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ABSTRACT

This paper presents an entirely different, unorthodox point of view regarding the description of
physical world at the ultramicroscopic level. The old concept of elastic ether medium has been
revised to preclude its self contradictory properties. As per the revised concept, our familiar
space-time continuum with the characteristic property of permittigityand permeability o,
behaves as a perfect isotropic elastic continuum with elastic constaand/inertial constant, .

For this ‘Elastic Continuum’ the equilibrium equations of elasticity are found to be identical
with vector wave equation of Maxwell's electromagnetic theory. Particular solutions of these
equilibrium equations as functions of space-time coordinates, satisfying appropriate boundary
and stability conditions within a bounded region, are shown to represent various ‘strain bubbles’
and ‘strain wave fields’. The electromagnetic field as well as all other forms of energy and matter
are shown to exist in the Elastic Continuum as strain wave fields or strain bubbles. Through
analysis of various strain bubbles, we can study the structure of various elementary or composite
particles like electron, proton etc. and deduce their mutual interactions.

Keywords. Elastic Continuum; Equilibrium equations; Strain bubbles; Elementary particles.

Ether : ‘It should no longer be regarded as a substance but simply as the totality of those
physical quantities which are to be associated with matter free space.’

Albert Einstein




1. INTRODUCTION

1.1 In the 18 century Physics, light waves were regarded as undulations in an all
pervading elastic medium called ‘ether’. The successful explanation of diffraction and
interference phenomenon in terms of ether waves made the notion of the ether so familiar
that its existence was taken for granted. However, in order to accommodate the notion of
ether in the framework of physical universe as known at that time, some self contradicting
properties had to be ascribed to this ether medium. For supporting the light waves it was
required to behave like an elastic solid, but to enable the motion of material bodies
through it without any resistance, it had to behave like a thin, ideal, non-viscous fluid.

1.2 Maxwell's development of the electromagnetic theory of light, rendered the
ether medium superfluous as the electromagnetic field was granted an independent status,
capable of independent existence and propagation in space, in accordance with Maxwell’s
equations. It is generally believed that the notion of ether medium was discarded as a
consequence of the negative result of Michelson-Morley experiment. In fact, with the
success of special theory of relativity, the Michelson-Morley experiment itself was
rendered null and void. Since by the end df t@ntury, the phenomenon of light waves
could be explained on the basis of electromagnetic theory, there was no further necessity of
retaining the concept of ether medium. Most of the elementary particles were not known to
exist by then. Even the phenomena of ‘matter waves’ of non-electromagnetic origin, inter-
convertibility of matter and energy, annihilation and materialization of particles were not
known at that time. As a result the ether got discarded from tfec@6tury Physics so
thoroughly that its non-existence is now taken for granted.

1.3 However, granting of independent status to the electromagnetic field was not
sufficient by itself, we had to ascribe the characteristic properties of permittyitgnd
permeability f1o’ to empty space i.e. ‘nothingness’, which again appears self contradictory.
Propagation of independent electromagnetic field through ‘empty’ space, at a constant
velocity ‘c’, also depended upon the magnitude of characteristic parangteasd ‘Uo’
ascribed to empty space. Therefore, logically it should make better sense to retain the
notion of an elastic ‘ether’ continuum with characteristic parametgrand ‘Y, ascribed
to it rather than discarding ‘ether’ and ascribing the same characteristic parameters to
‘nothingness’ or empty space. If the characteristic parametgrand ‘|’ are associated
with an ‘elastic continuum’ pervading the entire space, we could view the electromagnetic
waves, with energy stored in their oscillating electric and magnetic fields, as propagating
through this continuum. Hence the transportation of energy across physical space could be
viewed as a propagation process of specific type of waves through the elastic ether
continuum. As such, for transportation of energy through the highly elastic ether
continuum, it may no longer be necessary to ascribe self contradicting property of ‘thin
ideal fluid® to it. We may simply imagine the transportation of energy as a sort of
‘propagation’ process through the elastic ether continuum.

1.4 However, as a next most formidable step, it will be extremely difficult to
imagine the transportation of ‘matter’ as a sort of ‘propagation’ process through the
elastic ether continuum, even though thé" 2entury Physics has shown the equivalence
and inter-convertibility between ‘matter’ and ‘energy’. It is one thing to imagine the
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elementary matter particles as some sort of packets of energy entrapped in
characteristic wave formation in the ether continuum, but quite another to imagine the
transportation of clusters of such particles (material bodies) as a sort of ‘propagation’
process through the ‘ether’. Yet, this most formidable step is also the most crucial one
necessary to divest the self contradictory property of ‘thin, ideal fluid’ from the notion of
highly elastic ether medium. Therefore it seems likely that all the electromagnetic
phenomena, all energy entrapping and transportation processes and all wave motion that
we usually believe to be occurring in empty space, are in fact occurring in the elastic
‘ether’ continuum with the characteristic properties of permittivity and permeability

‘Uo’ or elasticity constant & and inertial constanl,. This revised notion of ether no
longer requires it to be ‘thin, ideal fluid’ to allow free unrestricted motion of matter
through it since matter is no longer considered an independent entity separate from the
‘ether’. Therefore, to distinguish this revised notion from the old ether medium™of 19
century, we may simply call it the ‘Elastic Continuum’ with associated characteristic
parameters of elastic constandpldnd inertial constanty, pervading the entire space. We
may well imagine that we are just reinterpreting our familiar concept of space-time
continuum with associated parametegg and [lo, as the ‘Elastic Continuum’ with the
associated parameters of elastic constagt 4nd inertial constaniy in appropriate units.

2. General Equations of Elasticity in the ‘Elastic Continuum’

2.1 Displacement Vector Field U. Let us consider an isotropic elastic continuum
pervading the entire space. Initially, let all the physical points of this continuum be
represented by the corresponding geometrical points of our familiar three dimensional
space referred to a suitable orthogonal coordinate system. In a conventional Cartesian
coordinate system, let the x, y, z coordinates be represented] k§; and X respectively
and the corresponding unit vectorsj, k be represented bg;, &, & . If O is the origin
of this coordinate system, then the position vector of any point,xB&) or simply P(X
will be given by

OP=ext+exX+ex’ =gX ( summation over i from 1 to 3)

With the passage of time, physical points of the continuum may undergo certain
infinitesimal displacements leading to time dependent infinitesimal deformations in the
continuum. The infinitesimal displacement at any point)Rtay be represented by a
displacement vectdd as a function of the coordinates of P as well as t.

UK, ) =ep u'(X t) + e UP(X ) +es (K 1) = g u(x' 1) e (D)

If this displacement vectds is finite and ‘continuous’ within a region of space V, then a
displacement vector fieldU(x' ,t) may be said to be defined over this region of space.
Specifically this displacement vector fidlf represented by its compo_nents may be a
periodic function or a combination of periodic functions of coordinatesard t within

the field region V and may be zero at the boundaries & outside this region. Obtaining
specific solutions for the displacement vector fiel¢k',t), under specified initial and
boundary conditions, will be our major objective in the study of ‘Elastic Continuum’.
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2.2 Representation of Strain S. The displacement vector field(x',t) will also
represent an infinitesimal deformation field in the Elastic Continuum. The infinitesimal
deformation at any point P(§ is best quantified through the components of a strain
tensorS as follows. The infinitesimal deformation or change of an arbitrary small vector
A'(x1,x2x3 1) at the point P&x?,x%) will be given by an infinitesimal affine transformation
of the neighborhood of the point in questioH]as

SA' = (aui/axj) Al = d,j A (summation over j)  ......... (2)

Here the quantitiesi,pwhich are the covariant derivatives of the displacement vector field
u' with respect to the coordinate sepresent the components of strain teSssuch that

s= U, e (3)

These components obviously represent only the spatial strain components. Since the
displacement vector components, in general will be functions of space coordinates as
well as time, the partial derivatives of with respect to time t ( more correctly ct) that

is, (1/c)ou’/at will constitute temporal strain components. In accordance with the notions
of special theory of relativity, time can be regarded as fourth dimension coordinate at right
angles or in quadrature to the three space coordinates. Similarly the temporal strain
component $= (1/c)du'/ot can also be regarded as being in quadrature to corresponding
spatial strain components'; S d,j . If however, thdourth dimensional coordinate is

taken as %= /ct, where, is the complex number-1 , then corresponding to the
displacement vector components, the temporal strain components can be written as

's=d, = adlox* = (1/.c).ou/ot e ()

Thus, corresponding to three components of displacement veiccl'sﬂp(2|,)<3,t), there will
be nine spatial strain components and three temporal strain components, all of which will
be functions of space and time coordinates.

