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Solutions of the Quasi-Vector Wave Equation
for Optical Waveguides in a Mapped

Infinite Domains by the Galerkin’s Method
Kai Ming Lo and E. Herbert Li,Senior Member, IEEE

Abstract— Galerkin’s method is employed to analyze the quasi-vector
wave equation for optical waveguides with arbitrary refractive index profile
in a mapped infinite domains. Results are presented for a range of waveg-
uide structures which include rectangular core, circular core, rib, and mul-
tiple quantum well. Solutions are compared favorably with exact vector
solution and numerical results using Fourier operator transform method
and beam propagation method.

I. I NTRODUCTION

THE use of Galerkin’s method in solving the scalar wave
equation of optical waveguides with arbitrary refractive in-

dex profiles was first proposed by Henry and Verbeek [1]. Same
method was used by Marcuse in solving the vector wave equa-
tion [2]. However, there is a large increase in computing time
and memory. In considering that matter, we decide to use the
quasi-vector results which include the polarization effects of op-
tical waveguides as an intermediate solution. The memory re-
quirement is the same as in solving the scalar wave equation
while the computing time is moderate.

We also employ a mapping scheme to eliminate the need of
enclosing waveguide structures within a rectangle whose size
affect the accuracy of calculations near modal cutoff [3]. Al-
ternately, the elimination can be done by using Hermite-Gauss
functions as basis functions [4] rather than sine functions which
are used in present studies. However, such elimination is only
valid for waveguides with homogeneous cladding. For inhomo-
geneous cladding waveguides like rib waveguides, the cladding
have to be truncated if Hermite-Gauss basis functions are used.
On the other hand, no truncation of cladding is needed if sine
basis functions are used in a mapped infinite domains.

In the next section, we will derive the quasi-vector wave equa-
tion and establish the details of solving this equation using the
Galerkin’s method. In Section III, we compare some of our
numerical results with those of other authors. The summary
section anticipates the range of potential applications of present
method.

II. M ATHEMATICAL FORMULATION

A. Quasi-vector wave equation

Maxwell’s equations are employed to calculate the spa-
tial variation of electric fieldE(x, y, z) and magnetic field
H(x, y, z) of an optical waveguide. The dielectric constant
ε(x, y, z) of a waveguide is related to its refractive index
n(x, y, z) by ε = n2ε0, whereε0 is the free space electric per-
mittivity. The magnetic permeability is taken to have its free
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Fig. 1. An optical structure in (a)x-y plane and (b) transformedu-v domains.
A rib waveguide is used as an example.

space value (µ = µ0) everywhere. The field vectors are taken
to depend on time through the implicit factorexp (−iωt). Un-
der these conditions and regions are free of charges and current,
Maxwell’s equations are written as

∇×E = i(µ0/ε0)1/2kH , (1)

∇×H = −i(ε0/µ0)1/2kn2E , (2)

wherek = 2π/λ is the free space wavenumber, andλ is the
wavelength of light in free space.

If we eliminate the magnetic field from (1) and (2) by∇×(1)
and substitute∇×H from (2) into, we obtain the vector wave
equation

(∇2 + k2n2)E = −∇(E·∇ lnn2) (3)

by using two vector identities, viz.

∇×(∇×E) = ∇(∇·E) − ∇2E , (4)

∇·(n2E) = n2∇·E + E·∇n2 = 0 . (5)

The ∇2 in (3) is a vector operator. However, if the field
vectors have components referred to fixed cartesian directions
x, y and z as indicated in Fig. 1(a), the vector operator∇2

is replaced by the scalar Laplacian∇2. Moreover, if an opti-
cal waveguide with refractive index profile that does not change
with distancez along the waveguide, i.e.n = n(x, y). The
electric field of the waveguide can be written in separable form
as

E(x, y, z) = e(x, y) exp(iβz) (6)

whereβ is the propagation constant. Thus if we set

e = exx̂ + eyŷ + ezẑ (7)
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in (6) wherex̂, ŷ and ẑ are unit vector parallel to the axes in
Fig. 1(a) and using

∇2 = ∇2 =
∂2

∂x2
+

∂2

∂y2
− β2 , (8)

(3) is reduced to two equations coupling the field components
ex andey as follows:

∂2ex

∂x2
+

∂2ex

∂y2
+ (k2n2 − β2)ex

+ 2
∂

∂x

(
ex

∂ lnn

∂x
+ ey

∂ lnn

∂y

)
= 0 , (9)

∂2ey

∂x2
+

∂2ey

∂y2
+ (k2n2 − β2)ey

+ 2
∂

∂y

(
ex

∂ lnn

∂x
+ ey

∂ lnn

∂y

)
= 0 . (10)

If the coupling terms in (9) and (10) are neglected, we have

∂2ex

∂x2
+

∂2ex

∂y2
+ (k2n2 − β2)ex

+ 2
∂

∂x

(
ex

∂ lnn

∂x

)
= 0 , (11)

∂2ey

∂x2
+

∂2ey

∂y2
+ (k2n2 − β2)ey

+ 2
∂

∂y

(
ey

∂ lnn

∂y

)
= 0 . (12)

These are in fact the scalar wave equation with polarization cor-
rection which are referred here as the quasi-TE wave equation
and the quasi-TM wave equation.

The assumption used in (11) and (12), i.e.ex � ey in (11)
and ey � ey in (12), is accurate for three classes of waveg-
uides [5]: (i) weakly guiding waveguides [6] with arbitrary
shape and small difference in refractive index between core and
cladding or substrate, (ii) rectangular core waveguides with ar-
bitrary core-cladding refractive index operated in the far-from-
cutoff region, (iii) arbitrary refractive index profile waveguides
with an elongated or slab like cross section. Numerical results
for these three classes of waveguides will be given in Section
III.

