electron charge;  κ  is  the wave number of strain wave oscillations and
separately determined from the electron structure[2] to be equal to  1.73767×1015  m-1.  The
strain wave oscillation frequency  νe = κ.c/2π  is required to be the same for all mutually
interacting particles, like the electron, positron, nucleon and the mesons.

3.2    The  Strain  Components.     Various strain components for the nucleon core
defined by equations (5) can now be obtained by using equations (3) as given below

( ) ( ) ( ) ( )S n A e q J x Cos qz Cos ctnρ
ρ κ κ κ= −. . . .'2 2

1

( ) ( ) ( ) ( )S n A e q
J x

x
Cos qz Sin ctnφ

ρ κ κ κ= − −. . . .2 2 1

( ) ( ) ( ) ( )S n A e q J x Sin qz Cos ctz n
ρ κ κ= − . . . .1

( ) ( ) ( ) ( )S n A e J x Cos qz Sin ctt n
ρ κ κ= − . . . .2

1

( ) ( ) ( ) ( )S n A e q J x Cos qz Sin ctnρ
φ κ κ κ= −. . . .'2 2

1

( ) ( ) ( ) ( )S n A e q
J x

x
Cos qz Cos ctnφ

φ κ κ κ= −. . . .2 2 1
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( ) ( ) ( ) ( )S n A e q J x Sin qz Sin ctz n
φ κ κ= − . . . .1

( ) ( ) ( ) ( )S n A e J x Cos qz Cos ctt n
φ κ κ= . . . .2

1                                                     .............(6)

               where   ( ) ( ) ( )
J x J x

J x

x1 0
1' = −

These strain components of the strain bubble representing a nucleon core, are sinusoidal in
time  t  as well as axial distance  z.

3.3  Strain  Energy  Content.      The strain energy density in the nucleon core is
given by the relation

Wn = [ ]1

2 0ε
Sum of the squares of all strain components                         ................(7)

That is, from equations (6) when we take pair wise sum of the squares of  all strain
components, Sin(κct) and Cos(κct) terms vanish and  we get
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This is a unique feature of the strain bubble representing a nucleon core that the strain
energy density within the core region is completely time invariant implying overall stability
of the nucleon.  Total strain energy content within the nucleon core can now be computed
by integrating  Wn  over the entire volume of the core.  If  2z1 is the axial length and  ρ1 is
the boundary radius of the core such that  z1 = π/2q  and   ρ1 = α1/(κ2 - q2)½ ; then the total
energy content  En will be given by

                 ( )E W d dz d
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After substituting the values of  Wn and  z1 in the above integral  and  further  evaluation we
get
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( ) ( )( )E
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2 2 2
1
2

0
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0
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2 1

                                           ..........................(8A)

This total strain energy function will get minimized  for  q κ = 1 3    .  On substituting this

value  q/κ  in the above equations (5), (6)  & (8A), we finally get

                 
( )

E
A e J

n
n=

3 3

4

2 2 2
1
2

0
2

1

0

π κα α
ε

          Joule                           ........................(8B)

Substituting  the values of various parameters in the above equation and converting energy
units from Joule to MeV, we get  E An n= 9601836 2.    MeV.    Comparing this value of total



(ODVWLF &RQWLQXXP7KHRU\ %\ *66DQGKX

6

strain energy contained in the nucleon core with the known mass energy of the neutron
(mn=939.576  MeV), the dimensionless constant An is found to be   An = 0.9892

3.4    Size  of the Nucleon  Core.      The overall size of the nucleon core can now be
established  by substituting the value of   q = κ/√3  ;  κ =  1.73767×1015  m-1 ;   α1=3.832  in
the relations  z1 = π/2q   &    ρ1 = α1/(κ2 - q2)½ .   Thus we find the maximum length of the
nucleon core to be = 2z1 = 3.1314  f .   Maximum radius of the nucleon core is  found to be
= ρ1 = 2.7  f .  Hence we find that the nucleon core is of the shape of a right circular
cylinder of diameter  5.4  f   and  length  3.1314  f .

3.5    Intrinsic  Spin  Concept.      It can be easily seen from phase quadrature of
displacement components  uρ & uφ  that the resultant displacement vector in any transverse
plane keeps continuously rotating or ‘spinning’ with constant angular velocity  ω = κc
whereas its magnitude remains constant or time invariant at any space point. Direction of
this ‘spin’ of the displacement vector is obviously along the axis of the strain bubble and
remains constant with time.  This constant ‘intrinsic spin’ of the displacement vector U  in
the nucleon core may be, at least partly, identified with the  conventional  notion  of ‘Spin’
in these particles.  Another part of the nucleon spin could be associated with the mechanical
rotation of the core about Z-axis, for which its moment of inertia works out to be equal to
In= 4.6259×10-57 kg.m2 .  However, as we shall see later, still another part of the nucleon
spin and the anomalous magnetic moment could be associated with the orbital motion of the
positron and the electron within the nucleon core.