2.3 In contrast to the Elastic Continuum considered above where no rigid body
motion is possible, the infinitesimal deformation in elastic material media is generally split
into pure deformations and rigid body motions (translations and rotations). For steady state
elastic equilibrium in material media, the spatial strain componeptse@esenting pure
deformation and rotational components; representing rigid body motion, are given by

g= (U +u;)2 and w = Uy -u;)2

However, in the study of the Elastic Continuum where rigid body motion is not possible,
we shall not use the above mentioneg representation for strain components. As
discussed in the foregoing, we shall continue to use the total strain tensor components
given by

5=, (b 1103 & jo1104) v, ()

It may be quite pertinent to mention here that the displacement vdctand strain tensor
S are absolute entities and are invariant under coordinate transformations. Only the
magnitude of components ' uand :';‘ is dependent on the reference coordinate
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system and transform with coordinate transformation. Hence, the analysis of strained
state of the Elastic Continuum is equally valid in all admissible coordinate systems; even
though we generally prefer to use a particular coordinate system for particular problems on
the overall considerations of symmetry and boundary conditions.

2.4 Representation of Stress T. At any point P(xx?x® of the Elastic
Continuum under infinitesimal deformation, the state of stress is represented by stress
tensorT, the componentst; of which are defined as follows. With point B, x°) as
the center, consider an infinitesimal plane rectangular surface ayeadx>.5x>, with its
normal parallel to X axis (Fig. 1). This infinitesimal area will have two faces. We shall
consider that face 06, where its unit normab; points towards positive axis, as +ve
face and denote it ag.; . The other face, with normal pointing towards negati&lfeax{s,
will be considered -ve face and denotedasg. If the net force per unit area acting on
0.1 is termed T4, then it is obvious that the direction ®f will not coincide with unit
normalv; in general, since this net force represents a resultant of three components. In
fact thisT, vector acting ono.i, can be decomposed into its components aloﬁgxg(
and X coordinate directions as

Ti= eth + ety + ety = aTh e (6)

With the same point P{x®x®) as the center, if we now consider another plane
rectangular surface areag, = 8x*.5x>, with its normal parallel to %axis, the net force
per unit areal , acting ono., will then be given by

To= eTs + &T% + €12 = 812 oo, (7
Similarly Ta= el'l'l3 + 62T23 + e3133 = QTig ................... (8)

In general, for an infinitesimal rectangular plane ama perpendicular to Ixcoordinate
direction, the net force per unit ar@fa acting ono.; will be given by

T = elle + eszj + %TSJ' = aTij ................... (9)

Here the quantities’; are the components of the stress terBoat point P(%x%x%). The
stress components; in general will be functions of space coordinate§xtx®) of point
P and time t.

2.5 The stress components are reckoned +ve if the correspondic@mponents of
force act in the directions of increasing, when the surface normal is along increasihg x
axis. If on the other hand the surface normal is along lvaxis, then positive values of
c_omponentsf,— are associated with forces directed oppositely to the positive directions of
x' coordinate axes. Hence, for an infinitesimal volume elen®ht Ox*.5x%5x>
taken in the shape of a rectangular parallelepiped, with faces parallel to coordinate planes
and point P(xx?x°) as its center, the stress componerits will correspond to forces in
opposite directions at the opposite ends of the parallelepiped.
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Fig. 1 : Representation of stress componenixson a surface elemenmt,,

)81;

Fig. 2. : A cross section of an infinitesimal parallelepiped under stress.
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2.6 Dynamic Equilibrium Equations in the Elastic Continuum. Ordinary
material bodies, under stress, will generally be in a state of static equilibrium. However,
in the Elastic Continuum, the equilibrium in a strained state is essentially dynamic. In a
steady state or static equilibrium, not only the resultants of all forces acting on an
infinitesimal volume elementdV should vanish but the resultant moment of all forces
should also vanish to ensure that pure stresses and strains do not give rise to rigid body
motions and rotations. In the static equilibrium of a material body under stress, vanishing
of resultant moments to avoid rigid body rotations can be ensured by the symmetry of
stress and strain componerts and §. However, this condition is not applicable for the
Elastic Continuum where there is neither static equilibrium nor rigid body rotations. Let
us consider an infinitesimal volume elemer®v = &.5x°.0x> in the shape of a
rectangular parallelepiped, with point Bf&x?) as its center and faces parallel to
coordinate planes. Of this volume element, let us consider two plane tagesnd o,
perpendicular to X axis, such that point ;®>¥dx*x%x% is the center ofo.; and
point Q(x*+¥dx!x*x% is the center of 0.1 (Fig. 2). Then, =dx';
P.P=Ydx'=PQ and areas of two opposite plane faces under consideratiorare
20x> =0, . Atany instant of time t, let us examine total forces acting on fages
and o.; due to the combined effect of shear and normal stresses acting on these faces.
From equation (6), the total force acting on +ve face is,

041 T1(X X132 %) = 3x2.0xT er. THX X132 ) + €. T X+ X2 )

es. THC+YXE X2 0]
Or 0. Ta(x+Yx 32 x°%) = 3x2.0x [en{ T1(x-v20x1 2, x%) + (T ,(P)oxY).ox"}
ek ToX-Ya0xE X2 x%) + (0T, (P)oxY).5x %}
e T XC-YdxE 3 x0) + (0T%,(P)AxY).5xY)] ...(10)
And the total force acting on the negative faxce is
0.1. T2 32 %) = -Ox2.8x7 en. TH-Yax1 X2 xC) + e, T4(X-Yadx L, X2 x°)
e B0V O)] e, (11)

2.7 Therefore, the net resultant force acting on two opposite fageand o.; of
the parallelepiped is obtained from equations (10) and (11) as,

5T 1. Ox2.8x% = 3x2.8x 1. (T4 (P)OXY).8x* + €.(AT°,(P)AXY).Ox" + e5.(0T 4 (P)oXY).8%]

Similarly considering the forces on opposite faces, 6., and 0.3, 0.3 we get the
corresponding net resultant forces acting on the parallelepiped as,

8T 5. Ox1.3x% = 3% 1. (T H(P)0X?).8%% + €.(AT>,(P)X?) X2 + €5.(0T 5(P)0X?).8%]
and
5T 3. 2.8x" = 3x2.8x e (AT 5(P)0X1).5x% + €. (0T (P)OX°%).BXC + €5.(0T5(P)0x°).8x

If the body force acting on this infinitesimal volume elem&yit is F(x*x2x%) per unit
volume, then in terms of its components along coordinate directions,
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F(x33 %) = elF (X532 x0) + &P (X 3) + &P (X3S e, (12)

For equilibrium of the infinitesimal volume elemedV, under the action of all resultant
surface forces due to spatial stress components and the body forces, we have

