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ABSTRACT

This paper presents an entirely different, unorthodox point of view regarding the description of
physical world at the ultramicroscopic level. The old concept of elastic ether medium has been
revised to preclude its self contradictory properties.  As per the revised concept,  our familiar
space-time continuum  with  the characteristic property of permittivity  ε0  and permeability  µ0,

behaves as a perfect isotropic elastic continuum with elastic constant 1/ε0 and inertial constant µ0 .
For this ‘Elastic Continuum’ the equilibrium  equations of elasticity  are found to be   identical
with  vector wave equation  of  Maxwell’s electromagnetic theory.   Particular solutions  of  these
equilibrium equations  as functions of space-time coordinates,   satisfying appropriate boundary
and stability conditions within a bounded region, are shown to represent various  ‘strain bubbles’
and  ‘strain wave fields’.  The electromagnetic field as well as all other forms of energy and matter
are shown to exist in the Elastic Continuum as strain wave fields or strain bubbles.  Through
analysis of various strain bubbles, we can study the structure of various elementary or composite
particles like electron, proton etc.  and deduce their mutual interactions.

Keywords.    Elastic Continuum; Equilibrium equations; Strain bubbles; Elementary particles.

Ether :   ‘It should no longer be regarded as a substance but simply as the totality of those
physical quantities which are to be associated with matter free space.’

                                                                                                         Albert  Einstein
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1.  INTRODUCTION

1.1     In the 19th century Physics, light waves were regarded as undulations in an all
pervading  elastic medium called ‘ether’.  The successful explanation of diffraction and
interference phenomenon in terms of ether waves  made the notion of the ether so familiar
that its existence was taken for granted.  However, in order to accommodate the notion of
ether in the framework of  physical universe as known at that time, some self contradicting
properties had to be ascribed to this ether medium.   For supporting  the  light waves  it was
required to behave like an elastic solid,  but to enable the motion of material bodies
through it without any resistance, it had to behave like a  thin, ideal, non-viscous fluid.

1.2     Maxwell’s  development of the electromagnetic theory of light, rendered the
ether medium superfluous as the electromagnetic field was granted an independent status,
capable of independent existence and propagation in space, in accordance with Maxwell’s
equations.  It is generally believed that the notion of ether medium was discarded  as  a
consequence of the negative result of  Michelson-Morley experiment.  In fact, with the
success of  special theory of relativity,  the Michelson-Morley experiment  itself   was
rendered null and void.  Since by the end of 19th century, the phenomenon of light waves
could be explained on the basis of electromagnetic theory, there was no further necessity of
retaining the concept of ether medium. Most of the elementary particles were not known to
exist by then.  Even the phenomena of ‘matter waves’ of non-electromagnetic origin, inter-
convertibility of matter and energy, annihilation and materialization of particles were not
known at that time.  As a result the ether got discarded from  the  20th  century Physics so
thoroughly that its non-existence is now taken for granted.

1.3     However, granting of independent status to the electromagnetic field was not
sufficient by itself,  we had to ascribe the characteristic properties of  permittivity ‘ε0’  and
permeability ‘µ0’ to empty space i.e. ‘nothingness’, which again appears self contradictory.
Propagation of independent electromagnetic field  through  ‘empty’ space, at a constant
velocity ‘c’, also depended upon the magnitude of characteristic parameters ‘ε0’ and ‘µ0’
ascribed to empty space.  Therefore, logically it should make better sense to retain the
notion of an elastic ‘ether’ continuum with characteristic parameters ‘ε0’ and ‘µ0’ ascribed
to it  rather than discarding ‘ether’ and ascribing the same characteristic parameters to
‘nothingness’ or empty space.  If the characteristic parameters  ‘ε0’ and ‘µ0’ are associated
with an ‘elastic continuum’ pervading the entire space, we could view the electromagnetic
waves, with energy stored in their oscillating electric and magnetic fields, as propagating
through this continuum.  Hence the transportation of energy across physical space could be
viewed as a propagation process of specific type of waves through the elastic ether
continuum.  As such, for transportation of energy through the highly elastic ether
continuum, it may no longer be necessary to ascribe self contradicting property of ‘thin
ideal fluid’  to it.  We may simply imagine the transportation of energy as a sort of
‘propagation’ process through the elastic ether continuum.

1.4    However, as a next  most formidable step, it will be extremely difficult to
imagine the  transportation  of  ‘matter’ as a sort of ‘propagation’ process   through  the
elastic ether continuum, even though the  20th century  Physics  has shown the equivalence
and     inter-convertibility between ‘matter’ and ‘energy’.  It is one thing to imagine the
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 elementary matter particles  as  some sort of  packets of energy  entrapped  in
characteristic wave formation in the ether continuum,  but quite another  to  imagine  the
transportation of clusters of such particles (material bodies) as a sort of  ‘propagation’
process through the  ‘ether’.  Yet, this most formidable step is also the most crucial one
necessary to divest the self contradictory property of  ‘thin, ideal fluid’ from the notion of
highly elastic ether medium. Therefore it seems likely  that all the electromagnetic
phenomena, all energy entrapping and transportation processes and all  wave motion that
we usually believe to be occurring in empty space, are in fact occurring in the elastic
‘ether’ continuum with the characteristic properties of permittivity ‘ε0’ and permeability
‘µ0’ or elasticity constant 1/ε0 and inertial constant µ0.  This revised notion of ether no
longer requires it to be ‘thin, ideal fluid’ to allow free unrestricted motion of matter
through it since matter is no longer considered an independent entity separate from the
‘ether’.  Therefore, to distinguish this revised notion from the old ether medium of 19th

century,  we may simply call  it  the ‘Elastic Continuum’  with associated characteristic
parameters of elastic constant 1/ε0 and inertial constant µ0, pervading the entire space.  We
may well imagine that we are just  reinterpreting our familiar concept of space-time
continuum with associated parameters  ε0 and µ0,  as the ‘Elastic Continuum’ with the
associated parameters of elastic constant 1/ε0  and inertial constant µ0 in appropriate units.

2.  General  Equations  of  Elasticity  in  the  ‘Elastic Continuum’

2.1  Displacement Vector Field  U.     Let us consider an isotropic elastic continuum
pervading the entire space.  Initially,  let all the physical points of  this continuum   be
represented by the corresponding geometrical points of our familiar three dimensional
space referred to a suitable orthogonal coordinate system.  In a conventional Cartesian
coordinate system, let the x, y, z coordinates be represented by  x1, x2, and x3  respectively
and the corresponding unit vectors  i, j, k  be represented by  e1, e2, e3 .  If  O is the origin
of this coordinate system, then the position vector of any point  P(x1,x2,x3)  or simply P(xi)
will be given by

            OP =  e1 x
1 + e2 x

2 + e3 x
3    =  ei x

i                 ( summation over i from 1 to 3 )

With the passage of time, physical points of the continuum may undergo certain
infinitesimal displacements leading to time dependent infinitesimal deformations in the
continuum.  The infinitesimal displacement at any point P(xi) may be represented by a
displacement vector U  as a function of the coordinates of P as well as  t .

            U(xi, t) = e1 u
1(xi,t) + e2 u

2(xi,t) + e3 u
3(xi,t)  =  ej u

j(xi,t)                 ………… (1)

 If this displacement vector U is finite and ‘continuous’ within  a region of space V,  then  a
displacement vector field  U(xi ,t)  may be said to be defined over this region of space.
Specifically this displacement vector field U, represented by its components ui, may be a
periodic function or a combination of periodic functions of coordinates  xi  and  t  within
the field region V and may be zero at the boundaries  & outside this  region. Obtaining
specific solutions for the displacement vector field U(xi,t), under specified initial and
boundary conditions, will be our major objective in the study of  ‘Elastic Continuum’.
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2.2   Representation  of  Strain  S.     The displacement vector field  U(xi,t) will also
represent an infinitesimal deformation field in the Elastic Continuum.  The infinitesimal
deformation at any point P(xi,t) is best quantified  through the components of a strain
tensor S as follows.  The infinitesimal deformation or change of an arbitrary small vector
Ai(x1,x2,x3,t) at the point P(x1,x2,x3) will be given by an infinitesimal affine transformation
of the neighborhood of the point in question as[1],

                     δAi  =  (∂ui/∂xj) Aj  =  ui
,j A

j                    (summation over  j)       ……… (2)

Here the quantities ui
,j  which are the covariant derivatives of the displacement vector  field

ui with respect to the coordinate xj  represent the components of  strain tensor S such that

                     Sij  =  ui
,j                                                       ……………………………. (3)

These components obviously represent only the spatial strain components.  Since the
displacement vector components  ui , in general will be functions of  space coordinates as
well as time, the partial derivatives of  ui with respect to time  t  ( more correctly  ct ) that
is, (1/c).∂ui/∂t will constitute temporal strain components. In accordance with the notions
of special theory of relativity, time can be regarded as fourth dimension coordinate at right
angles or in quadrature to the  three space coordinates.  Similarly the temporal strain
component Sit = (1/c).∂ui/∂t  can also be regarded as being in quadrature to corresponding
spatial strain components  Si

j = ui
,j .  If  however,  the fourth dimensional coordinate is

taken as  x4 = L�ct,  where L� � � is the complex number √-1 ,  then corresponding to  the

displacement vector components  ui , the  temporal strain components can be written as

                          Si4  =  ui
,4  =  ∂ui/∂x4  =  (1/L�c).∂ui/∂t                     …………………. (4)

Thus, corresponding to three components of  displacement vector  ui(x1,x2,x3,t), there will
be nine spatial strain components and three temporal strain components, all of which will
be functions of space and time coordinates.