4.   STRONG  INTERACTIONS

4.1    Nature  of  Strong  Interactions.      If  the strain fields of two strain bubbles
overlap  in a certain region, the total strain components will be obtained by superposing
corresponding components of both the strain bubbles referred to a common coordinate
system, resulting in strain bubble interactions.  When the cores of two or more interacting
strain bubbles get partly overlapped,  the resulting interaction is the ‘strong interaction’
encountered  among  nucleons  and many other  elementary  particles. Interaction energy
(Eint) of  two such interacting strain bubbles may be defined as the difference between the
total strain energy of the two strain bubbles with superposed strain fields (Esup) and the sum
of separate strain field energies of  two bubbles (E1 and E2).

                        Eint = Esup - ( E1 + E2 )                              …………………………  (9)

If  Si
j(1) and Sij(2) represent the strain components of bubbles 1 and 2, referred to the same

coordinate system then it can be seen from equations (7) that the interaction energy density
Wint will be given by the sum of products of the corresponding strain components

         Wint(1,2) = (1/2ε0).Σ[{ Si
j(1) + Si

j(2) }2-{ Si
j(1) }2-{ Si

j(2) }2]

                  = (1/ε0). Σ[ Si
j(1). Si

j(2)]               (i →1 to 3 & j→1 to 4)      .............(10)

5.   AXIAL  n-n  STRONG  INTERACTION

5.1      Let us consider a  nucleon core  centered at the origin ‘O’  of  a  cylindrical
coordinate system (yi), defined by y1=ρ, y2=φ, y3=z. Let the core axis be aligned along  the
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Z-axis (Figure 1). From equations (5), the non-zero displacement components for this
nucleon core termed (O) will be given by,

 uρ(O) =  An.eκ. J1(x). Cos(y). Cos(κct)                                          …………..  (11A)

       uφ(O) =  An.eκ. J1(x). Cos(y). Sin(κct)                                           …………..  (11B)

where  ( )x = 2 3 κρ   ; ( )y z= 1 3 κ    with  0≤x≤α1   and   -π/2≤y≤π/2 .

The corresponding strain components for this nucleon core are,

     ( ) ( ) ( ) ( )S O A e J x Cos y Cos ctnρ
ρ κ κ= 2 3 2

1. . . . .'

( ) ( ) ( ) ( )S O A e
J x

x
Cos y Sin ctnφ

ρ κ κ= − 2 3 2 1. . . . .

( ) ( ) ( ) ( )S O A e J x Sin y Cos ctz n
ρ κ κ= − 1 3 2

1. . . . .

( ) ( ) ( ) ( )S O A e J x Cos y Sin ctt n
ρ κ κ= − . . . .2

1

( ) ( ) ( ) ( )S O A e J x Cos y Sin ctnρ
φ κ κ= 2 3 2

1. . . . .'

( ) ( ) ( ) ( )S O A e
J x

x
Cos y Cos ctnφ

φ κ κ= 2 3 2 1. . . . .

( ) ( ) ( ) ( )S O A e J x Sin y Sin ctz n
φ κ κ= − 1 3 2

1. . . . .

( ) ( ) ( ) ( )S O A e J x Cos y Cos ctt n
φ κ κ= . . . .2

1                                                   .............(12)

5.2    Let us now consider the second nucleon core centered at point ‘A’ on the z-axis at
distance  L  from the origin (Fig.1), such that its intrinsic spin direction is parallel to that of
first  core (O).  Further let the displacement vector and strain components of nucleon core
(A) be referred to a local cylindrical coordinate system  ρ, φ, Z  such that  Z= z-L .
Therefore the displacement components for this nucleon core termed (A) will be given by,

 uρ(A) =  An.eκ. J1(x). Cos(Y). Cos(κct)                                         …………..  (13A)

       uφ(A) =  An.eκ. J1(x). Cos(Y). Sin(κct)                                          …………..  (13B)

where  ( )x = 2 3 κρ   ; ( )Y Z= 1 3 κ  =  y- κL/√3 ;  with  0≤x≤α1   and   -π/2≤Y≤π/2 .