OT 1. OX2.0x2 + 8T . XL +8T3. 2 +F.ox1ox%dx® =0 oo, (13)
2.8 After substituting the values odT,, 8T, 8Tz and F from the previous
equations into equation (13), we find that for the overall resultant force to vanish, its
components along three coordinate directions should vanish independently. Therefore,

the coefficients ofe;, e, and e; in the above equation, after the indicated substitutions,
should vanish separately. Hence,

T, (P)OXE +aTL,P)AX? +aTH5P)OX° + F(x'\x3x%) = 0
T4, (P)OX* +aT5(P)AXZ +0T%P)X° + F(x'x2x%) = 0
T, (P)OXE +0T5,(P)OX? +aT5P)XC + F(xLx2x®) = 0

Or in the tensor notation, the equilibrium equations reduce to a set of three partial
differential equations,

T, +1h, +Ths = 1), = -F e, (18A)

Tzlyl +T2212 +T2313 = sz,j = -F (14B)

T3111 +T3212 +T3313 = TSJ-'J- =P (14C)
Or simply,

Tig +Top +Tg = 1) =-F e (14)

Here the body force component '-B associated with the inertial force component
Ho.02U'/0t?, whered?u/dt? is the acceleration corresponding to amd o is the inertial
constant for the Elastic Continuum. Therefore, the equilibrium equation (14) may be
rewritten as,

Tyg +Tpp #T33 = Tj; = Mo i, (15A)

And in orthogonal curvilinear coordinates with metric te[ﬁlsanomponents g, the
general equilibrium equations for the Elastic Continuum take the form,

g1, + A, s = I = wedda (15)

3. Stress - Strain Relations in the Elastic Continuum.

3.1 Modified Hooke’'s Law In the generalized Hooke’s law for elastic material
bodies, the effect of ‘atomicity’ or structural discreteness gets accommodated through the
Poisson’s ratio constant. Further, the effect of a finite value of Poisson’s ratio constant
for a material body is manifested through different values of speed of propagation of
transverse and longitudinal strain waves. Therefore, in contrast to an elastic material
body, we shall take the Poisson’s ratio constant for the Elastic Continuum to be zero to
ensure same speed of propagation of transverse and longitudinal strain waves.
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With this, the generalized Hooke’s law will get modified to a simple form as,
T, = (1k).S; = (Lko)U; e (16)

where (1¢y) is the elastic constant for the Elastic Continuum, in appropriate units. In
conventional electrical units the dimensions of efjl/are Nni/Couf. However, in
mechanical units the dimensions of elastic constasg)(afe required to be N/m Hence

to ensure the compatibility of electrical and mechanical units in the Elastic Continuum, we
must assign the dimension of (flva 0] or n? to the electrical unit Coulomb. One most
tentative or rough estimate for the equivalence of Coulomb is that 1 Could@iff n?.

3.2 Substituting this relation (16) in the dynamic equilibrium equation (15) we get
the corresponding equilibrium equation in terms of displacement comporeass u

(ko). [ g™ 1y + U 5 + G 53] = (Lko). gU ;= pod®dfo? ..., (17A)
Or g+ o+ U 55 = g = eopo.d?for = (US) 3210 ... (17)

Thus the dynamic equilibrium equation for the Elastic Continuum comes out to be the
standard vector wave equation involving displacement vector comporfenfsand 4.

In conventional Cartesian coordinate system (Xx,y,z), with physical components of the
displacement vectdd given by 0, u’ and d equation (17) reduces to a set of three second
order partial differential equations as,

A + oA ay? +o% e = (1) oAU Mett L (18A)

A lox® +olay? +oAlo? = (1) Aot L. (18B)

QA OX® + 02Uy + A9 = (1S) AU et: L (18C)
These three equations may be grouped into one equation involving veédtoras,
02Ulax? +0%Ulay? +90%UloZ = O°U = (/@) 92Ulot> (18)

3.3 Strain Wave Propagation in the Elastic Continuum. In the above

equation (18), the displacement vectdrmay be expressed as a combination of two
functions; a vector functiorfi(x,y,z,t) and a scalar functiap(x,y,z,t) as,

U=DOxf +0¢ (19)

Here each of the functionfs and  will satisfy equation (18) as,
0%I0x® +9%loy? +0%102 = OF = (U o%lot>2 ... (20A)
and O2WIOX? +o2Play? +o%lo? = Oy = (1) d2plot> ... (20B)
If ¢=0, then ou=0 (22)

The equations (18) & (20A) will therefore represent solinoidal or transverse strain wave
propagation through the Elastic Continuum. If on the other Wand), then [OxU will
also be zero and equations (18) & (20B) will represent irrotational or longitudinal
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strain wave propagation through the Continuum. In both of these cases, the spatial strain
components as functions of space-time coordinates will be given by the i,

au*/ay, ou*/oz, au’lox, ou’ldy, ou’/oz, dulox, du’/dy and du’/dz , whereas the temporal
strain components as functions of space and time coordinates will be given by the terms
(1/cu’/at, (L/icpu’/ot and (1/Puot.

3.4 Inertial Property of the Elastic Continuum. Viewing the above mentioned
spatial and temporal strain components as occurring in the four dimensional space-time
continuum, we recall from equation (4) and (5) that,

§ = d, = au/ax* = (L.c)adlot where % = cct
and $:d,j (+1t0o3 & j- 1to4)

With conventional Cartesian coordinate system (x,y,z), let the fourth coordirfatde x
represented by suchthat ¥=n = /ct andau/on = (1/.c).0u/dt. The inertial term

in equation (18) will therefore change to  ¢)/8°U/0t? = - 3°U/on? . Accordingly the
dynamic equilibrium equation (18) will transform to,

d%U/ox? +0°Uloy? +0°UloZ? +d°Ulon* =0 (22)

This shows that in the four dimensional representation of dynamic equilibrium equations
the inertial term is no longer explicit. In other words, the inertial consggntof the
Elastic Continuum may be depicted in terms of its elastic constagt abld velocity of

light ¢ aspo = (1ko).(1/¢). As such, a finite (i.e. non-zero) value of the inertial constant
Mo may be attributed to the finite (i.e. less than infinite) value of c in the space-time
continuum. Hence the inertial property of the Elastic Continuum may be viewed as a
consequence of finite value of velocity of light in the space-time continuum. In fact, even
the dynamic equilibrium equation (22), in four dimensional space-time continuum may be
derived ab-initio by considering the resultant surface forces on an infinitesimal four-
dimensional parallelepiped, as at paras 2.6 to 3.1 above. The derivative of temporal
stresses acting on ‘faces’ perpendicular to the fourth coordinateorxn axis, will
constitute the fourth term in equation (22) above, without invoking the concept of inertial
body force.

4. Electromagnetic Field Equations in the ‘Elastic Continuum’

4.1 In vacuum or ‘free space’ with characteristic permittieigy and
permeability o , the electromagnetic field equations in terms of ustigdnd B field
vectors are,

0E=0 v (23A)
OB=0 e (23B)
OxE = - 0B/ot et (230)
OxB = (1/¢). 0E/ot rrriiiiiienienen. (23D)
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The transverse electromagnetic waves in ‘free space’, characterized by zero divergence
are represented by the following standard wave equations,

0°E = (1/8) 9%E/at? e (24A)
0°B = (1/8) 9%Blat? eteveeeeeii. (24B)

Obviously, the equations (23A), (23B), and (24) above are identical in form to the
equations (21) and (18), representing solinoidal or transverse strain wave propagation
through the Elastic Continuum. This identity in ‘form’ is extended to an identity in
‘essence’ through the following correlation between displacement vectorUietst the
corresponding temporal and spatial strain components and the electromagnetic field vectors
E andB ,

E =-(1ko).(1/c)oU/ot (25A)

B= (1/).(1). OxU) e, (25B)

Through this correlation, in conjunction with equation (21), the electromagnetic field
equations (23) are also satisfied identically. That means, the electric field Veciar
essence represents the ‘temporal stress’ field in the Elastic Continuum and is always a
function of space and time coordinates. The magnetic field vagtaon the other hand
represents in essence (1/c) times the ‘torsional stress’ in the Elastic Continuum and is also
a function of space and time coordinates. Therefore, we may conclude that as a logical
conseqguence of reinterpreting space-time continuum as the ‘Elastic Continuum’ at para 1.4
above, the electromagnetic field in the so called ‘vacuum’ comes out to be a dynamic
stress-strain field in the corresponding Elastic Continuum.