2.3     In contrast to the Elastic Continuum considered above where no rigid body
motion is possible, the infinitesimal deformation in elastic material media is generally split
into pure deformations and rigid body motions (translations and rotations).  For steady state
elastic equilibrium in material media, the spatial strain components  eij   representing pure
deformation and rotational components   ωij  representing rigid body motion, are given by

               eij   =  (ui
,j  + uj

,i )/2                  and                ωij   =  (ui
,j  - u

j
,i )/2

However, in the study of the Elastic Continuum where rigid body motion is not possible,
we shall not use the above mentioned  eij  representation for strain components.  As
discussed in the foregoing, we shall continue to use the total strain tensor components
given by

                            Sij  =  ui
,j                     ( i → 1 to 3   &  j → 1 to 4 )       …………   (5)

It may be quite pertinent to mention here that the displacement vector  U  and strain tensor
S  are absolute entities and are invariant under coordinate transformations.  Only the
magnitude of components  ui  and  Sij  is dependent on the reference coordinate
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 system  and transform with coordinate transformation.  Hence, the analysis of strained
state of the Elastic Continuum is equally valid in all admissible coordinate systems; even
though we generally prefer to use  a particular coordinate system for particular problems on
the overall considerations of symmetry and boundary conditions.

2.4  Representation  of  Stress T.   At any point  P(x1,x2,x3) of the Elastic
Continuum under infinitesimal deformation, the state of stress is represented by stress
tensor T, the components   τi

j  of which are defined as follows.  With point  P(x1,x2,x3)  as
the center, consider an infinitesimal plane rectangular surface area   σ1 = δx2.δx3,  with its
normal parallel to X1- axis  (Fig. 1).  This infinitesimal area will have two faces.  We shall
consider that face of  σ1, where its unit normal  ν1  points towards positive X1-axis, as  +ve
face and denote it as  σ+1 . The other face, with normal pointing towards negative X1-axis,
will be considered  -ve face and denoted as  σ-1 .  If the net force per unit area acting on
σ+1 is termed  T1, then it is obvious that the direction of T1 will not coincide with unit
normal ν1 in general, since this net force represents  a resultant of three components.  In
fact this T1 vector acting on  σ+1, can be decomposed into its components along  X1, X2

and  X3        coordinate directions  as

                              T1 =  e1τ
1
1  +  e2τ

2
1  +  e3τ

3
1    =   eiτ

i
1            ……………….    (6)

With the same point   P(x1,x2,x3)  as the center, if we now consider another plane
rectangular surface area    σ2 = δx1.δx3,  with its normal parallel to  X2-axis, the net force
per unit area  T2  acting on  σ+2  will then be given by

                       T2 =  e1τ
1
2  +  e2τ

2
2  +  e3τ

3
2    =   eiτ

i
2                   ..…..…………..   (7)

Similarly                T3 =  e1τ
1
3  +  e2τ

2
3  +  e3τ

3
3    =   eiτ

i
3                  ……………….    (8)

In general, for an infinitesimal rectangular plane area  σ+j  perpendicular to  xj coordinate
direction, the net force per unit area  Tj  acting on σ+j  will be given by

                        Tj =  e1τ
1
j  +  e2τ

2
j  +  e3τ

3
j    =   eiτ

i
j                   ……………….    (9)

Here the quantities  τi
j  are the components of the stress tensor  T  at point  P(x1,x2,x3). The

stress components  τi
j  in general  will be functions of space coordinates  (x1,x2,x3) of point

P and time t.

2.5    The stress components τi
j  are reckoned  +ve  if the corresponding  components of

force act in the directions of  increasing  xi , when the surface normal is along increasing  xj

axis.  If on the other hand the surface normal is along  -ve  xj  axis, then positive values of
components  τi

j  are associated with forces directed oppositely to the positive directions of
xi  coordinate axes.   Hence, for an  infinitesimal  volume  element  δV =  δx1.δx2.δx3

taken in the shape of a rectangular parallelepiped, with faces parallel to coordinate planes
and point P(x1,x2,x3) as its center, the stress components  τi

j  will correspond to forces in
opposite directions at the opposite ends of the parallelepiped.
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Fig.  1.  :    Representation of stress components  τi
1  on a surface element  σ+1

 Fig.  2.  : A cross section of an infinitesimal parallelepiped  under stress.
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2.6    Dynamic  Equilibrium  Equations  in the  Elastic Continuum.     Ordinary
material bodies, under stress,  will generally be in a state of static equilibrium.  However,
in the Elastic Continuum, the equilibrium in a strained state is essentially dynamic.  In a
steady state or static equilibrium,  not only the resultants of all forces  acting  on  an
infinitesimal volume element  δV  should vanish but the resultant moment of all forces
should also vanish to ensure that pure stresses and strains do not give rise to rigid body
motions and rotations.  In the static equilibrium of a material body under stress, vanishing
of resultant moments to avoid rigid body rotations  can be ensured by the symmetry of
stress and strain components  τi

j  and  Sij .  However, this condition is not applicable for the
Elastic Continuum  where there is neither static equilibrium nor rigid body rotations.  Let
us consider an infinitesimal volume element  δV = δx1.δx2.δx3  in the shape of  a
rectangular parallelepiped,  with point  P(x1,x2,x3)  as its center  and faces parallel to
coordinate  planes.  Of this volume element, let us consider two plane faces   σ+1 and  σ-1

perpendicular to  X1  axis, such that  point     P1(x
1-½δx1,x2,x3)  is the center of  σ-1  and

point  Q1(x
1+½δx1,x2,x3)  is the  center  of           σ+1  (Fig. 2).  Then,  P1Q1=δx1 ;

P1P=½δx1=PQ1  and areas of two opposite plane faces under consideration are  σ+1 =
δx2.δx3 = σ-1 .   At any instant of time t,  let us examine total forces acting on faces  σ+1

and  σ-1 due to the combined effect of shear and normal stresses  acting on these faces.
From equation (6), the total force acting on  +ve face  σ+1  is,

σ+1.T1(x
1+½δx1,x2,x3) = δx2.δx3[ e1. τ

1
1(x

1+½δx1,x2,x3) + e2. τ
2
1(x

1+½δx1,x2,x3)

                                                                                    + e3. τ
3
1(x

1+½δx1,x2,x3)]

Or    σ+1.T1(x
1+½δx1,x2,x3) = δx2.δx3[e1.{ τ

1
1(x

1-½δx1,x2,x3) + (∂τ1
1(P)/∂x1).δx1}

                                                        + e2.{ τ
2
1(x

1-½δx1,x2,x3) + (∂τ2
1(P)/∂x1).δx1}

                                                        + e3.{ τ
3
1(x

1-½δx1,x2,x3) + (∂τ3
1(P)/∂x1).δx1}]  …(10)

And the total force acting on the negative face  σ-1  is

σ-1.T1(x
1-½δx1,x2,x3) = -δx2.δx3[ e1. τ

1
1(x

1-½δx1,x2,x3) + e2. τ
2
1(x

1-½δx1,x2,x3)

                                                                                  + e3. τ
3
1(x

1-½δx1,x2,x3)]   …….. (11)

2.7    Therefore, the net resultant force acting on two opposite faces  σ+1  and  σ-1  of
the parallelepiped is obtained from equations (10) and (11) as,

δT1. δx2.δx3 = δx2.δx3[e1.(∂τ1
1(P)/∂x1).δx1 + e2.(∂τ2

1(P)/∂x1).δx1 + e3.(∂τ3
1(P)/∂x1).δx1]

Similarly considering the forces on opposite faces  σ+2, σ-2  and  σ+3, σ-3  we get the
corresponding  net resultant forces acting on the parallelepiped  as,

δT2. δx1.δx3 = δx1.δx3[e1.(∂τ1
2(P)/∂x2).δx2 + e2.(∂τ2

2(P)/∂x2).δx2 + e3.(∂τ3
2(P)/∂x2).δx2]

and
δT3. δx2.δx1 = δx2.δx1[e1.(∂τ1

3(P)/∂x3).δx3 + e2.(∂τ2
3(P)/∂x3).δx3 + e3.(∂τ3

3(P)/∂x3).δx3]