Further, let   δ = L/z1 = (2κL)/(π√3)     so that  Y = y - δ(π/2) .  Corresponding strain
components for the nucleon core (A) referred to coordinate system ρ, φ, z   are,

      ( ) ( ) ( ) ( )S A A e J x Cos Y Cos ctnρ
ρ κ κ= 2 3 2

1. . . . .'

( ) ( ) ( ) ( )S A A e
J x

x
Cos Y Sin ctnφ

ρ κ κ= −
2

3
2 1. . . . .

( ) ( ) ( ) ( )S A A e J x Sin Y Cos ctz n
ρ κ κ= − 1 3 2

1. . . . .
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( ) ( ) ( ) ( )S A A e J x Cos Y Sin ctt n
ρ κ κ= − . . . .2

1

( ) ( ) ( ) ( )S A A e J x Cos Y Sin ctnρ
φ κ κ= 2 3 2

1. . . . .'

( ) ( ) ( ) ( )S A A e
J x

x
Cos Y Cos ctnφ

φ κ κ=
2

3
2 1. . . .

( ) ( ) ( ) ( )S A A e J x Sin Y Sin ctz n
φ κ κ= − 1 3 2

1. . . . .

( ) ( ) ( ) ( )S A A e J x Cos Y Cos ctt n
φ κ κ= . . . .2

1                                               .............(14)

Figure 1

5.3    We know from equation (10), that the axial interaction energy density Wina in  the
common overlap region of the two cores will be given by (1/ε0) times the sum of products
of the corresponding strain components.  Therefore, after pair wise summation of the
required products from equations (12) and (14), we get
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      Wina(n,n) = 

( )

( )
A e
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5.4    The total axial interaction energy of two nucleon cores is obtained by integrating
this energy density over the entire common overlap region, as

Eina(n,n) = W dz d d W x dx dyina
L z

z

ina
−
∫∫ ∫∫∫ =
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11 1
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. . . . . . . .ρ ρ φ
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              = ( ) ( )π κ α α
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2
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A e J
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. . .−



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+
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     ...............(16)

The total axial interaction energy Eina can be written as a fraction of  En  by using (8B), as

Eina(n,n) = ( ) ( ) ( ) ( )[ ]2 2 4 3 2− +δ δπ π δπ. . .Cos Sin En

              =( ) ( ) ( ) ( )[ ]2 2 4 3 2 939576− + ×δ δπ π δπ. . .Cos Sin    Mev              .............. (17)

Figure  2a
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Figure 2b
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Equation (17) gives the axial interaction energy in MeV, as a function of  axial separation
δ=L/z1  between the two interacting nucleons.   This energy is zero at  δ=2  when the
nucleons are fully separated  and  increases to  2En for δ=0 when the nucleons are fully
superposed.  For  1.834< δ < 2  the interaction energy is negative. The exact variation of
Eina with δ is shown in figures 2a & 2b.  The negative energy part of this axial interaction is
an important feature which enables axial bonding between a neutron and a proton.  In this
p-n coupling, mean separation between the centers of two cores is about 2.6 f, varying from
about 2.1 f  to 3.1 f  and  frequency of their axial oscillations is about 5.21×1022 Hz.

6.  RADIAL  n-n  STRONG  INTERACTION

6.1     Let us again consider a  nucleon core centered at the origin ‘O’ of a cylindrical
coordinate system (yi), defined by y1=ρ, y2=φ, y3=z.  Let the core axis be aligned along  the
Z-axis.  The non-zero displacement components for this nucleon core termed (O) are given
by equation (11)  and the corresponding strain components by equation (12).  Let us now
consider another nucleon core with its axis parallel to the axis of core (O) but separated by
distance D  (Fig.3).  Consider a point B in a radial direction φ=0, such that OB=D. Axis of
the second core termed  core(B) will pass through point  B.  Further let the center of  core
B' be displaced from the plane z=0, along positive z-axis by distance L (Fig.1). Let the
core(B) be referred to a local coordinate system (xi) defined by x1=r, x2=β, x3=Z  such that
Z=z-L . Maximum radii of both cores are  ρ1=r1.  Further let   D/ρ1 = η ;  L/z1 = δ;

x= 2 3.κρ ;   X = 2 3.κr  ;  y = 1 3.κz  ;  Y = 1 3 1 3. .κ κZ y d= −  = y - δ(π/2) .