4.2 From equation (25A) above, it can also be seen that Maxwell's electric
displacementD given by D = - (1/c)oU/odt, actually represents temporal strain
component in the Elastic Continuum. One most pertinent point to be noted here is that at
any given point in the continuum, the displacement vetkorand the strain tensd
provide more complete information regarding the physical state of the continuum at that
point than do the electromagnetic field vect&snd B.

4.3 The above mentioned stress-strain tensor concepts are mainly associated with
electromagnetic field vectors defined in matter free space. The unit volt/m identified with
electric field vectolE is seen to be equivalent to Joule/Coulomb.m or Newton/Coulomb
which as per the remarks at para 3.1 above, can be further reduced fo- aimit of
physical stress in the elastic continuum. However in a region of space influenced by the
presence of electric charges in the vicinity, one component of electric field &cisr
obtained as a gradient of Coulomb potentgalwhich is essentially an interaction
parameter. The Coulomb interaction potentplas will be seen later, is a consequence of
or the end result of mutual interactions among various charged particles. Thus the electric
field E obtained as a gradient af, represents an interaction force acting on mutually
interacting charged particles and is strictly not the same thing as physical stress in the
elastic continuum. But the equivalence of the practical uniisrepresenting the physical
dynamic stress and those B&f representing mutual interaction force among charged
particles, permits us to use both these concepts side by side without much distinction.
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5. Equilibrium Equations in Spherical & Cylindrical Coordinates

5.1  The general equilibrium equation (17) given in tensor notation can be easily
adapted to any particular coordinate system with metric tensor. dRewriting this
equation, we have

gllui’11+ gzzui’22+ g33ui’33 = g”uI’” = (1/8) azui/atz ................ (26)

where the terms i,h-J represent second order covariant derivative terms of displacement

vector U However, for physical applications we have to finally convert all covariant
and contravariant tensor components to their corresponding physical components. Some
of the important steps that are relevant for adaptation of the tensor equations of elasticity to
spherical polar, cylindrical or any other orthogonal coordinate system, involving physical
components of displacement vectrare given below

(@) The covariant derivative of is given by,
uiyj = au/ox + Fiaj u’ (summation ovey ... (27)
where Fijk are the Christoffel symbols of second kind.

(b) The second covariant derivative oifj is given by

PN Mg U - o u t | 28

uj = i U - i Ua (summation ovex only)  ....... (28)
(c) Physical components of strain, which must be dimensionless, are given by

S; = \/E uJ \/E (no summation over iorj)  ........... (29)

(d) The physical components of displacement vettprwhich must have the
dimensions of length [L], corresponding to the contravariant componénts u
are given by

wo=yg.d (30)

(e) The physical components of temporal strain, which again must be
dimensionless, corresponding to the time derivative of contravariant
components 'y are given by

P 1 aUXi 16ui

== =./g ——— (31
c ot G c ot (31)

S

5.2 Spherical Polar Coordinates. Let us now consider a spherical polar
coordinate system given by’ xr, ¥ =6 and X=¢ coordinates, related to
conventional Cartesian coordinates x,y, z as

X =rsi® cosp ; y =r Sifi sing ; z=rc& ... (32)
The non-zero metric tensor componenjs agd d for this coordinate system are
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a=1 g=r g=rsife ... (33A)
and ¥y=1 ; =1/ ; F=1UE@sirfe) (33B)
The corresponding Christoffel symbols of second Idrrjyg are given by
Myp=-r =T =1 ; [3e=-rsirfo
and T’y=-siBco® ;M3=T% =1 ; Mp3=r,=c08 ... (34)

The physical components, uf, U of displacement vectod are related to the
corresponding contravariant componentsuy u* through equation (30) as

d=ut U=r ? : 2= r sird u°

The physical components of spatial strain are obtained from equation (27) & (29) as

r e roye
S = aaU: .9 :%.‘?9”9 “r . 5= r.s:iLnO'?;:p _UT ....... (36A)
S?:‘?a_lf . Sg:%%_ngruTr . Sg:r.s:iLne'%li_cc;te'u(p -+++(368)
5= a;rm ; sg::—:.%—‘g ; sz',;:rls?ne.%‘i;p+°c;te.u9+”7r ..(36C)
And the corresponding physical components of temporal strain are given by
r 6 )
S{=%.aaut ; S‘f=%aait ;. S= i 6;[ ............ (36D)

5.3  The dynamic equilibrium equations (17) given in tensor notation can now be
rewritten in terms of physical components, (f, U) of displacementector U, in
spherical polar coordinates, by using equations (27) to (36) above, as follows

0%u’ L20u 2 1 2" ou 1 0’uld 2Mu° 0 1 ou*d_ 1 0%
or r Tor r r< oo 00 sm sin’@ o0y r< oo sind  dg c” ot
o0%u® 20u® iEB +cotea—ue 1 0%u 9D+ 2[Bu" cotd ou’d_ 1 d%u
o’ "t or  rsine ZH sin?0" ¢ E r008  sin@’ acpE 2" ot?
0°u® +2 ou®  u° iDa +cot6—(p 1 azu“’D_l_ 2 EBur Cotei 19

or? o PS8 12 sin?0" dg’ H" r2sine E_ - Ot2

..(37)

Equilibrium equations (37) constitute a set of three simultaneous partial differential
equations involving displacement vector componehts® @nd f. Unlike the case of
equilibrium equations (18) in conventional Cartesian coordinate system, these equations in
spherical polar coordinates may be considered ‘mutually coupled’ in the sense that none of
these equations can be solved independent of one another.

%ﬁm/a* %ﬁ//muzﬁﬂ (‘%&m}v(z/ %{1/ & 7(“%(“7@}%1%44



14

5.4 Cylindrical Coordinates. In a cylindrical coordinate system defined by x

=p, ¥ =@ and X =z, related to conventional Cartesian coordinates x,y, z as,

X =p cosp ; y =p sing ; Z=Z . (38)
The non-zero metric tensor componengs agd § for this coordinate system are

g=1 ; p=p° &=1 (39A)

and ¥y=1 ; o=1p* ; F=1 (39B)
The corresponding Christoffel symbols of second Idrrjyg are given by

My=-p ;  u==1p (40)

The physical components”,ul’,  of displacement vectdy are related to the
corresponding contravariant componentsuy u* through equation (30) as

f=u t=p U : = (41)
The physical components of spatial strain are obtained from equation (27) & (29) as
. uzn
Sg:%_up“’ ; §:%%—l:;+% ; ‘Z"S% ......... (42B)

S = %‘:: . 5= %.‘2‘2; .78 aa‘f ......... (42C)

And the corresponding physical components of temporal strain are given by

1 ouP 1 du® 1 ou?
P — : = — ; z S-—-.
‘¢ oot e c ot T oot
The dynamic equilibrium equations (17) can now be rewritten in terms of physical
components (4 u’, UY) of displacementectorU, in cylindrical coordinates as follows
0°u® 1 ou ¥ 1 4*°¢ 9°P 2 ou® 1 o%u°