If the body force acting on this infinitesimal volume element  δV  is  F(x1,x2,x3) per unit
volume, then in terms of its components along coordinate directions,
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                   F(x1,x2,x3) = e1F
1(x1,x2,x3) + e2F

2(x1,x2,x3) + e3F
3(x1,x2,x3)      ………. (12)

For equilibrium of the infinitesimal volume element  δV,  under the action of all resultant
surface forces due to spatial stress components  and the body forces, we have

           δT1. δx2.δx3 + δT2. δx1.δx3 + δT3. δx2.δx1 + F . δx1.δx2δx3  = 0        ………. (13)

2.8    After substituting the values of  δT1, δT2, δT3  and  F  from the previous
equations into  equation  (13),  we find  that  for the overall  resultant  force to vanish,    its
components  along three coordinate directions  should vanish  independently.  Therefore,
the  coefficients  of  e1, e2  and  e3  in the above equation, after the indicated substitutions,
should vanish separately. Hence,

      ∂τ1
1(P)/∂x1  + ∂τ1

2(P)/∂x2  + ∂τ1
3(P)/∂x3  + F1(x1,x2,x3)  =  0

      ∂τ2
1(P)/∂x1  + ∂τ2

2(P)/∂x2  + ∂τ2
3(P)/∂x3  + F2(x1,x2,x3)  =  0

      ∂τ3
1(P)/∂x1  + ∂τ3

2(P)/∂x2  + ∂τ3
3(P)/∂x3  + F3(x1,x2,x3)  =  0

Or  in the tensor notation, the equilibrium equations reduce to a set of three partial
differential equations,

                      τ1
1,1  + τ1

2,2  + τ1
3,3   =    τ1

j,j   =   - F1                  ………………….   (14A)

                     τ2
1,1  + τ2

2,2  + τ2
3,3    =   τ2

j,j    =  - F2                   ………………….   (14B)

                     τ3
1,1  + τ3

2,2  + τ3
3,3    =   τ3

j,j    =  - F3                   ………………….   (14C)

Or  simply,

                     τi
1,1  +  τi

2,2  +  τi
3,3    =   τi

j,j    =  - Fi               …………………   (14)

Here the body force component  -Fi  is associated with the inertial force component
µ0.∂2ui/∂t2,   where  ∂2ui/∂t2  is the acceleration corresponding to  ui  and  µ0  is  the inertial
constant for the Elastic Continuum.  Therefore, the equilibrium equation (14) may  be
rewritten as,
                   τi

1,1  + τi
2,2  + τi

3,3   =   τi
j,j    =   µ0.∂2ui/∂t2            …………………      (15A)

And  in orthogonal curvilinear coordinates with metric tensor[2] components  gij  , the
general equilibrium equations for the Elastic Continuum take the form,

            g11τi
1,1  + g22τi

2,2  + g33τi
3,3   =   gjjτi

j,j    =   µ0.∂2ui/∂t2        ………………     (15)

3.  Stress - Strain  Relations   in the  Elastic Continuum.

3.1   Modified  Hooke’s  Law     In the generalized  Hooke’s  law  for elastic material
bodies, the effect of ‘atomicity’ or structural discreteness  gets accommodated through the
Poisson’s ratio constant.  Further,  the effect of a finite value of  Poisson’s  ratio constant
for a material body  is manifested  through  different values of   speed   of propagation of
transverse and longitudinal strain waves.  Therefore,  in contrast to  an elastic material
body,  we shall take the Poisson’s ratio constant  for the Elastic Continuum  to  be  zero  to
ensure same speed  of  propagation of  transverse  and  longitudinal  strain  waves.
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  With this, the generalized  Hooke’s  law will get modified to a simple form as,

                      τi
j  =  (1/ε0).S

i
j  =  (1/ε0).u

i
,j                    …………………….        (16)

where (1/ε0)  is the elastic constant for the Elastic Continuum, in appropriate units.  In
conventional electrical units  the dimensions of  (1/ε0)  are  Nm2/Coul2.  However, in
mechanical units the dimensions of elastic constant (1/ε0) are required to be N/m2.  Hence
to ensure the compatibility of electrical and mechanical units in the Elastic Continuum, we
must assign the dimension of  [M0L2T 0] or m2 to the electrical unit Coulomb.  One most
tentative or rough estimate for the equivalence of Coulomb is that   1 Coulomb ≈ 10 -22 m2.

3.2    Substituting this relation (16) in the dynamic equilibrium equation (15) we get
the corresponding equilibrium equation in terms of displacement components  ui  as,

   (1/ε0).[ g
11ui

,11  + g22ui
,22  + g33ui

,33 ]  =  (1/ε0). gjjui
,jj    =   µ0.∂2ui/∂t2        ………..(17A)

Or     g11ui
,11 + g22ui

,22 + g33ui
,33  =  gjjui

,jj  =  ε0µ0.∂2ui/∂t2 = (1/c2) ∂2ui/∂t2    ……….. (17)

Thus the dynamic equilibrium equation for the Elastic Continuum comes out to be the
standard vector wave equation involving displacement vector components u1, u2 and u3.
In conventional Cartesian coordinate system (x,y,z), with physical components of  the
displacement vector U given by  ux, uy and uz  equation (17) reduces to a set of three second
order partial differential equations as,

    ∂2ux/∂x2  + ∂2ux/∂y2  + ∂2ux/∂z2  =  (1/c2) ∂2ux/∂t2                         ……….(18A)

          ∂2uy/∂x2  + ∂2uy/∂y2  + ∂2uy/∂z2  =  (1/c2) ∂2uy/∂t2                         ……….(18B)

          ∂2uz/∂x2  + ∂2uz/∂y2  + ∂2uz/∂z2  =  (1/c2) ∂2uz/∂t2                         ……….(18C)

These three equations may be grouped into one equation involving vector  U  as,

         ∂2U/∂x2  + ∂2U/∂y2  + ∂2U/∂z2  =  ∇2U   = (1/c2) ∂2U/∂t2                     ………..(18)

3.3  Strain Wave Propagation  in the  Elastic Continuum.        In  the  above
equation (18), the displacement vector U may be expressed as a combination  of  two
functions; a vector function  f(x,y,z,t) and a scalar function ψ(x,y,z,t)  as,

                                              U =  ∇×f  + ∇ψ                                         ………….   (19)

Here each of the functions  f  and  ψ will satisfy equation (18)  as,

                 ∂2f/∂x2  + ∂2f/∂y2  + ∂2f/∂z2  =  ∇2f   = (1/c2) ∂2f/∂t2                  ……….(20A)

and           ∂2ψ/∂x2  + ∂2ψ/∂y2  + ∂2ψ/∂z2  =  ∇2ψ   = (1/c2) ∂2ψ/∂t2           ……….(20B)

If   ψ = 0,            then                                   ∇.U  = 0                                 ……….. (21)

The equations (18) & (20A) will therefore represent  solinoidal or transverse strain wave
propagation through the Elastic Continuum. If on the other hand  f = 0,  then  ∇×U  will
also be zero  and equations  (18) & (20B) will represent irrotational or longitudinal
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strain wave propagation through the Continuum.  In both of these cases, the spatial strain
components as functions of  space-time coordinates will be given by the terms  ∂ux/∂x,
∂ux/∂y, ∂ux/∂z, ∂uy/∂x, ∂uy/∂y, ∂uy/∂z, ∂uz/∂x, ∂uz/∂y and  ∂uz/∂z , whereas the temporal
strain components as functions of  space and time coordinates will be given by the terms
(1/c)∂ux/∂t, (1/c)∂uy/∂t  and (1/c)∂uz/∂t.

3.4   Inertial Property  of the  Elastic Continuum.      Viewing the above mentioned
spatial and temporal strain components as occurring in the four dimensional space-time
continuum, we recall from equation (4) and (5) that,

                 Si4  =  ui
,4  =  ∂ui/∂x4  =  (1/L�c).∂ui/∂t         where x4 = L�ct

and            Sij  =  ui
,j                                      ( i → 1 to 3   &  j → 1 to 4 )

With conventional Cartesian coordinate system (x,y,z), let the fourth coordinate  x4  be

represented by  η  such that  x4 = η = L�ct   and  ∂ui/∂η  =  (1/L�c).∂ui/∂t. The inertial term

in equation (18) will therefore change to   (1/c2) ∂2U/∂t2 = - ∂2U/∂η2 .  Accordingly the
dynamic equilibrium equation (18)  will transform to,

    ∂2U/∂x2  + ∂2U/∂y2  + ∂2U/∂z2  + ∂2U/∂η2 =  0                                        ……….. (22)

This shows that in the four dimensional representation of  dynamic equilibrium equations
the inertial term is no longer explicit.  In other words, the inertial constant  µ0  of  the
Elastic Continuum may be depicted in terms of its elastic constant  1/ε0  and velocity of
light  c  as  µ0 = (1/ε0).(1/c2).  As such, a finite (i.e. non-zero) value of the inertial constant
µ0  may be attributed to the finite (i.e. less than infinite) value of  c in the space-time
continuum.  Hence the inertial property of the Elastic Continuum may be viewed  as a
consequence of finite value of velocity of light in the space-time continuum.  In fact, even
the dynamic equilibrium equation (22), in four dimensional space-time continuum may be
derived  ab-initio  by considering the resultant surface forces  on an  infinitesimal  four-
dimensional parallelepiped, as at paras  2.6  to  3.1  above.  The derivative of temporal
stresses acting on ‘faces’ perpendicular to the fourth coordinate  x4  or  η  axis,  will
constitute the fourth term in equation (22) above, without invoking the concept of inertial
body force.