(ODVWLF &RQWLQXXP7KHRU\ %\ *66DQGKX

11

Figure 3

6.2     The coordinates of any point P  located in a common overlap region of two cores,
referred  to  the coordinate systems  yi  and  xi  will be  inter-related  through following
transformation relations:

              ρ Sin(φ) = r Sin(β)  ;                          ρ Cos(φ) - D = r Cos(β) ;

              ρ2 = r2 + D2 + 2rD Cos(β) ;                 r2 = ρ2 + D2 - 2ρD Cos(φ)  ;

  &     χ η α ηα φ= + −x x Cos2 2
1
2

12 ( )             where  ( )χ κ= 2 3 r              ........... (18)

From the above relations,  the coordinate  transformation  Jacobian Matrices of their partial
derivatives are obtained  as
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∂
∂

∂
∂ρ

∂
∂

∂
∂φ

∂
∂

∂
∂

x

y

Z x

y

Z x

y

Z

z

3

1

3

2

3

30 0= = = =              ;                    ;        = = 1          …….(20)

6.3    The displacement components for the second nucleon core termed (B) and
referred to coordinate system xi (r, β, Z) are therefore given by,

 ur(B) =  An.eκ. J1(χ). Cos(Y). Cos(κct)                                          …………..  (21A)

       uβ(B) =  An.eκ. J1(χ). Cos(Y). Sin(κct)                                           …………..  (21B)

where  ( )χ κ= 2 3 r   ; ( )Y Z= 1 3 κ  = y - δ(π/2);  with  0≤χ≤α1   and   -π/2≤Y≤π/2 .

Corresponding strain components for the core (B) referred to coordinate system r, β, Z
are,

                 ( ) ( ) ( ) ( )ε κ χ κr
r

nB A e J Cos Y Cos ct= 2 3 2
1. . . . .'

           ( ) ( ) ( ) ( )ε κ
χ

χ
κβ

r
nB A e

J
Cos Y Sin ct= −

2

3
2 1. . . . .

           ( ) ( ) ( ) ( )ε κ χ κZ
r

nB A e J Sin Y Cos ct= − 1 3 2
1. . . . .

           ( ) ( ) ( ) ( )ε κ χ κt
r

nB A e J Cos Y Sin ct= − . . . .2
1

           ( ) ( ) ( ) ( )ε κ χ κβ
r nB A e J Cos Y Sin ct= 2 3 2

1. . . . .'

           ( ) ( ) ( ) ( )ε κ
χ

χ
κβ

β B A e
J

Cos Y Cos ctn=
2

3
2 1. . . .

           ( ) ( ) ( ) ( )ε κ χ κβ
Z nB A e J Sin Y Sin ct= − 1 3 2

1. . . . .

           ( ) ( ) ( ) ( )ε κ χ κβ
t nB A e J Cos Y Cos ct= . . . .2

1                                        .............(22)

Now these strain components have to be transformed to coordinate system yi(ρ, φ, z)
centered at O by using the relations,

      ( )S B
y

x
B

x

yj
i

i

j=
∂
∂

ε
∂
∂α β

α
β

. ( ).                          (summation over  α  and  β)        ……..(23)

However, before carrying out this transformation we have to first convert the physical strain

components ε
x

x
j

i

B( )  given by equations (22), to the corresponding strain tensor components

ε j
i B( )  through the relation,

       ε
x

x
j

i

B( )  =   g B gii j
i jj. ( ).ε                     (no summation over i or j)          ..........(24)

And again after using equation (23) the strain tensor components  ( )S Bj
i  will have to be

converted back to the physical components S B
y

y
j

i

( )  using the above relation.
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6.4    Finally the strain components (22) due to the nucleon core (B), when properly
transformed by using equations (19), (20), (23) and (24) to the cylindrical coordinate
system yi (ρ, φ, z) centered at O, are obtained as,

( ) ( )
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 ..........(25)

6.5     From equation (10), interaction energy density is given by (1/ε0) times the sum  of
products of the corresponding strain components. Therefore, for computing the radial
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interaction energy of two cores (O) and (B), we may first compute the sum of pairs of
products of the corresponding strain components from equations (12) and (25) as follows.

Σρ(n,n) = S O S B S O S Bρ
ρ

ρ
ρ

ρ
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Hence, the interaction energy density in the common overlap region is,

     Winr(n,n) = (1/ε0)[Σρ (n,n) + Σφ(n,n) + Σz(n,n) + Σt(n,n) ]                      ..................(26)

This energy density function is completely time invariant and is a function of independent
parameters  ρ, φ, z, δ and η .  If the intrinsic spin direction of one of the cores is reversed
the resulting interaction energy density will no longer be time invariant leading to overall
instability of such interaction.  Hence, all meaningful and stable strong interactions among
nucleons occur with their intrinsic spin directions parallel. As usual the total interaction
energy of the strong interaction considered above, will be obtained by integrating Winr over
the entire volume of the common overlapped region.