2

0 pop p pl o 07 plop o

0°u® 1 9u® u 1 9*u o* 2 au® 1 0%
a—p2+5.a—p—?+?,a—(p2+?+?.a—(p—?.a—tz ........... (438)
4 z 2,,2 2.,z A4

ow, tor 1ow ouw_Lout (43C)

" "o op oo T TG

6. Strain Energy Density in the Elastic Continuum

6.1 In the deformed or stressed state of the Elastic Continuum, certain amount of
strain energy will get stored in the region under stress. The strain energy density W at
point P of the continuum, will obviously be a function of the intensity of strain at that
point. Since the strain energy stored in any arbitrarily small voldwe of the
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Continuum under stress, has to be positive, the strain energy density function W will be a
positive definite form of the strain component'§ . S~urther, this strain energy density W

or the energy of deformation per unit volume, has a physical meaning that is independent
of the choice of coordinate system and hence is an invariant. Therefore, using the
Clapeyron formula for the strain energy density for ordinary material bodies under static

equilibrium, expressed in conventional Cartesian coordinate system, the spatial strain
energy density for the Elastic Continuum may be given by,

Ws = 1/2Tij §j = Y5 (1£0) §j Sij (summation overi, j> 1t03)  ......... (44)
=Y (Lko) [ (S)° + ()7 + (S9)” + (S + () + (S)° + (S + (S9)° + (S

This formula for the strain energy density function W will also hold good in all other
orthogonal curvilinear coordinate systems, provided we use physical strain components in
place of $ as given by relation (29). Similarly, in a material body if the strain intensity
varies with time, the kinetic energy density is given by p(8/0t).( au'/dt). Therefore,

the temporal strain energy density in the Elastic Continuum will be given by

Mo Oul ou' 1 [ouOMeu O

W= 5 ot " 2e, Tk ot Otk at O ti i 1103) ...... 45
t 2 ot ot 280 c ot O ot 0 (Summa lon over L o ) ( )
= (142.S, S,

Hence, the total strain energy density W within a particular strain field of the Continuum
will be given by

W =W+ W, = (1/Z).[ S'J éj + ét. St] (summation overi, j» 1t0 3) ....... (46)

6.2 However, the above equation (46) for the strain energy density is strictly valid
only when the temporal strain components are in quadrature to the corresponding spatial
strain components. That is, when the space and time coordinates are independent
parameters in the strain functions and not interdependent or interlinked through some
special wave functions. For example, when the solutions of equilibrium equations for
displacement components ' uinvolve space and time coordinates as independent
parameters, representing standing wave oscillations, the temporal strain components will
be in quadrature to the corresponding spatial strain components. As will be seen later, this
situation is encountered most frequently in the cores of all strain bubbles, where the strain
energy density is computed by using equation (46). On the other hand ‘whemlue
functionally interlinked space and time coordinates, representing propagating phase waves,
the temporal strain components in such a case may assume phase opposition to the
corresponding spatial strain components.

6.3 Letus, as an example consider a particular solution of displacement components
u that involve a propagating phase wave function of the type(lexp+ k ct), then the
corresponding spatial strain terrds'/ox' or d,j will be in phase opposition to the

temporal strain terms (1/6)1i/6t . In'such cases we may introduce a space-time phase
parametery given by

Eﬁém/a* %ﬁﬁhwzwn oo »y & 7@%@%}?{%@
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W=KX+KCt e, (47A)
such that dy = a—qJ..dXi + v .dt (no summation overj) .......... 47)
ox! ot
For surfaces of constant phase in the strain field, representing phase wave propagation
dp =0 and from equation (47) ; %.dxj = —%—T.dt ................. (48)

The f(x).€" terms in { where f(x) is any function of space coordinates alone, will also

represent the surfaces of constant phase propagating étcmgddnate. The effective
total strain component 'J-Sfor such a case of propagating phase waves, wheredt are
interlinked throughp, will be given by,

di’ _au' ou' dt _au' ou' O %H

Sj = X = 3 + 5 ._de ——axj +_0t .D]- w, H (by using eqn. (48))
ou' 1 ou' . , ‘
= -—- — =7 o - W = £ Z
o o ot f'(x).e”™ +f(x).[k-kc/c]. €7 =f'(xX).e’"+0  .......... (49)

That is, the temporal strain component gets subtracted from the corresponding spatial strain
component. In other words, for the strain field consisting of phase waves of thé type u
f(x).e’¥ propagating along Ix coordinate direction (+ve or -ve), the effective temporal
strain for displacement componenit will be in phase opposition to the corresponding
spatial strain componen‘g.uThis in effect implies that’# type terms occurring in " will

not contribute anything in the effective total strain. Hence for computing the total strain
energy density in such cases, theYetype terms occurring in various displacement
components, may be treated as constants. The total strain energy density in phase wave

fields discussed above, will therefore depend only on amplitiide 6r more precisely, on
rms value of the amplitude of such strain waves. We shall encounter such phase wave
fields in the study of electrostatic field of charged particles.

7. SOLUTION OF EQUILIBRIUM EQUATIONS

7.1 When any region of the Elastic Continuum is subjected to some sort of
deformation, a strain field may be said to have developed in that region. This strain field
can be fully defined, including the strain energy stored in it, if the displacement Uestor
completely determined as a function of space and time coordinates over the whole region
of the Continuum under deformation. But the displacement vector componecas he
completely determined from the detailed solution of the equilibrium equations (17) or (18),
subject to the boundary conditions characterizing the given physical situation of the
deformed Continuum. Hence the detailed study of any deformed or the stressed region of
the Elastic Continuum primarily involves the detailed solution of the equilibrium equations
subject to appropriate boundary conditions. Unlike ordinary linear differential equations,
the general solutions of partial differential equations contain arbitrary functions which are
difficult to adjust so as to satisfy the given boundary conditions.
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7.2 Moreover, for different sets of boundary conditions, the given partial differential
equations will yield different unique solutions. However, most of the boundary value
problems involving linear partial differential equations, can be solved by the method of
separation of variables. It involves a solution in a particular coordinate system, which
breaks up into a product of functions each of which contains only one of the independent
coordinate parameters. In a particular coordinate system, if the boundary conditions
characterizing a given physical situation are such that the corresponding unique solution
for U consists of a product of functions, each of which contains only one of the
independent variables, the boundary conditions may be said to be ‘symmetric’ in that
coordinate system. The method of separation of variables is applicable for the solution of
equilibrium equations in a given coordinate system, if the boundary conditions are
‘symmetric’ in that coordinate system. Therefore, depending on ‘symmetry’ of the
boundary conditions, an appropriate coordinate system will be used for solution of
the equilibrium equations.

7.3 General Boundary Conditions. Let V be the total volume and be the
outer boundary surface of a particular region of the Elastic Continuum under stress. The
general boundary conditions that must be satisfied by the displacement compohents u
obtained from the solution of equilibrium equations, may be listed as

(&) The displacement componenfs noust vanish at the boundady and must remain
finite and continuous within this boundary. The ‘symmetry’ of boundary conditions
in a particular coordinate system will be governed by the shape of

(b) The strain components and the strain energy density must be finite and continuous
within the boundarg of the region under consideration. On the boundarthe
stress, and hence strain components may either vanish or be finite, periodic and
preferably symmetric with respect to the center of the region, such that at any
instant the surface integral of the stress vector @venust vanish.

(c) The total strain energy within the entire volume V must be finite and remain
constant or time invariant in the absence of any external interaction.