4.  Electromagnetic Field  Equations  in  the ‘Elastic Continuum’

4.1       In  vacuum  or  ‘free space’   with   characteristic  permittivity   ε0    and
permeability  µ0 , the electromagnetic field equations in terms of usual  E  and  B  field
vectors are,

                         ∇.E = 0                                                       …………………    (23A)

                         ∇.B = 0                                                        ………………..     (23B)

                         ∇×E  =   -  ∂B/∂t                                          ………………..     (23C)

                         ∇×B  =  (1/c2). ∂E/∂t                                  ………………….    (23D)
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The transverse electromagnetic waves in ‘free space’,  characterized by zero divergence
are represented by the following standard wave equations,

                               ∇2E   = (1/c2) ∂2E/∂t2                               ………………     (24A)

                               ∇2B   = (1/c2) ∂2B/∂t2                              ……………….     (24B)

Obviously, the equations  (23A), (23B),  and (24) above  are identical in form to the
equations (21)  and (18),  representing  solinoidal  or  transverse strain wave propagation
through the Elastic Continuum.  This identity in ‘form’ is extended to an  identity in
‘essence’ through the following  correlation  between displacement vector field  U  or  the
corresponding temporal and spatial strain components and the electromagnetic field vectors
E and B ,
                                     E = - (1/ε0).(1/c).∂U/∂t                            ……………….   (25A)

                                     B =    (1/c).(1/ε0). (∇×U)                           ……………….  (25B)

Through this correlation, in conjunction with equation (21), the electromagnetic field
equations (23) are also satisfied identically.  That means, the electric field vector  E, in
essence represents the ‘temporal stress’ field in the Elastic Continuum and is always a
function of space and time coordinates.  The magnetic field vector  B  on the other hand
represents in essence (1/c) times the  ‘torsional stress’ in the Elastic Continuum and is also
a function of space and time coordinates. Therefore, we may conclude that as a logical
consequence of reinterpreting space-time continuum as the ‘Elastic Continuum’ at para 1.4
above,  the electromagnetic field in the so called ‘vacuum’ comes out to be a  dynamic
stress-strain field  in the corresponding Elastic Continuum.

4.2     From equation (25A) above, it can also be seen that Maxwell’s  electric
displacement D given by    D = - (1/c).∂U/∂t,   actually represents temporal strain
component in the Elastic Continuum.  One most pertinent point to be noted here is  that  at
any given point in the continuum, the displacement vector U  and the strain tensor S
provide more complete information regarding the physical state of the continuum at that
point  than do the electromagnetic field vectors  E and  B.

4.3      The above mentioned  stress-strain tensor concepts are mainly associated with
electromagnetic field vectors defined in matter free space.  The unit volt/m  identified with
electric field vector E is seen to be equivalent to Joule/Coulomb.m  or  Newton/Coulomb
which as per the remarks at para 3.1 above, can be further reduced to  N/m2 - a unit of
physical stress in the elastic continuum.  However in a region of space influenced by the
presence of electric charges in the vicinity, one component of electric field vector E  is
obtained as a gradient of  Coulomb potential φ, which is essentially an interaction
parameter.  The Coulomb interaction potential  φ, as will be seen later, is a consequence of
or the end result of mutual interactions among various charged particles.  Thus the electric
field  E obtained as a gradient of  φ, represents  an interaction force acting on mutually
interacting charged particles and is strictly not the same thing as physical stress in the
elastic continuum.  But the equivalence of the practical units of E representing the physical
dynamic stress and those of E representing mutual interaction force among charged
particles, permits us to use both these concepts side by side without much distinction.
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5.  Equilibrium Equations  in  Spherical  &  Cylindrical  Coordinates

5.1    The general equilibrium equation (17) given in tensor notation can be easily
adapted to any particular coordinate system with metric tensor  gij  .  Rewriting this
equation, we have

     g11ui
,11 + g22ui

,22 + g33ui
,33  =  gjjui

,jj  =  (1/c2) ∂2ui/∂t2                  …………….  (26)

where the terms  ui
,jj  represent second order covariant derivative terms of displacement

vector  ui.  However, for physical applications  we have to finally convert  all  covariant
and  contravariant  tensor components  to their corresponding physical components.  Some
of the important steps that are relevant for adaptation of the tensor equations of elasticity to
spherical polar, cylindrical or any other orthogonal coordinate system, involving physical
components of displacement vector U, are given below

(a)    The covariant derivative of  ui  is given by,

ui
,j  =  ∂ui/∂xj  +  Γi

αj u
α                             (summation over  α)              ….. (27)

where  Γi
jk  are the Christoffel symbols of second kind.

 (b) The second covariant derivative of  ui
,j  is given by

ui
,jj  =

∂
∂
u

x
j

i

j

,
  +  Γi

αj u
α

,j  -    Γ
α

jj  u
i
,α          (summation over  α only)        ..….. (28)

(c) Physical components of strain, which must be dimensionless, are given by

S g u g
x

x
ii j

i jj
j

i

= . .,                         (no summation over  i or j)       ……….. (29)

(d) The physical components of  displacement vector  U,  which  must  have  the
dimensions of length [L],  corresponding  to  the contravariant components  ui

are given by

u g ux
ii

ii

= .                                                                         ………………(30)

(e) The  physical  components  of  temporal  strain,   which  again   must  be
dimensionless,  corresponding  to the  time derivative  of   contravariant
components  ui , are given by

S
c

u

t
g

c

u

tt
x

x

ii

i
i

i

= =
1 1∂

∂
∂
∂

                                                    ……………….(31)

5.2    Spherical  Polar  Coordinates.       Let us  now consider a  spherical  polar
coordinate system given by   x1 = r,  x2 = θ   and  x3 = φ   coordinates,  related  to
conventional Cartesian coordinates  x, y, z  as

      x = r sinθ cosφ    ;        y = r sinθ sinφ        ;        z = r cosθ             ……….. (32)

The non-zero metric tensor components  gij   and  gij   for this coordinate system are
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                 g11 = 1     ;          g22 = r2      ;            g33 = r2 sin2θ                    ………..(33A)

and           g11 = 1      ;          g22 = 1/r2   ;            g33 = 1/(r2 sin2θ)               ……….(33B)

The corresponding Christoffel symbols of second kind  Γi
jk  are given by

            Γ1
22 = - r    ;           Γ2

12 = Γ2
21 = 1/r       ;         Γ1

33 = - r sin2θ    

and      Γ2
33 = - sinθ cosθ   ; Γ3

13 = Γ3
31 = 1/r      ;    Γ3

23 = Γ3
32 = cotθ        ..……….(34)

The physical components  ur,  uθ,  uφ  of displacement vector  U  are  related  to  the
corresponding contravariant components  u1, u2, u3  through equation (30) as

       ur = u1       ;              uθ = r u2          ;           uφ = r sinθ u3                          …….(35)

The physical components of spatial strain are obtained from equation  (27) & (29) as

       S
u

rr
r

r

=
∂
∂

      ;        S
r

u u

r
r

r

θ

θ∂
∂θ

= −
1

.      ;         S
r.

u u

r
r

r

φ

φ

θ
∂
∂φ

= −
1

sin
.             …….(36A)

       S
u

rr
θ

θ∂
∂

=       ;        S
r

u u

r

r

θ
θ

θ∂
∂θ

= +
1

.      ;       S
r.

u

r
uφ

θ
θ

φ

θ
∂
∂φ

θ
= −

1

sin
.

cot
.       ….(36B)

       S
u

rr
φ

φ∂
∂

=      ;       S
r

u
θ
φ

φ∂
∂θ

=
1

.            ;    S
r.

u

r
u

u

r

r

φ
φ

φ
θ

θ
∂
∂φ

θ
= + +

1

sin
.

cot
.   …(36C)

And the corresponding physical components of temporal strain are given by

        S
c

u

tt
r

r

=
1

.
∂
∂

   ;       S
c

u

tt
θ

θ∂
∂

=
1

.           ;         S
c

u

tt
φ

φ∂
∂

=
1

.                  …………(36D)

5.3      The dynamic equilibrium equations (17) given in tensor notation can now be
rewritten in terms of physical components  (ur, uθ, uφ)  of  displacement  vector  U,  in
spherical polar coordinates, by using equations (27) to (36)  above, as follows