      Einr(n,n) = W n n d d dzinr ( , ). . . .ρ ρ φ∫∫∫                                         .............................(27)

6.6     The volume integral at equation (27) above, with variable limits of integration,
can not be easily evaluated analytically and we must take recourse to computerized
numerical integration.  For any given set of separation parameters δ and η, a unique value
of interaction energy will be obtained.  If the radial separation parameter η is set to zero, X
will reduce to x and the interaction energy obtained from equation (27) will reduce to axial
interaction energy given by equation (17).  If on the other hand  δ is set to zero, Y will
reduce to  y  and equation (27) will then provide pure radial interaction energy.  The radial
interaction energy between two nucleon cores thus obtained is plotted at  figures 4a & 4b
for  0≤η≤2 .  This is an important plot which shows maximum negative interaction energy
between two nucleons at radial separation of  one core radius, that is about 2.7  f .
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Figure 4a

Figure 4b
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6.7  It means that two nucleons are likely to get radially coupled together under suitable
conditions and oscillate at a frequency of about 3.6×1022 Hz  with mean radial separation of
about  2.7  f .  The radial interaction energy is positive for core separation between 0 to 1.9
f  and again from about 4.3  f  to the maximum limit of two core radii that is  5.4  f .  The
asymmetry of negative portion of this interaction energy curve with respect to its minima at
2.7 f , may lead to the rotational motion of the interacting nucleons alongside their above
mentioned radial oscillations.  The positive ‘hump’ of this interaction energy curve from
4.3 f  to 5.4 f separation suggests that the radial coupling between two interacting nucleons
may be very difficult to form and once formed may be much more difficult to break in
comparison with their axial coupling.

6.8    However, the exact motion of interacting nucleons can not be studied in detail
from the knowledge of interaction energy curve alone, without employing the techniques of
‘revised’ Quantum Mechanics.  Furthermore, there is one very important point to be noted
here regarding the magnitude of negative interaction energy available for strong coupling
and the actual ‘bond energy’ ensuring stable binding between the interacting nucleons.  The
available interaction energy ‘released’ by the system, must be actually emitted out of the
system for it to become ‘bond energy’ of the coupled nucleons.  In practice only a small
fraction of the negative interaction energy released by the system is actually emitted out of
the system and the balance is converted to the kinetic energy of motion of the interacting
nucleons.  There must be a valid mechanism available for emitting a portion of the released
interaction energy out of the system.  The interacting nucleon cores by themselves do not
appear to possess any such mechanism.  Energy could be emitted out of the system with due
conservation of energy and momentum, either as photons or some other elementary
particles like mesons, neutrinos etc.  But photons could be emitted out from the strain wave
field region only through specific motion of charge particles - the electron and positron,
whereas the neutrinos could be formed and emitted out from within the core region itself.
Therefore the presence of positron and electron among the nucleons appears to be an
essential feature in the coupling and securely binding the nucleons.  Hence we next examine
the strong interaction between the positron/electron cores and the nucleon core.

7.    THE  PROTON

7.1     The proton is known to be a positively charged nucleon.  As per the ECT of the
electron structure[2], the electron and positron are the only two stable charge particles
consisting of  a spherically symmetric oscillating strain wave core surrounded by radial
propagating phase wave field type strain bubbles. As such it is quite reasonable to presume
that the proton may consist of  a nucleon core with a positron superposed over it through
strong interaction.  We may therefore, examine the strong interaction characteristics of the
positron core with the nucleon core. In the foregoing, we have already examined the strong
interaction characteristics of two nucleon cores. Proceeding on the same lines, let us replace
the nucleon core centered at the origin O of the cylindrical coordinate system, with a
positron core centered at the same point O.