(d) The amplitude of displacement vector componehtsill be proportional to the
wave angular frequencyw = 2rtv or its equivalent parametew/c = 2TA = K
which is the wave number of the strain wave oscillations occurring within the entire
volume V of the Continuum under stress. This is due to the fact that whenever the
amplitude of displacement vectdy starts building up in any region of the
Continuum, it will simultaneously start ‘dissipating’ or spreading out to its
surroundings at velocity c. Therefore, higher magnitude of displacement vector
amplitude will result whenever the rate of build ugJois high in comparison to c.
However, this condition may be taken as a postulate at this stage. Since the
dimension of displacement vectbdr has to be [I\9L1T O] we shall take the
integration constant for' uas a dimensionless constant multiplied by, wehere e
is the magnitude of electron charge in Coulombs. With this we shall keep using the
elastic constant (44) in the units of NrfiCouf.
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8. STRAIN BUBBLES IN THE ELASTIC CONTINUUM.

8.1 Types of Strain Bubbles. A closed region of the Elastic Continuum with
boundary surfacg, that satisfies the above mentioned boundary conditions and contains a
finite amount of energy stored in its strain field, may be called a ‘Strain Bubble’. From
the nature of boundary conditions and the equilibrium equations, it turns out that all valid
solutions for displacement vector componentsra functions of space-time coordinates
representing various types of strain wave oscillations. That is, all ‘Strain Bubbles’ contain
a constant finite amount of total strain energy and essentially consist of various strain
wave oscillations within a specific boundary surfacef the Elastic Continuum. Three
main distinguishing features of various types of strain bubbles are,

(a) Shape and symmetry of boundary surface 2. The shape of the boundary
surfaceX where the components vanish altogether, is the most crucial boundary
condition that governs the shape and to some extent the size of the strain bubble.
If X is the surface of a right circular cylinder, the corresponding strain bubble may
be called a ‘Cylindrical Strain Bubble'. IfZ is a spherical surface, the strain
bubble may be termed ‘Spherical Strain Bubble’ and corresponding to rectangular
box shape ofZ the strain bubble may be referred as ‘Cartesian Strain Bubble’.
Therefore from the foregoing discussions about the ‘symmetry; dfis obvious
that cylindrical strain bubble solutions will be obtained from the equilibrium
equations (43) written in cylindrical coordinates. Similarly, spherical and
Cartesian strain bubble solutions will be obtained from equilibrium equations
written in spherical and Cartesian coordinate systems respectively.

(b) Size of the Boundary Surface 3. If the boundary surfaceis located at finite
distance from the center of a strain bubble, it may be termed a finite strain bubble.
On the other hand & extends to infinity, the strain bubble may be termed an
infinite strain bubble.

(c) Type or Mode of Strain Wave Oscillations.  Regarding the type of strain wave
oscillations sustained within the boundary surfacethere may be standing wave
type oscillations which can only occur along one or two coordinate directions,
within a finite ‘core’ of any strain bubble. Or there may be propagating phase wave
type oscillations along one of the coordinate directions, which can normally be
sustained within an infinite ‘field’ of any strain bubble, with a sharp decay in
amplitude. However, the total strain energy content stored even in an infinite field
must remain finite and constant. In some situations, propagating phase wave type
oscillations may be set up within a cylindrical ring type boundary suBadeng
coordinate direction, giving rise to ‘spinning wave strain bubble’.

8.2 Strain Bubble Formation. We have seen above that if a certain finite
amount of ‘energy’ is somehow transferred to a particular region of the Elastic Continuum
a ‘strain field’ will develop in that ‘deformed’ region. The strain field within this particular
region called the ‘strain bubble’, will be completely defined by the displacement vector
components 'uobtained from the solution of equilibrium equations (17) subject to the
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boundary conditions characterizing the physical situation. One of the crucial conditions
for the formation and stability of such strain bubbles is the time invariance or conservation
of the total strain energy contained in the strain field. Although the strain components will
always be functions of space & time coordinates, yet the strain energy density may or may
not be time invariant. A further condition for the stability of strain bubbles is the time
invariance of its strain energy density. Even with such constraints, a large number of
different varieties of strain bubbles can exist or coexist within the Elastic Continuum.
Further, all strain bubbles experience characteristic interactions among themselves.

8.3 Strain Bubble Interactions & Potential Energy. If the strain fields of
two strain bubbles overlap in a certain region of the Elastic Continuum, the total strain
components will be obtained by superposing the corresponding components of both the
strain bubbles referred to a common coordinate system. Strain components can be
transformed from one coordinate system to another as per the rules for transformation of
mixed tensor components. For example, if we have to transform strain tensor components

eij(X) defined in coordinate system')(xo strain tensor componentsi,-()S in coordinate
system () we first need the coordinate transformation relations of the type

y = 13X & %= P2y
From these transformation relations we can obtain the Jacobian matrices of their partial

derivatives §y/ox)] and Px'/dy']. The required strain tensor components can now be
obtained by using the relation

8y) = @YI0X).E%(0).(XPIBY) e (50)

Strain energy density and hence the total energy of the common field will be governed by
the sum of squares of the resultant strain components. Interaction eng)ggf(BEwo

such interacting strain bubbles may be defined as the difference between the total strain
energy of the two strain bubbles with superposed strain fields) (&d the sum of
separate strain field energies of two bubblesafitl E).

If S'j(1) represents the strain components of bubble 1 ah(2) Srepresents the
corresponding strain components of bubble 2, referred to the same coordinate system then
it can be easily seen from equations (46) & (51) that the interaction energy depsityliW

be given by the sum of products of the corresponding strain components as,

Win(1,2) = (1/20).Z[{ S'j(1) + S(2) }*-{ S'i(1) }*{ Si(2) ¥

= (£b). 2[ Si(1). Si(2)] (21103 & J=1104) ceoereeererraennn, (52)

Similarly the interaction energy density in the common overlapped region of more than two
strain bubbles can be easily shown to be the sum of interaction energies of each pair of
interacting strain bubbles as,

Win(1,2,3) = (1¢0). Z[ {S'i(1). Si(2}+{ S'i(1)- SGH{S'(2). SN rvvvvveen (53)
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8.4 A negative interaction energy will imply the release of a portion of the total
strain energy of the two interacting bubbles. The released energy will either transform into
another strain bubble or wave packet, or transform into kinetic energy of motion of the
interacting strain bubbles. In the extreme case of complete interaction between two strain
bubbles with identical strain wave oscillations in opposite phase,sthevill reduce to
zero and both strain bubbles may get annihilated with the released interaction energy
transforming into one or more new strain bubbles or strain wave packets. Interaction of
two or more strain bubbles with negative interaction energy may generally lead to the
formation of a more stable configuration of strain bubbles or a single ‘composite’ bubble.
When the cores of two or more interacting strain bubbles get partly overlapped the
resulting interaction may be called ‘core interaction’ which is identical to the conventional
‘strong interaction’ encountered among nucleons and other elementary particles.
However, when the centers of interacting strain bubbles are so far apart as to preclude the
core interactions, their propagating phase wave fields, if any, may still get superposed
resulting in a wave field interaction or simply the field interaction.

8.5 The interaction energy of a pair of mutually interacting strain bubbles may be
identified with the conventional potential energy of one strain bubble with respect to the
other. Thus in the case of a +ve potential energy, external work has to be done or energy
has to be supplied to the system from outside to account for the increase in the combined or
superposed strain field energys(fe On the other hand, in the case of -ve potential
energy, a portion (k) of the total strain energy of the two bubbles is released from the
overlapped/common strain field, which is either transformed into the kinetic energy of the
interacting strain bubbles or emitted out of the system as a new strain bubble or strain wave
packet. Mutual attraction of two interacting strain bubbles can be easily attributed to their
-ve interaction energy (more precisely, to the negative gradient of the interaction energy).
Similarly, mutual repulsion of two interacting strain bubbles can be attributed to their +ve
interaction energy. The field interactions, with negative interaction energy, between
different ‘pure’ or ‘composite’ strain bubbles located quite far apart, will result in mutually
‘bound’ ‘clusters’ of strain bubbles. Formation of ‘composite strain bubbles’ through core
interactions with negative interaction energy and development of mutually bound clusters
of various strain bubbles, is a most significant phenomenon in the evolution of ‘matter’
within the Elastic Continuum. The conventional material particles may be viewed at ultra-
microscopic scale as bound clusters of various composite and pure strain bubbles.