∂
∂
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                                                                                                     …………………..(37)

Equilibrium  equations  (37)  constitute a  set of  three  simultaneous  partial differential
equations involving displacement vector components  ur, uθ and uφ.  Unlike  the case  of
equilibrium equations (18) in conventional Cartesian coordinate system, these equations in
spherical polar coordinates may be considered ‘mutually coupled’  in the sense that none of
these equations can be solved independent of  one another.
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5.4    Cylindrical  Coordinates.        In a cylindrical coordinate system defined by   x1

= ρ,  x2 = φ  and  x3 = z,  related to conventional Cartesian coordinates  x, y, z  as,

      x = ρ cosφ    ;        y = ρ sinφ        ;        z = z                            …..……….. (38)

The non-zero metric tensor components  gij   and  gij   for this coordinate system are

                 g11 = 1     ;          g22 = ρ2      ;            g33 = 1                       ….……….. (39A)
and           g11 = 1      ;          g22 = 1/ρ2   ;            g33 = 1                       …..………..(39B)

The corresponding Christoffel symbols of second kind  Γi
jk  are given by

            Γ1
22 = - ρ    ;           Γ2

12 = Γ2
21 = 1/ρ                                        ….………….(40)

The physical components  uρ,  uφ,  uz of displacement vector U  are related  to  the
corresponding contravariant components  u1, u2, u3  through equation (30) as

       uρ = u1       ;              uφ = ρ u2          ;            uz =  u3                        …..………(41)

The physical components of spatial strain are obtained from equation  (27) & (29) as

       S
u u u u

zzρ
ρ

ρ

φ
ρ

ρ φ
ρ

ρ∂
∂ρ ρ

∂
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∂
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= = − =             ;         S        ;         S
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.             ………(42A)

       S
u u u u

zzρ
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φ
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φ ρ
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       S
u u u

z
z

z
z

z

z
z

z

ρ φ

∂
∂ρ ρ

∂
∂φ

∂
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= = =             ;         S             ;         S
1

.                ………(42C)

And the corresponding physical components of temporal strain are given by

       S
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The dynamic equilibrium equations (17)  can now be rewritten  in terms of physical
components (uρ, uφ, uz) of displacement  vector U, in cylindrical coordinates as follows
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6.  Strain  Energy  Density  in the  Elastic  Continuum

6.1    In the deformed or stressed state of the Elastic Continuum, certain amount of
strain energy will get stored in the  region  under stress.  The strain energy density  W  at
point  P of the continuum, will obviously be a function of the intensity of  strain at that
point.  Since the strain energy stored in any arbitrarily small volume δV  of the
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Continuum under stress, has to be positive, the strain energy density function W  will  be a
positive definite form of the strain components  Si

j .  Further, this strain energy density  W
or the energy of deformation per unit volume, has a physical meaning that is independent
of the choice of coordinate system and hence is an invariant.  Therefore, using the
Clapeyron formula for the strain energy density for ordinary material bodies under static
equilibrium, expressed in conventional Cartesian coordinate system, the spatial strain
energy density for the Elastic Continuum may be given by,

Ws =  ½ τi
j S

i
j  =  ½ (1/ε0) S

i
j S

i
j                       (summation over i, j → 1 to 3)        ……… (44)

      = ½ (1/ε0) [ (S
1
1)

2 + (S2
2)

2 + (S3
3)

2 + (S1
2)

2 + (S2
3)

2 + (S3
2)

2 + (S2
1)

2 + (S1
3)

2 + (S3
1)

2]    

This formula for the strain energy density function  W  will also hold good in all other
orthogonal curvilinear coordinate systems,  provided we use  physical strain components in
place of  Sij , as given by relation (29).  Similarly, in a material body  if the strain intensity
varies with time, the kinetic energy density is given by   ½ ρ(∂ui/∂t).( ∂ui/∂t).  Therefore,
the temporal strain energy density in the Elastic Continuum will be given by
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. . . .              (summation over i → 1 to 3)   …… (45)

                              = (1/2ε0).S
i
t. S

i
t

Hence, the total strain energy density W  within a particular strain field of the Continuum
will be given by

  W = Ws + Wt = (1/2ε0).[ S
i
j. S

i
j  + Si

t. S
i
t ]            (summation over i, j → 1 to 3)   .…… (46)

6.2     However, the above equation (46) for the strain energy density is strictly valid
only when the temporal strain components  are in quadrature to the corresponding spatial
strain components.   That is,  when the space and time coordinates  are  independent
parameters in the strain functions and not interdependent  or  interlinked  through  some
special wave functions.   For example, when the solutions of equilibrium equations  for
displacement components  ui  involve space and time coordinates as independent
parameters, representing standing wave oscillations, the temporal strain components will
be in quadrature to the corresponding spatial strain components.  As will be seen later, this
situation is encountered most frequently in the cores of all strain bubbles, where the strain
energy density is computed by using equation (46).   On the other hand  when ui  involve
functionally interlinked  space and time coordinates, representing propagating phase waves,
the temporal strain components in such a case may assume phase opposition to the
corresponding  spatial strain components.

6.3    Let us, as an example consider a particular solution of displacement components

ui  that involve a propagating phase wave function  of the  type  expL�(κ xj ± κ ct),  then the

corresponding spatial strain terms  ∂ui/∂xj  or  ui
,j  will be in  phase opposition  to the

temporal strain terms  (1/c).∂ui/∂t .   In such cases  we may introduce a space-time phase
parameter  ψ  given by
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                              ψ =  κ xj + κ ct                                            ………………..     (47A)

such that              d
x

dx
t

dtj
jψ

∂ψ
∂

∂ψ
∂

= +. .             (no summation over j )      .………     (47)

For surfaces of constant phase in the strain field,   representing phase wave propagation

 dψ = 0   and from equation (47) ;     
∂ψ
∂

∂ψ
∂x

dx
t

dtj
j. .= −                ……………..      (48)

The  f(x).eL�ψ terms in ui, where f(x) is any function of space coordinates alone, will also

represent the surfaces of constant phase  propagating along xj coordinate.  The effective
total strain component  Si

j  for such a case of propagating phase waves, where xj  and t are
interlinked through ψ, will be given by,
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i1
.  = f ′(x).eL�ψ  +f(x).[κ-κc/c]. eL�ψ = f ′(x).eL�ψ + 0        ……….  (49)

That is, the temporal strain component gets subtracted from the corresponding spatial strain
component.  In other words, for the strain field consisting of  phase waves of the type ui =

f(x).eL� ψ propagating along  xj  coordinate direction (+ve or -ve), the effective temporal

strain for displacement component  ui  will be in phase opposition  to  the corresponding

spatial strain component ui
j. This in effect implies that eL�ψ type terms occurring in  ui will

not contribute anything in the effective total strain.  Hence for computing the total strain

energy density in such cases, the eL� ψ type terms occurring in various displacement
components, may be treated as constants.  The total strain energy density in phase wave
fields discussed above, will therefore depend only on amplitude f′(x)  or more precisely, on
rms value of the amplitude of such strain waves.  We shall encounter such phase wave
fields in the study of electrostatic field of charged particles.

7.  SOLUTION  OF  EQUILIBRIUM  EQUATIONS

7.1      When any region of the Elastic Continuum  is subjected to  some sort  of
deformation, a strain field may be said to have developed in that region.  This strain field
can be fully defined, including the strain energy stored in it,  if the displacement vector U is
completely determined as a function of space and time coordinates  over the  whole region
of the Continuum under deformation.  But the displacement vector components  ui can be
completely determined from the detailed solution of the equilibrium equations (17) or (18),
subject to the boundary conditions characterizing the given physical situation of the
deformed Continuum.   Hence the detailed study of any deformed  or the stressed region of
the Elastic Continuum primarily involves the detailed solution of the equilibrium equations
subject to appropriate boundary conditions.  Unlike ordinary linear differential equations,
the general solutions of partial differential equations contain arbitrary functions which are
difficult to adjust so as to satisfy the given boundary conditions.
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7.2    Moreover, for different sets of boundary conditions, the given partial differential
equations will yield different unique solutions.   However,  most of the boundary value
problems involving linear partial differential equations, can be solved by the method of
separation of variables.   It involves a solution in a particular coordinate system,  which
breaks up  into  a  product of functions each of which contains only one of the  independent
coordinate parameters.  In a particular coordinate system, if the boundary conditions
characterizing a given physical situation are such that the corresponding unique solution
for  ui  consists of a product of functions, each of which contains only one of the
independent variables, the boundary conditions may be said to be ‘symmetric’ in that
coordinate system.  The method of separation of variables is applicable for the solution of
equilibrium equations in a given coordinate system, if the boundary conditions are
‘symmetric’ in that coordinate system.  Therefore,  depending on  ‘symmetry’  of  the
boundary conditions,  an appropriate         coordinate system will be used for solution of
the equilibrium equations.