7.2    The positron type strain bubbles are obtained as spherically symmetric lowest
order solutions of equilibrium equations of elasticity in the Elastic Continuum[2].  Non-zero
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displacement vector components of the positron core, referred to a spherical coordinate
system (R,θ, φ), with origin at O, are given by,

uR =  Ae.eκ.G1(X). Cos(κct);                                                          …………….. (28A)

      uφ =  Ae.eκ.G1(X). Sin(θ). Sin(κct);                                                …………….. (28B)

 where  G1(X) = (cos X - sin X / X)/X  = - (π/2X)½. J3/2(X)        and     X = κ R ;
 The corresponding strain components for the positron core can be properly transformed to
a cylindrical coordinate system (ρ, φ, z) with origin at point O, by the usual procedure
discussed above.  These strain components for the positron (e+) core centered at point O,
after proper transformation to the cylindrical coordinate system yi (ρ, φ, z)  are,
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Where,   R= ( )ρ2 2+ z    ;   X = κ R = κ. ( )ρ2 2+ z  = ( )( )3 2 3y2 2x +

with   x = ( )2 3 .κρ        and       y = ( )1 3 .κz

7.3    From equation (10), interaction energy density in the common overlapped region
of the interacting cores is given by (1/ε0) times the sum  of products of the corresponding
strain components. Therefore, for computing the interaction energy of the positron (e+)
centered at O and the nucleon core (n) located at B, with their intrinsic spins parallel and
axes separated by distance D= ηρ1 , we may first compute the sum of pairs of products of
the corresponding strain components from equations (29) and (25) as follows.
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Hence, the interaction energy density in the common overlap region is,

    Wint(e
+,n) = (1/ε0)[Σρ (e

+,n) + Σφ(e
+,n) + Σz(e

+,n) + Σt(e
+,n) ]                  ..................(30)

This energy density function is completely time invariant and is a function of independent
parameters  ρ, φ, z, δ and η.  As usual the total interaction energy of the strong interaction
between a nucleon core and a positron core considered above, will be obtained by
integrating Wint(e

+,n) over the entire volume of the common overlapped region.

    Eint(e
+,n)= W e n d d dzint ( , ). . . .+∫∫∫ ρ ρ φ                                      .................................(31)

7.4   The volume integral at equation (31) above, with variable limits of integration for
the common overlapped region of two cores, can be evaluated through computerized
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numerical integration.  For any given set of separation parameters δ and η, a unique value
of interaction energy will be obtained.  If the radial separation parameter η is set to zero, χ
will reduce to x and the interaction energy obtained from equation (31) may be termed axial
interaction energy of the e+,n pair.  If on the other hand  δ is set to zero, Y will reduce to  y
and equation (31) will then provide pure radial interaction energy of the e+,n pair.  The axial
and radial interaction energy of the positron, nucleon cores thus obtained is plotted at
figures 5 & 6 for various separation distances.  These are important plots which show
maximum negative interaction energy of about 20 MeV between two cores when their
centers coincide. The radial interaction energy is positive for core separation between 1.7 f
to 3.7  f  .  We may even compute the whole set of values of interaction energy between the
positron and nucleon cores for all possible values of δ and η  to finally obtain an energy
contour plot as shown in figure 7.  In this figure the innermost contour correspond to the
interaction energy of  -19 MeV and the outermost to -1 MeV.  This is a unique plot
depicting the interaction energy characteristics of a positron entrapped within the proton
core. From this data we can even compute the magnitude and direction of force experienced
by the positron when its center is located at any point within the proton core. For example
the positron experiences maximum radial inward force of about 2600 Newton at a radius of
1.2 f  and a maximum radial outward force of about 600 N  at a radius of 3 f.  A plot of
positron inward radial force within the proton core is shown at figure 8. Similarly in axial
direction, the positron experiences a maximum inward force of about 1400 N  at a distance
of 1 f  from the center of the nucleon core.

Figure  5
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Figure 6
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Figure 8
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7.5       From the above mentioned data of the interaction energy and the associated
force field acting on the positron entrapped within the nucleon core, we can make a fairly
good estimate of the elliptical orbit on which the positron will move.  With an estimated
1.8 MeV energy emitted out, balance amount of interaction energy is converted to the
kinetic energy of the positron. From relativistic considerations the orbital velocity of the
positron is estimated at 0.999 c,  with corresponding orbital frequency Nr = 5.4533×1022

Hz.  The major axis of  this elliptical orbit is estimated at 2a=1.8384 f  and  the minor axis
2b = 1.6556 f . While the major axis lies along the principal transverse plane, the minor axis
lies in an axial plane of the nucleon core. Axis of the elliptical orbit passes through the
center of nucleon core and is inclined to the core axis at an angle of  θ = 47.622 degree.
Further, since the force field experienced by the positron is not exactly central, the positron
orbit is also expected to precess around the nucleon core axis. The positron moving around
the center of nucleon core on the above mentioned orbit will obviously produce a magnetic
moment, the effective component of which along the core axis is given by,

                µ π θp reN ab Cos= = × −. . ( ) .1407 1026   Am2 .