8.6 Strain Bubbles & Elementary Particles. At subatomic scale the primary
constituents of matter, namely the electrons and nuclear particles are known to occupy an
extremely small volume fraction of the order of 'iZOpercent of the physical volume of
any material body. The remaining bulk of intervening space is supposed to be empty or so
called ‘vacuum’ with some electromagnetic fields ‘existing’ in this ‘empty space’. These
‘material particles’ concentrated in such a small volume fraction of entire space are
essentially characterized by their ‘mass’, ‘charge’ and interaction properties. In the
parlance of strain bubbles existing in the Elastic Continuum, the clusters of pure and
composite strain bubbles depicting ‘elementary particles’ are essentially characterized by
their ‘strain energy content’, ‘phase wave or strain wave fields’ if any and their
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interaction properties. In principle, there could be an infinitely large number of different
types of strain bubbles occurring in the Elastic Continuum, that may be correlated with
equally large number of stable and unstable elementary particles. Therefore, it seems
obvious that for deeper insight and more fundamental understanding of ‘elementary’ and
‘composite’ material particles, we must undertake detailed studies of corresponding ‘pure’
and ‘composite’ strain bubbles occurring, forming or transforming, interacting and
decaying in the Elastic Continuum.

9. TYPICAL SOLUTIONS REPRESENTING STRAIN BUBBLES.

9.1 Cylindrical _Strain _Bubbles. A few examples of typical solutions of
equilibrium equations (43) in cylindrical coordinates, that satisfy the required boundary
conditions and represent some of the ‘pure’ strain bubbles, are given below.

(a) Stable Oscillating Core Strain Bubble. In accordance with the discussions
of boundary conditions at para 7.2(d), one most important solution of equilibrium
equations (43), that is independentg@rcoordinate, is

A= Arex. J(X). Cos(qz). Cosct) e (54A)
§= Arex. J(x). Cos(qz). Siret) L (54B)
=0 (54C)

where A is a dimensionless number, X & ¢ ¢f)”p  and the boundary surfageis
givenby 12<qz<smw2 & 0<x<a; with J(a;) =0 ora;=3.832 . Herek is

the wave number of strain wave oscillations and separately determined (from Coulomb
interaction model) to be equal to 1.73%6@° m™. Strain energy density Wor this

strain bubble, computed by using relations (42) and (46) works out to be

VVFAerKZé 2 _ a\] +‘Jf [COSZ qj+ ){K Coq C)Z*' %1 SF@ )}E

250

Since this energy density is completely independent of time, the strain bubble
represented by equations (54) is expected to be most stable and will be identified later
with the nucleon core. After integrating;Vidver the whole volume, the total strain
energy k of this strain bubble works out to be

_ AZ%%a23R(a,)

T

The above expression for B minimized for q =«/v3. This strain bubble displays
very strong radial as well axial interactions. At any poim,gX%) within the strain
field of this bubble, the displacement vectbican be ‘seen’ to be rotating at constant
angular velocity kc and with constant magnitude. This rotational motion of
displacement vectdd may be visualized as an intrinsic ‘spin’ of the strain field. The
strong interactions of this strain bubble will be sensitive to the direction of this
intrinsic spin vector relative to ‘spin’ direction of the other interacting bubble.

Eﬁém/a* %ﬁﬁhwzwn oo »y & 7@%@%}?{%@



22

(b) Unstable Oscillating Core Strain Bubbles. = Three important solutions in
this category are

u’ = As.ex. Ji(X). Cos(gz). Cox(ct) with 8= 0 & =0 ...ccc..... (56)
u®= As.ex. J(X). Cos(gz). Sirct) with =0 & U=0 ... (57)
and d=Asex. J(X). Cos(gz). Sirkct) with #=0 & =0 ............ (58)

where A, A;, A, are dimensionless numbers, xi2 { qz)l/zp and the boundary
surfaceZ is given by wW2<qgz<T12 & 0O<x<a; with J(ay) =0. The

strain energy density in these strain bubbles oscillates with time, thus rendering them
unstable, even though the total strain energy remains time invariant. These strain
bubbles are capable of strong interactions with other strain bubbles containing similar
displacement vector components Erom the detailed study of their interactions, these
strain bubbles are likely to be identified with the ‘cores’ of different mesons.

(c) Spinning Wave Strain Bubbles.  Another important solution in cylindrical
coordinates represents a strain wave ‘spinning’ or going round and round in a
cylindrical ring shaped regian.

A= Anek. Jn(X). Sin((m+1p+ kct). Cos(qz)  eeeeeennne (59A)
F= Anex. Jn(x). Cos((m+1p+ket). Cos(z) e (59B)
and G=0 for el X =K>- P)p ;

2 < qz< 12 and 0p<X<0p1  with J(ap) =0

In view of the observations of para 6.3 above regarding phase wave fields, the strain
energy density in this bubble is expected to be time invariant, thus rendering it a stable
configuration. After detailed study of their interaction characteristics, this type of strain
bubbles are likely to be used in major futuristic applications.

(d)  Spiral Wave Strain Bubbles. Another almost similar solution for”® u

(with v’ = u® = 0) consists of a strain wave spiraling along the Z-axis. This type of
strain bubble is likely to have negligible interaction with other strain bubbles and may
represent certain neutrino type particles.

d=+ Anex. Jh(x). Cos(mp+ qz+£ket) .. (60)
for m=1; x=(-)p; A2 <(MQ + qz+ KCH)< 172
and 8x<a; with A(a) =0

9.2 Spherical Strain Bubbles. In spherical polar coordinate system, that is, for
spherically symmetric boundary surfake a few important solutions of equilibrium
equations (37) for displacement componeﬁi:x;e,lm‘P are

(@) Oscillating Core Strain Bubble. One lowest order solution of the
equilibrium equations (37) is,
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u = Ae.eK.(TI/ZX)l/Z. J X).Coskct) = - Ae.eK.Gy(X). Cosket) ... (61A)
U® = Ae&K.(T72X)”. J1114X).Sin@).SinKct)= - Ae.ek.Gy(X). Sin@).Sin(Kct) ..... (61B)
and d=0;
where GX) = -(Tli2x)1/2. J/X) = [Cos(X)-Sin(X)/X]/X ;

XXr and &Ex<a with J. () =0 or a=4.4934

Strain energy density Wor this strain bubble, computed by using relations (36) and
(46) works out to be

2.2 4 %G;(X))z + Zsz(X) + Gf(X).SinZ(e)S CO§(K C) B

— Aee K Il X 0 .

e~ 2, Hp G2(x) v o 0
EL 2 x) + 1 . 1)+ - "

& G0+ (Cog(6) +1) +(G( %) sif(e)c i d@

which is not invariant with time, thus indicating instability of this strain bubble.
Further, the total strain energy of this bubble, computed by integratingv@¥ the

whole volume, works out to be E 7.1356mAe’k/s, . However, this oscillating

core can degenerate into a lower energy state consisting of a part of this oscillating core
surrounded by a radial phase wave or a strain wave field.

(b) Strain Bubble with Radial Wave Field.  For this strain bubble, let
Hi(x)= -(Td2x)l/2. J1.4(X) = [Sin(x)+Cos(x)/x]/x .