7.3    General  Boundary  Conditions.    Let  V be the total volume and  Σ  be the
outer boundary surface of a particular region of the Elastic Continuum under stress.  The
general boundary conditions that must be satisfied by the displacement components  ui

obtained from the solution of equilibrium equations, may be listed as

(a)  The displacement components  ui  must vanish at the boundary  Σ  and must remain
finite and continuous within this boundary.  The ‘symmetry’ of boundary conditions
in a particular coordinate system will be governed by the shape of  Σ.

(b)  The strain components and the strain energy density must be finite and continuous
within the boundary Σ of the region under consideration.  On the boundary Σ  the
stress, and hence strain components may either vanish or be finite, periodic and
preferably symmetric with respect to the center of the region, such that at any
instant the surface integral of the  stress vector  over  Σ  must vanish.

(c)  The total strain energy within the entire volume V  must be finite and remain
constant or  time invariant in the absence of any external interaction.

(d)  The amplitude of displacement vector components ui will be proportional to the
wave angular frequency  ω = 2π ν or its equivalent parameter  ω/c = 2π/λ =  κ
which is the wave number of the strain wave oscillations occurring within the entire
volume V of the Continuum under stress.  This is due to the fact that whenever the
amplitude of displacement vector U starts building up in any region of the
Continuum, it will simultaneously start ‘dissipating’ or spreading out to its
surroundings at velocity  c.  Therefore, higher magnitude of displacement vector
amplitude will result whenever the rate of build up of U is high in comparison to  c.
However, this condition may be taken as a postulate at this stage.  Since  the
dimension of displacement vector U has to be [M0L1T 0],  we shall take  the
integration constant for ui  as a dimensionless constant multiplied by  eκ, where  e
is the magnitude of electron charge in Coulombs.  With this we shall keep using the
elastic constant (1/ε0) in the units of  Nm2/Coul2.
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8.  STRAIN BUBBLES  IN THE  ELASTIC CONTINUUM.

8.1    Types  of  Strain Bubbles.       A closed region of the Elastic Continuum with
boundary surface Σ, that satisfies the above mentioned boundary conditions and contains a
finite amount of  energy stored in its strain field, may be called  a  ‘Strain Bubble’.   From
the nature of  boundary conditions and the equilibrium equations, it turns out that all valid
solutions for displacement vector components ui are functions of space-time coordinates
representing various types of strain wave oscillations.  That is, all ‘Strain Bubbles’ contain
a  constant finite amount of total strain energy and essentially consist of various strain
wave oscillations within a specific boundary surface Σ of the Elastic Continuum.  Three
main distinguishing  features of various types of strain bubbles  are,

(a)  Shape and symmetry of  boundary surface Σ.     The shape of the boundary
surface Σ where the components ui vanish altogether, is the most crucial boundary
condition that governs the shape and to some extent the size of the  strain bubble.
If  Σ is the surface of a right circular cylinder, the corresponding strain bubble may
be called a ‘Cylindrical Strain Bubble’.  If  Σ is a spherical surface, the strain
bubble may be termed ‘Spherical Strain Bubble’ and corresponding to rectangular
box shape of  Σ the strain bubble may be referred as ‘Cartesian Strain Bubble’.
Therefore from  the foregoing discussions about the ‘symmetry’ of Σ, it is obvious
that cylindrical strain bubble solutions will be obtained from the equilibrium
equations (43)  written in cylindrical coordinates.  Similarly,  spherical  and
Cartesian strain bubble solutions will be obtained from equilibrium equations
written in spherical and Cartesian coordinate systems respectively.

(b)  Size of the Boundary Surface Σ.      If the boundary surface Σ is located at finite
distance from the center of a strain bubble, it may be termed a finite strain bubble.
On the other hand if Σ extends to infinity,  the strain bubble may be termed   an
infinite strain bubble.

(c)  Type or Mode of Strain Wave Oscillations.     Regarding the type of strain wave
oscillations sustained within the boundary surface Σ,  there may be standing wave
type oscillations which can only occur along one or two coordinate directions,
within a finite ‘core’ of any strain bubble.  Or there may be propagating phase wave
type oscillations along one of the coordinate directions, which can normally be
sustained within  an infinite ‘field’ of any strain bubble, with a sharp decay in
amplitude. However,  the total strain energy content stored  even in an infinite  field
must remain finite and constant.  In some situations, propagating phase wave type
oscillations may be set up within a cylindrical ring type boundary surface Σ along φ
coordinate direction, giving rise to ‘spinning wave strain bubble’.

8.2   Strain  Bubble  Formation.     We have seen above  that  if a certain finite
amount of ‘energy’ is somehow transferred to a particular region of the Elastic Continuum
a ‘strain field’ will develop in that ‘deformed’ region.  The strain field within this particular
region called the ‘strain bubble’, will be completely defined by the displacement vector
components ui obtained from the solution of equilibrium equations (17) subject to the
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 boundary conditions characterizing the physical situation.  One of the crucial conditions
for the formation and stability of such strain bubbles is the time invariance or conservation
of the total strain energy contained in the strain field.  Although the strain components will
always be functions of space & time coordinates, yet the strain energy density may or may
not be time invariant.  A further condition for the stability of strain bubbles is the time
invariance of its strain energy density.   Even with such constraints, a large number of
different varieties of strain bubbles can exist or coexist within the Elastic Continuum.
Further, all strain bubbles experience characteristic interactions among themselves.

8.3   Strain Bubble  Interactions  &  Potential  Energy.      If  the strain fields of
two strain bubbles overlap  in a certain region of the Elastic Continuum, the total strain
components will be obtained by superposing the corresponding components of both the
strain bubbles referred to a common coordinate system.  Strain components can be
transformed from one coordinate system to another as per the rules for transformation of
mixed tensor components.  For example, if we have to transform strain tensor components

εi
j(x)  defined in coordinate system (xi) to strain tensor components  Si

j(y) in coordinate
system (yi) we first need the coordinate transformation relations of the type

yi = f i(x1,x2,x3)              &          xi = Fi(y1,y2,y3)

From these transformation relations we can obtain the Jacobian matrices of their partial
derivatives  [∂yi/∂xj]  and  [∂xi/∂yj].  The required strain tensor components can now be
obtained by using the relation

              Sij(y) =  (∂yi/∂xα).εα
β(x).( ∂xβ/∂yj)                   ...................................(50)

Strain energy density and hence the total energy of the common field will be governed by
the sum of squares of the resultant strain components.  Interaction energy (Eint) of  two
such interacting strain bubbles may be defined as the difference between the total strain
energy of the two strain bubbles with superposed strain fields (Esup) and the sum of
separate strain field energies of  two bubbles (E1 and E2).

                            Eint = Esup - ( E1 + E2 )                             …………………………  (51)

If  Si
j(1) represents the strain components of bubble 1  and  Si

j(2)  represents   the
corresponding  strain components of bubble 2,  referred to the same coordinate system then
it can be easily seen from equations (46) & (51) that the interaction energy density Wint will
be given by the sum of products of the corresponding strain components  as,

      Wint(1,2) = (1/2ε0).Σ[{ Si
j(1) + Si

j(2) }2-{ Si
j(1) }2-{ Si

j(2) }2]

                     = (1/ε0). Σ[ Si
j(1). Si

j(2)]               (i →1 to 3 & j→1 to 4)  .........................(52)

Similarly the interaction energy density in the common overlapped region of more than two
strain bubbles can be easily shown to be the sum of interaction energies of each pair of
interacting strain bubbles as,

       Wint(1,2,3) = (1/ε0). Σ[ {Si
j(1). Si

j(2)}+{ Si
j(1). Si

j(3)}+{ Si
j(2). Si

j(3)}]  ............(53)
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8.4      A  negative interaction energy will imply the release of  a portion of the total
strain energy of the two interacting bubbles.  The released energy will either transform into
another strain bubble or wave packet, or transform into kinetic energy of motion of the
interacting strain bubbles.  In the extreme case of complete interaction between two strain
bubbles with identical strain wave oscillations in opposite phase, the Esup will reduce to
zero and both strain bubbles may get annihilated with the released interaction energy
transforming into one or more new strain bubbles or strain wave packets.  Interaction of
two or more strain bubbles with negative interaction energy may generally lead to the
formation of a more stable configuration of strain bubbles or a single ‘composite’ bubble.
When the cores of two or more interacting strain bubbles get partly overlapped the
resulting interaction may be called ‘core interaction’ which is identical to the conventional
‘strong interaction’  encountered  among  nucleons  and  other  elementary  particles.
However, when the centers of interacting strain bubbles are so far apart as to preclude the
core interactions, their propagating phase wave fields, if any, may still get superposed
resulting in a wave field interaction or simply  the field interaction.