 This is the familiar anomalous magnetic moment of the proton.  Therefore we may
conclude that the proton consists of  a positron entrapped inside a nucleon core through
strong interaction and moving around in elliptical orbits inclined to the nucleon core axis.
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Figure  9
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8.    THE  NUCLEON  BONDS

8.1  The  Neutron.  When the strong interaction between an electron and nucleon
cores is computed, we find the interaction curves given above just get reversed as shown in
figure 9.  That is, the electron core is found to have a negative interaction energy at radial
separation of more than 2 fm or so. Thus under optimum conditions a  proton can entrap an
electron within the outer boundary of the nucleon core to form a neutron. The electron thus
entrapped through strong interaction  with nucleon core, is also expected to move in
elliptical orbits within about 2   to 3 fm radius from the core axis. Therefore,  a neutron
consists of a nucleon core with a positron entrapped within its central region and an
electron entrapped in its peripheral region. The formation and decay of the neutron is
governed by the dynamic transfer of  interaction energy between the orbiting electron and
positron pair under suitable conditions.  As seen from the interaction energy curves, the
positron is much more tightly bound within the central region of the nucleon core, in
comparison with the electron which is lightly bound in the peripheral region.

8.2   The p-n Axial Bond.   As already indicated above, the presence of electron and
positron plays a major role in the bonding of nucleons together since there must be a valid
mechanism available for emitting out a portion of the released interaction energy out of the
system.  The interacting nucleons by themselves do not appear to possess any such
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mechanism. In an axial proton-neutron bond forming ‘deuteron’, the orbiting particles keep
axially shifting from one nucleon core to the other after each cycle of rotation. Since the
axially interacting nucleon cores tend to vibrate at a frequency of about 5.2×1022 Hz, the
orbiting particles will give off a part of their kinetic energy to synchronize their motion with
the nucleon oscillations.  During each cycle of their oscillations, when the nucleon cores are
closest  together at a separation distance of about  2.18 f , the orbiting particles will tend to
be in their mid section or equidistant from them. The combined interaction energy plot of  a
positron interacting with two nucleon cores separated by  2.18 f  is shown at figure 10.

Figure 10
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8.3   The p-n Radial Bond.   As pointed out at para 6.7 above, two nucleon cores
when coupled radially, will tend to vibrate at a frequency of about 3.6×1022 Hz with a
minimum separation of about 1.9 f  between their axes. The combined radial interaction
energy plot of  a positron interacting with two nucleon cores radially separated by  1.9 f  is
shown at figure 11.  Here again the orbiting positron and electron will tend to synchronize
their motion with radial vibrations of interacting nucleon cores by radiating out a portion of
their kinetic energy.  The amount of energy thus radiated out by the orbiting particles will
become the effective bond energy of this p-n coupling. This bond energy is relatively a very
small fraction of the total kinetic energy available in the system that sustains vibrations and
rotations of  constituent nucleons and orbital motion of the entrapped particles. There is one
very important feature of the synchronous orbital motion of electron positron pair within a
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radial p-n coupling. The combined orbit of positron as well as electron around two radially
coupled nucleon cores will be of the shape of figure of  8 .  If the sense of orbiting particle
motion around one nucleon core is clockwise, it will be anti- clockwise around the second
core. This fact might be responsible for creating the general impression that conventional
spins of two nucleons are parallel for their axial coupling and anti-parallel for their radial
coupling.  However, there appears to be some mix-up of intrinsic spin concept, orbital
motion of orbiting particle and the mechanical rotational motion of nucleons in the
conventional concept of nucleon spin.  Since neither two positrons nor two electrons can
jointly share a crossed orbit in the figure of 8, a radial p-n coupling can not occur in
isolation. Thus a deuteron will consist of only an axially coupled p,n pair.  A third nucleon
can join  a deuteron through above mentioned radial coupling.   Further detailed study of
motion of the positron and the nucleons under their mutually interactive environment, may
require the use of revised Quantum Mechanics.