Displacement vector components for the core region are, from equation (61)
U = - Ae&X.Gy(X). Cosket); P =- Aex.Gy(X). Sin@). Sinket); and U=0
with O<x<b;, where x=xr and 4b1) =0

For the wave field region =b; let us consider another solution of equilibrium
equations (37) consisting of a combination efXpand H(x) functions as follows,

U = - Aeex {G1(x). Coskct)-Hy(X). Sinkct)} = - Ae.ex.Gy(X, 1)
=- (Aeex/x) .Cos(p-) (62A)
u? = - Ae.ex.{G1(X).SinKct)+ Hi(x). Coskct)}. Sin(0) = -Ae.ex.Hi(X,J-). Sin@)
=-(Ae&k/X). SIN@).SINW-) (62B)

w“=0; here Y- = x+ct G(Xx,P -) = [Cos(p-)-Sin(-)/X]/x ;
and  HX,y-) =[Sin(@-)+Cos(p-)/x]/x .

The strain energy density Mbr the core region is still the same as given above, but
the total strain energy for the whole bubble is now decreased to SB4TA 2K g0
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Reduction in this total energy and spread of a part of its strain energy into the radial
phase wave or strain wave field renders the bubble an inherent stability even though the
strain energy density still oscillates slightly. This strain bubble can be identified with
the elementary particle electron and the radial strain wave field is expected to represent
the electrostatic field of charge particles. The radial direction of propagation of phase
waves in this solution distinguishes between the fields of electron and positron. Due
to the considerations of para 6.3 above, the radial strain wave field of this bubble
behaves like an A.C. voltage and the effective strain components in this field are given
by the rms values of their peak magnitudes. At large distancesteltxs may be
neglected in comparison with 1/x. The interaction energy of two overlapping ‘strain
wave’ or electrostatic fields can then be computed easily to verify the Coulomb
interaction law. Since the and f components here are in quadrature to each other,
the intrinsic ‘spin’ occurs in this strain wave field also.

(c) Spinning Wave Core Strain_Bubbles. Another important class of
solutions of equilibrium equations (37) consists of spinning wave core type strain
bubbles represented by a typical solution given below,

U= - Acr&.Gy(X). SIN@)COSP).COSEREKCE). o, (63A)
f = A&k Gi(X). SIrk(0).COSEREKCY). e, (63B)
f=0;

where x=xr and &x<ag with J. a) =0 or a=4.4934

This strain bubble too is expected to be inherently stable and after studying its
interaction characteristics, may be identified with some neutrino type particle.

10 Kinetic Energy of Strain Bubbles and Quantum Mechanics.

10.1 Total strain energy stored in any strain bubble at ‘rest’ in the Elastic
Continuum, may be treated as its rest mass energy or ‘bound energy’. Apart from the
change in their total ‘bound energy’ during interaction of two strain bubbles, the magnitude
of dynamic stresses in their common region may either increase ( positive interaction
energy) or decrease (negative interaction energy) thereby disturbing the symmetric
distribution of dynamic stresses in both strain bubbles. As a result of this asymmetry
induced in dynamic stress field during interaction, equal and opposite resultant fgrces F
will start acting on both strain bubbles tending to move them in such a way as to reduce
their total bound energy. The motion of interacting strain bubbles may be visualized as the
motion of their respective ‘center of mass’ points referred to a common coordinate system.
With the motion of each strain bubble possessing non-zero rest mass, we associate the
terms kinetic energy and momentum as per their conventional definitions. As mentioned
earlier the negative interaction energy of interacting strain bubbles is the amount of energy
released from their ‘bound’ or ‘mass’ energies during interaction and gets transferred to the
kinetic energies of their motion in accordance with the laws of conservation of energy &
momentum. The exact mechanism of transfer of interaction energy to the kinetic energy is
expected to be quite a complex phenomenon and needs to be investigated separately.
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10.2 The most pertinent point here is that just as all other forms of energy exist in the
Elastic Continuum as strain energy of various strain bubbles, the kinetic energy associated
with the motion of any strain bubble also must be existing in some sort of ‘strain wave
field’ associated with the motion of that strain bubble. But we know from Quantum
Mechanics that the only waves of non-electromagnetic origin, associated with the
motion of microscopic particles, are the de Broglie waves representedl’ hyave
function. Hence, logically the strain wave field associated with the motion of a strain
bubble, must be identified with they wave field’” associated with the motion of that strain
bubble. However, as noted at para 3.3 above, the only waves of non-electromagnetic
origin that could be induced in the Elastic Continuum, are the longitudinal strain waves
that must therefore be identified with thg tvave field. Now we may visualize the
uniform motion of a strain bubble as a state in which a movingiave field’ carrying a
definite amount of total strain energy (i.e. kinetic energy), is induced or associated with the
strain bubble in motion, as a consequence of its interaction with other strain bubbles.
Therefore, change in motion of the strain bubble may be visualized as a process or
phenomenon during which the interaction energy gets transferred to the kinetic energy or
‘total strain energy of the associat¢gdwave field’ and vice versa . Since the bubble
interactions and such energy transfer processes are limited by finite velocity of light ‘c’ due
to their inherent ‘spatial spread’, classical mechanics may be considered adequate for
describing the motion of strain bubbles at low velocities. However, at higher velocities
and corresponding high energy interactions, adequate study and analysis of the associated
phenomenon can only be made by using the techniques of special theory of relativity and
Wave Mechanics. But the fundamental concepts of Wave Mechanics may have to be
thoroughly revised and refined in the light of Elastic Continuum Theory.

10.3 One most important point that needs to be critically examined at this stage is the
inertia property of mass or mass equivalent of energy. Logically, the energy density W in
a strain bubble divided by?cshould display the property of inertia during the motion of
that strain bubble. Dimensionally too, \W/may be considered equivalent to the inertial
constant for the Elastic Continuum as used in equations (15) and (17A). Therefore, it
seems quite natural to extend the equilibrium equations (17A) by repiacwgh (o +
W/c?) to obtain the equilibrium equations for a strain bubble in motion. Even though such
extended equilibrium equations turn out to be non-linear partial differential equations in
displacement vector components', yet they may be indispensable for the study of
longitudinal strain wave field associated with the motion of strain bubbles. Perhaps the
study of such extended equilibrium equations might also provide the basis or foundations
of Wave Mechanics.

11. SUMMARY AND CONCLUSION

11.1 Beginning with an axiomatic observation that our familiar space-time
continuum with the characteristic property of permittivigg and permeability Ho,
behaves as a perfect isotropic elastic continuum with elastic constgranty inertial
constantu,, we have given detailed description of displacement védtatrain tenso
and stress tensdr in this continuum. Precluding atomicity and rigid body motions in the
Elastic Continuum, we have used a simple modified form of Hooke’s law and derived
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ab-initio the dynamic equilibrium equations of elasticity. These equilibrium equations are
found to be identical with the vector wave equation of Maxwell's electromagnetic theory.
Particular solutions of these equilibrium equations, as functions of space-time coordinates
satisfying appropriate boundary and stability conditions within a bounded region, are
shown to represent various ‘strain bubbles’ and ‘strain wave fields’. The electromagnetic
field as well as all other forms of particles, are shown to exist in the Elastic Continuum as
strain wave fields or strain bubbles with definite amount of strain energy associated with
them. Mutual interactions among various strain bubbles and fields are shown to be
governed by the increase or decrease in strain intensity in their common superposed strain
field. The clusters of pure and composite strain bubbles depicting ‘material particles’ are
essentially characterized by their ‘strain energy content’, ‘phase wave or strain wave fields’
if any and their interaction properties. Therefore, it is imperative that for deeper insight
and more fundamental understanding of ‘elementary’ and ‘composite’ material particles
and the associated phenomenon at ultra microscopic level, we must undertake detailed
studies of corresponding strain bubbles occurring, transforming, moving, interacting and
decaying in the Elastic Continuum.
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