8.5   The interaction energy of a pair of mutually interacting strain bubbles may be
identified with the conventional potential energy of one strain bubble with respect to the
other.  Thus in the case of a +ve potential energy, external work has to be done or energy
has to be supplied to the system from outside to account for the increase in the combined or
superposed strain field energy (Esup).  On the other hand, in the case of  -ve potential
energy, a portion (Eint) of  the total strain energy of the two bubbles is released from the
overlapped/common strain field, which is either transformed into the kinetic energy of the
interacting strain bubbles or emitted out of the system as a new strain bubble or strain wave
packet.  Mutual attraction of two interacting strain bubbles can be easily attributed to their
-ve interaction energy (more precisely, to the negative gradient of the interaction energy).
Similarly, mutual repulsion of two interacting strain bubbles can be attributed to their  +ve
interaction energy.   The field interactions, with negative interaction energy, between
different ‘pure’ or ‘composite’ strain bubbles located quite far apart, will result in mutually
‘bound’ ‘clusters’ of strain bubbles. Formation of  ‘composite strain bubbles’ through core
interactions with negative interaction energy and development of mutually bound clusters
of various strain bubbles, is a most significant phenomenon in the evolution of  ‘matter’
within the Elastic Continuum.  The conventional material particles may be viewed at ultra-
microscopic scale as bound clusters of various composite and pure strain bubbles.

8.6   Strain Bubbles  &  Elementary Particles.     At  subatomic scale the primary
constituents of matter, namely the electrons and nuclear particles are known to occupy an
extremely small volume fraction of the order of  10 -12 percent of the physical volume of
any material body.  The remaining bulk of intervening space is supposed to be empty or so
called ‘vacuum’ with some electromagnetic fields ‘existing’ in this ‘empty space’.  These
‘material particles’  concentrated in such a small volume fraction  of entire space  are
essentially characterized  by  their  ‘mass’, ‘charge’  and  interaction properties.  In  the
parlance of  strain bubbles existing in the Elastic Continuum, the clusters of pure and
composite strain bubbles depicting ‘elementary particles’ are essentially characterized by
their ‘strain energy content’, ‘phase wave or strain wave fields’  if any  and their
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 interaction properties.  In principle, there could be an infinitely large number of different
types of strain bubbles occurring in the Elastic Continuum, that may be correlated with
equally large number of stable and unstable elementary particles.  Therefore, it seems
obvious that for deeper insight and more fundamental understanding of  ‘elementary’ and
‘composite’ material particles, we must undertake detailed studies of corresponding ‘pure’
and ‘composite’ strain bubbles occurring, forming or transforming, interacting and
decaying in the Elastic Continuum.

9.   TYPICAL  SOLUTIONS  REPRESENTING  STRAIN  BUBBLES.

 9.1    Cylindrical   Strain   Bubbles.      A few examples of typical solutions of
equilibrium equations (43) in cylindrical coordinates, that satisfy the required boundary
conditions and represent some of the ‘pure’ strain bubbles,  are given below.

(a)    Stable Oscillating  Core  Strain Bubble.      In accordance with the discussions
of boundary conditions at para 7.2(d), one most important solution of equilibrium
equations (43), that is independent or  φ  coordinate,  is

            uρ =  A1.eκ. J1(x). Cos(qz). Cos(κct)                                  …………..  (54A)
            uφ =  A1.eκ. J1(x). Cos(qz). Sin(κct)                                   …………..  (54B)
            uz = 0                                                                               ..................   (54C)
where A1 is a dimensionless number, x = (κ2 - q2)½ρ    and the boundary surface Σ is
given by  -π/2 ≤ qz ≤ π/2   &   0 ≤ x ≤ α1  with  J1(α1) = 0  or α1=3.832 .  Here  κ  is
the wave number of strain wave oscillations and separately determined (from Coulomb
interaction model) to be equal to  1.73767×1015  m-1.  Strain energy density W1 for this
strain bubble, computed by using relations (42) and (46) works out to be

       W1= ( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }A e
q J x

J x

x
Cos qz J x Cos qz q Sin qz1

2 2 2

0

2 2
1

2 1
2

2
2

1
2 2 2 2 2

2

κ κ κ
ε

− +








+ +












'

       Since this energy density is completely independent of time, the strain bubble
represented by equations (54) is expected to be most stable and will be identified later
with the nucleon core.  After integrating W1 over the whole volume, the total strain
energy E1 of this strain bubble works out to be
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                 ..................................(55)

The above expression for E1 is minimized  for  q = κ/√3.    This strain bubble displays
very strong radial as well axial interactions.  At any point P(ρ,φ,z) within the strain
field of this bubble, the displacement vector U can be ‘seen’ to be rotating at constant
angular velocity  κc and with constant magnitude.  This rotational motion of
displacement vector U may be visualized as an intrinsic ‘spin’ of the strain field.  The
strong interactions of this strain bubble will be sensitive to the direction of  this
intrinsic spin vector relative to ‘spin’ direction of the other interacting bubble.
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(b)   Unstable  Oscillating  Core  Strain  Bubbles.      Three important solutions in
this category  are

uρ =  A2.eκ. J1(x). Cos(qz). Cos(κct)          with  uφ =  0   &   uz = 0     ................ (56)

uφ =  A3.eκ. J1(x). Cos(qz). Sin(κct)            with  uρ = 0    &  uz = 0     ................ (57)

and   uz = A4.eκ. J0(x). Cos(qz). Sin(κct)      with  uρ = 0    &  uz = 0     ............... (58)

where A2, A3, A4  are  dimensionless numbers,   x = (κ2 - q2)½ρ    and the boundary
surface  Σ  is  given  by     -π/2 ≤ qz ≤ π/2       &    0 ≤ x ≤ α1      with   J1(α1) = 0.  The
strain energy density in these strain bubbles oscillates with time, thus rendering them
unstable, even though the total strain energy remains time invariant.  These strain
bubbles are capable of  strong interactions with other strain bubbles containing similar
displacement vector components  ui.  From the detailed study of their interactions, these
strain bubbles are likely to be identified with the ‘cores’ of different mesons.

(c)    Spinning  Wave  Strain Bubbles.     Another important solution in cylindrical
coordinates  represents a strain wave ‘spinning’ or going round and round in a
cylindrical ring shaped region Σ.

           uρ =  Am.eκ. Jm(x). Sin((m+1)φ ± κct). Cos(qz)                        ………….(59A)

           uφ =  Am.eκ. Jm(x). Cos((m+1)φ ± κct). Cos(qz)                       ………….(59B)

and      uz =  0           for   m ≥ 1     ;          x = (κ2 - q2)½ρ  ;

                                 -π/2 ≤ qz ≤ π/2       and       αn ≤ x ≤ αn+1      with   Jm(αn) = 0

In view of the observations of  para  6.3 above regarding phase wave fields, the strain
energy density  in this bubble is expected to be time invariant, thus rendering it a stable
configuration.  After detailed study of their interaction characteristics, this type of strain
bubbles are likely to be used in major futuristic applications.

(d)     Spiral  Wave  Strain Bubbles.       Another almost similar solution for  uz

(with uρ = uφ = 0) consists of a strain wave spiraling  along  the Z-axis.  This type of
strain bubble is likely to have negligible interaction with other strain bubbles and may
represent certain neutrino type particles.

         uz = ± Am.eκ. Jm(x). Cos(mφ + qz ± κct)                                   ..………….(60)

for  m ≥ 1 ;       x = (κ2 - q2)½ρ ;             -π/2 ≤(mφ + qz ± κct)≤ π/2

            and       0 ≤ x ≤ α1     with        Jm(α1) = 0

9.2   Spherical  Strain  Bubbles.     In spherical polar coordinate system, that is, for
spherically symmetric boundary surface Σ,  a  few  important solutions of equilibrium
equations (37) for displacement components ur,uθ,uφ  are

(a)      Oscillating  Core  Strain  Bubble.     One lowest order solution of the
equilibrium equations (37) is,
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ur = Ae.eκ.(π/2x)½. J1+½(x).Cos(κct) = - Ae.eκ.G1(x). Cos(κct)               …….. (61A)

uφ =�Ae.eκ.(π/2x)½. J1+½(x).Sin(θ).Sin(κct)= - Ae.eκ.G1(x). Sin(θ).Sin(κct) ….. (61B)

and    uθ = 0;

 where    G1(x) = -(π/2x)½. J1+½(x) = [Cos(x)-Sin(x)/x]/x ;

               x = κ r    and   0 ≤ x ≤ a1        with   J1+½(a1) = 0   or   a1 = 4.4934

Strain energy density We for this strain bubble, computed by using relations (36) and
(46) works out to be
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which is not invariant with time, thus indicating instability of this strain bubble.
Further, the total strain energy of this bubble, computed by integrating We over the
whole volume, works out to be   Ee = 7.1356 πAe

2e2κ/ε0 .  However, this oscillating
core can degenerate into a lower energy state consisting of a part of this oscillating core
surrounded by a radial phase wave or a strain wave field.