Figure 11
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9.   THE NUCLEUS

9.1    The nucleus consists of an assembly of nucleons, arranged in a definite order, each
nucleon partly overlapping and hence strongly interacting with its adjoining nucleons. Since
the nucleon core is of cylindrical shape with 2.7 f radius and 3.1314 f length, the nucleus
built up from these nucleons will also tend to be cylindrical in shape.  Moreover this
assembly of nucleons is not static (like bricks assembled together with cement mortar) but
highly dynamic with each nucleon vibrating vigorously about certain mean overlap
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positions.  Since in the radial p-n coupling, mean separation between the vibrating nucleon
cores is about 2.7 f and in the axial p-n coupling the mean separation is about 2.6 f , we may
take the effective ‘contact’ diameter of the nucleon as 2.7 f  and effective contact length of
the nucleon as 2.6 f  for the purpose of developing a ‘static’ picture of the nucleus. The
nucleons of this effective size may now be assembled in specific radial arrangements,
repeated in axial layers (containing different number of nucleons) to build up a nucleus of
the required size. In general the central layers will contain maximum number of nucleons
and the layers at the two ends of the axis will contain minimum number, such that the
overall nucleus with its inherent synchronous vibrations and rotations, will appear to be
approximately spherical in shape. Let us term the contact diameter as Dc and the contact
length as Lc so that Dc= 2.7 f  and Lc= 2.6 f .  With this terminology  we can say that the
effective mean ‘contact’ size of deuteron is : diameter 1Dc and length 2Lc . The α particle
consisting of four nucleons is essentially a radial coupling of two deuteron particles. The
shape of  α particle will therefore be a cuboid of length 2Lc , breadth  2Dc and thickness
1Dc (Figure 12a).  It is very important to point out here that the assembly of four nucleons
in radially coupled ‘square’ configuration, is dynamically unstable (Figure 12b).  The reason
for this instability is that in such a configuration the separation distance between diagonally
opposite nucleons will  fall in the positive interaction energy hump of the radial interaction
energy curve, figure 4, during a part of their oscillation cycle and hence tend to make them
fly apart.

Figure 12a  Figure 12b

9.2   Presently the most stable arrangement for radial coupling of nucleons is the
hexagonal close packed (hcp) configuration in which all nucleons in a particular radial or
transverse plane are located on the corners and the center of a regular hexagon. All
nucleons arranged in hcp configuration in a particular transverse plane may constitute, what
we may call a transverse layer of nucleons of 1Lc axial thickness. Two identical transverse
layers of nucleons may get axially coupled when each proton in one layer is axially coupled
to a neutron in the second layer and vice-versa. At any instant of time, the total number of
protons and neutrons may be equally distributed between two such layers. Such a double
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layer of nucleons may also be visualized as a single transverse layer of deuteron particles.
For an example we may consider the nucleus of carbon 6C

12 which will consist of a single
transverse layer of  6 deuteron particles arranged on the corners of a regular hexagon.
Similarly the nucleus of 7N

14 will consist of a single transverse layer of  7 deuteron particles
arranged on the corners and center of a regular hexagon as shown at figure 13. However
this is just a representative 'static' picture made from the effective mean contact diameter
mentioned above.  Actual dynamic picture of the nucleus with its vibrations and rotations,
may be quite different depending upon the mode of observation.  The actual radial and axial
configuration of nucleons in any particular nucleus could be worked out in detail from the
available experimental data about that nucleus.

Figure 13

10.   SUMMARY  AND  CONCLUSION

10.1   The model of  nucleon developed in this paper is based on a cylindrical strain
bubble solution of equilibrium equations of elasticity in the Elastic Continuum.  This strain
bubble is stable, finite in size with cylindrical symmetry and oscillates at a frequency that
matches with the oscillation frequency of  electron/positron cores. From the detailed study
of this model, we find that the nucleon core is of the shape of a right circular cylinder of
radius  2.7   f   and  length  3.1314  f  and  the moment of inertia about its axis equal to  In=
4.6259×10-57 kg.m2 . As per the ECT[1] all interactions take place through the superposition

14 Nucleon configuration
  7N

14 nucleus
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of  strain fields of  interacting particles and are not mediated through the exchange of any
particle whatsoever. Accordingly,  detailed computations have been made to obtain
interaction energy data for various axial & radial separations of interacting nucleons on the
one hand and for the positron core interacting with nucleon on the other. This interaction
energy data implies that two nucleons are likely to get radially coupled together under
suitable conditions and oscillate at a frequency of about 3.6×1022 Hz  with mean radial
separation of about  2.7  f . Two nucleons are also likely to get axially coupled together
under suitable conditions and oscillate at a frequency of about 5.21×1022 Hz  with mean
axial separation of about  2.6  f . The positron, through its strong interaction with nucleon
core, gets entrapped within the nucleon and moves around in elliptical orbits at a frequency
of 5.4533×1022 Hz. This orbital motion of the positron is shown to be the source of
anomalous magnetic moment of the proton. The nucleus is shown to mainly consist of
layers of radially coupled deuterons  or nucleons arranged in hcp configuration.
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