(b)    Strain Bubble  with  Radial  Wave  Field.      For this strain bubble,  let

H1(x)= -(π/2x)½. J-1-½(x) = [Sin(x)+Cos(x)/x]/x .

 Displacement vector components for the core region are, from equation (61)

ur = - Ae.eκ.G1(x). Cos(κct);        uφ =�- Ae.eκ.G1(x). Sin(θ). Sin(κct);    and     uθ = 0

 with   0 ≤ x ≤ b1   where  x = κ r    and        J-1-½(b1) = 0

For the wave field region   x≥b1  let us consider another solution of equilibrium
equations (37) consisting of a combination of G1(x) and H1(x) functions  as follows,

ur = - Ae.eκ.{G1(x). Cos(κct)-H1(x). Sin(κct)} = - Ae.eκ.G1(x,ψ−)
    ≈ - (Ae.eκ/x) .Cos(ψ−)                                                             .....................  (62A)

uφ =�- Ae.eκ.{G1(x).Sin(κct)+ H1(x). Cos(κct)}. Sin(θ) = -Ae.eκ.H1(x,ψ−). Sin(θ)
     ≈ -(Ae.eκ/x). Sin(θ).Sin(ψ−)                                                    ...................... (62B)

 uθ = 0 ;              here     ψ − =  x+κct            G1(x,ψ −) = [Cos(ψ−)-Sin(ψ−)/x]/x ;

and      H1(x,ψ −) =[Sin(ψ−)+Cos(ψ−)/x]/x .

 The strain energy density We for the core region is still the same as given above, but
the total strain energy for the whole bubble is now decreased to  Ee = 5.04πAe

2e2κ/ε0
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Reduction in this total energy and spread of a part of its strain energy into the radial
phase wave or strain wave field renders the bubble an inherent stability even though the
strain energy density still oscillates slightly.  This strain bubble can be identified with
the elementary particle electron and the radial strain wave field is expected to represent
the electrostatic field of charge particles. The radial direction of propagation of phase
waves in this solution distinguishes between the fields of  electron and positron.  Due
to the considerations of para 6.3 above, the radial strain wave field of this bubble
behaves like an A.C. voltage and the effective strain components in this field are given
by the  rms values of their peak magnitudes.  At large distances  1/x2 terms may be
neglected in comparison with  1/x. The interaction energy of two overlapping ‘strain
wave’ or electrostatic fields can then be computed easily to verify the Coulomb
interaction law.  Since the ur and uφ components here are in quadrature to each other,
the intrinsic ‘spin’ occurs in this strain wave field also.

(c)   Spinning  Wave  Core  Strain  Bubbles.        Another  important  class  of
solutions of equilibrium equations (37) consists of spinning wave core type strain
bubbles represented by a typical solution given below,

        ur = - Ae1.eκ.G1(x). Sin(θ)Cos(θ).Cos(φ±κct).                     ........................(63A)

        uθ = Ae1.eκ.G1(x). Sin2(θ).Cos(φ±κct).                                ........................(63B)

        uφ = 0 ;

where     x = κ r    and   0 ≤ x ≤ a1        with   J1+½(a1) = 0   or   a1 = 4.4934

This strain bubble too is expected to be inherently stable and after studying its
interaction characteristics, may be identified with some neutrino type particle.

10   Kinetic Energy  of  Strain Bubbles  and  Quantum  Mechanics.

10.1     Total strain energy stored in  any strain bubble at ‘rest’ in the Elastic
Continuum, may be treated as its rest mass energy or ‘bound energy’.  Apart from the
change in their total ‘bound energy’ during interaction of two strain bubbles, the magnitude
of dynamic stresses in their common region may either increase  ( positive interaction
energy)  or   decrease (negative interaction energy) thereby disturbing the symmetric
distribution of dynamic stresses in both strain bubbles.  As a result of this asymmetry
induced in dynamic stress field during interaction, equal and opposite resultant forces Fint

will start acting on both strain bubbles tending to move them in such a way as to reduce
their total bound energy.  The motion of interacting strain bubbles may be visualized as the
motion of their respective ‘center of mass’ points referred to a common coordinate system.
With the motion of each strain bubble possessing non-zero rest mass, we associate the
terms kinetic energy and momentum as per their conventional definitions.  As mentioned
earlier the negative interaction energy of interacting strain bubbles is the amount of energy
released from their ‘bound’ or ‘mass’ energies during interaction and gets transferred to the
kinetic energies of their motion in accordance with the laws of conservation of energy &
momentum. The exact mechanism of transfer of interaction energy to the kinetic energy is
expected to be quite a complex phenomenon and needs to be investigated separately.
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10.2    The most pertinent point here is that just as all other forms of energy exist in the
Elastic Continuum as strain energy of various strain bubbles, the kinetic energy associated
with the motion of any strain bubble  also must be existing  in some sort of ‘strain wave
field’ associated with the motion of that strain bubble.  But we know from Quantum
Mechanics  that  the only waves of  non-electromagnetic  origin, associated with the
motion of  microscopic particles, are the  de Broglie waves represented by ‘ψ’ wave
function.  Hence, logically the strain wave field associated with the motion of a strain
bubble, must be identified with the ‘ψ wave field’ associated with the motion of that strain
bubble.  However, as noted at para  3.3  above, the only waves of non-electromagnetic
origin that could be induced in the Elastic Continuum, are the longitudinal strain waves
that must therefore be identified with the ‘ψ wave field’.  Now we may visualize the
uniform motion of a strain bubble as a state in which a moving ‘ψ wave field’ carrying a
definite amount of total strain energy (i.e. kinetic energy), is induced or associated with the
strain bubble in motion,  as a consequence of its interaction with other strain bubbles.
Therefore, change in motion of  the strain bubble may be visualized as a process  or
phenomenon  during which the interaction energy gets transferred to the kinetic energy or
‘total strain energy of  the associated ψ wave field’ and vice versa .  Since the bubble
interactions and such energy transfer processes are limited by finite velocity of light ‘c’ due
to their inherent ‘spatial spread’, classical mechanics may be considered adequate for
describing the motion of strain bubbles at low velocities.  However,  at higher velocities
and corresponding high energy interactions,  adequate study and analysis of the associated
phenomenon can only be made by using the techniques of special theory of  relativity  and
Wave Mechanics.  But the fundamental  concepts  of  Wave Mechanics may have to be
thoroughly revised and refined in the light of  Elastic Continuum Theory.

10.3    One most important point that needs to be critically examined at this stage is the
inertia property of  mass or mass equivalent of energy.  Logically, the energy density  W in
a strain bubble divided by  c2  should display the property of inertia during the motion of
that strain bubble.  Dimensionally  too,  W/c2  may be considered equivalent  to the inertial
constant  µ0 for the Elastic Continuum as used in equations  (15)  and  (17A). Therefore, it
seems quite natural to extend the equilibrium equations (17A)  by  replacing µ0  with  (µ0 +
W/c2)  to obtain the equilibrium equations for a strain bubble in motion. Even though such
extended equilibrium equations turn out to be non-linear partial differential equations in
displacement vector components  ui, yet they may be indispensable for the study of
longitudinal strain wave field associated with the motion of strain bubbles.  Perhaps the
study of such extended equilibrium equations might also provide the basis or foundations
of Wave Mechanics.

11.  SUMMARY  AND  CONCLUSION

11.1      Beginning with an axiomatic observation that our familiar space-time
continuum  with  the characteristic property of permittivity  ε0  and permeability  µ0,

behaves as a perfect isotropic elastic continuum with elastic constant 1/ε0 and inertial
constant µ0, we have given detailed description of displacement vector U, strain tensor S
and stress tensor T in this continuum.  Precluding  atomicity and rigid body motions in the
Elastic Continuum,  we have used a simple modified form of  Hooke’s law and derived
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ab-initio the dynamic equilibrium equations of elasticity. These equilibrium  equations  are
found to be identical with the vector wave equation of Maxwell’s electromagnetic theory.
Particular solutions of these equilibrium equations, as functions of space-time coordinates
satisfying appropriate boundary and stability conditions within a bounded region, are
shown to represent various  ‘strain bubbles’ and  ‘strain wave fields’.  The electromagnetic
field as well as all other forms of particles, are shown to exist in the Elastic Continuum as
strain wave fields or strain bubbles with definite amount of strain energy associated with
them.  Mutual interactions among various strain bubbles and fields are shown to be
governed by the increase or decrease in strain intensity in their common superposed strain
field.  The clusters of pure and composite strain bubbles depicting ‘material particles’ are
essentially characterized by their ‘strain energy content’, ‘phase wave or strain wave fields’
if any  and their  interaction properties.   Therefore, it  is imperative that for deeper insight
and more fundamental understanding of  ‘elementary’ and ‘composite’ material particles
and the associated phenomenon at ultra microscopic level, we must undertake detailed
studies of corresponding  strain bubbles occurring, transforming, moving, interacting and
decaying in the Elastic Continuum.
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