B. Galerkin’s method

Since the formulation of the quasi-vector wave equation (11)
and (12) are the same, the quasi-TE wave equation (11) will be
solved below using Galerkin’s method and the procedure devel-
oped is applicable for solving the quasi-TM wave equation (12).

To eliminate the need of enclosing waveguide within a rect-
angle, the wholex-y plane is mapped onto a unit square inu-v
space as shown in Fig. 1 using the transformation functions:

x = αx tan
[
π

(
u − 1

2

)]
, (13)

y = αy tan
[
π

(
v − 1

2

)]
, (14)

whereαx andαy are scaling parameters in thex andy direc-
tions respectively. The same change of variables is applied to

the quasi-TE wave equation (11) and in theu-v space it is writ-
ten as

(
du

dx

)2
∂2ex

∂u2
+

d2u

dx2

∂ex

∂u
+

(
dv

dy

)2
∂2ex

∂v2
+

d2v

dy2

∂ex

∂v

+ (n2k2 − β2)ex + 2
(

du

dx

)2
∂

∂u

(
ex

∂ lnn

∂u

)

+ 2
d2u

dx2
ex

∂ lnn

∂u
= 0 (15)

whereex = ex(u, v), n = n(u, v).
The unknown electric field componentex is expanded as

ex =
NmNn∑

i

aiφi(u, v) =
Nm∑

mi=1

Nn∑
ni=1

ami,niφi(u, v) (16)

where integer quotient functiondiv and remainder on division
function mod are employed to relate the index,i, and spatial
frequencies,mi andni, as

mi = (i − 1) div Nn + 1 , (17)

ni = (i − 1) mod Nn + 1 . (18)

The expansion functionsφi(u, v) are chosen as the complete set
of orthonormal sine basis functions as

φi(u, v) = 2 sin(miπu) sin(niπv) . (19)

The field expansion (16) is substituted into (15), it is then multi-
plied byφj(u, v) and integrated over the unit square in Fig. 1(b)
and yield the result:

NmNn∑
i

(Sj,i + Pj,i − W 2δj,i)ai = 0 (20)

where
Sj,i = V 2Aj,i + Bj,i (21)

correspond to the scalar wave equation with

Aj,i =
∫ 1

u=0

∫ 1

v=0

g(u, v)φi(u, v)φj(u, v)dudv , (22)

Bj,i = ρ2(I1 + I2 + I3 + I4) , (23)

and

g(u, v) =
n2(u, v) − n2

cl

n2
co − n2

cl

. (24)

Here,δj,i is a delta function and defined as

δj,i =
{

1 if j = i ,
0 if j 6= i .

(25)

The modal parametersV andW are defined as

V = kρ(n2
co − n2

cl)
1/2 , (26)

W = ρ(β2 − k2n2
cl)

1/2 . (27)

The core and cladding refractive index,nco andncl, and nor-
malization parameterρ are chosen to be representative of the
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Fig. 2. Structure of a rectangular core optical waveguide.

refractive index profile of the optical waveguide under consider-
ation. Moreover,

Pj,i = ρ2(I5 + I6) (28)

correspond to polarization correction. The six integralsI1 to I6

is given in the Appendix as (29) to (34) and can be evaluated
analytically in terms of sum of trigonometric functions if the
refractive index profilen(x, y) is approximated by rectangules
of uniform refractive index.

The double summation series in (20) can be written as a ma-
trix eigenvalue equation,Ma = W 2a, by defining a vector
a consisting of the elementsai and a matrixM composed of
the coefficientsSj,i andPj,i. LAPACK subroutines are used to
solve this equation [7], the propagation constants of the bound
modes of a waveguide are calculated from the real, positive
eigenvaluesW 2 and the corresponding modal field is calculated
via the Fourier coefficients of associated eigenvectorsa.

III. N UMERICAL RESULTS

A. Rectangular core optical waveguide

Figure 2 shows a optical waveguide with a rectangular core
of width 2a and height2b. The core and cladding refractive in-
dex arenco = n1 = 1.5 andncl = n2 = 1.45. λ = 1.15µm
anda/b = 2. Table I gives the normalized propagation con-
stantsP 2 = [(β/k)2 − n2

cl]/(n2
co − n2

cl) for the fundamen-
tal quasi-vector modes as a function of2Vb/π where Vb =
kb(n2

1 − n2
2)

1/2. The bound modes are denoted asEx
mn mode

for the quasi-TE mode andEy
mn mode for the quasi-TM mode

respectively. Them andn are both positive integers meaning
m − 1 andn − 1 field zeros in thex andy directions of the
modal fields respectively. The calculated results are in excellent
agreement with Fourier operator transform (F-OPT) method [8]
except at2Vb/π equal 0.4 where present method is more accu-
rate as shown by the convergence ofP 2. The modal fields at
2Vb/π = 0.5 is shown Fig. 3. As can be clearly seen the present
method is able to reproduce the discontinuity in the field at the
core-cladding boundaries, vertical side walls for quasi-TE mode
and horizontal side walls for quasi-TM mode.

Results ofP 2 for the first six bound modes of another rect-
angular core waveguide with high refractive index contrast,
n1 = 2, n2 = 1, is shown in Table II. The associated field of
these modes are shown in Fig. 4. Here,Vb = 3 anda/b = 5/3.

TABLE I

P 2 AS A FUNCTION OF2Vb/π FOR THE FUNDAMENTAL QUASI-VECTOR

MODES OF THE RECTANGULAR CORE OPTICAL WAVEGUIDE. αx = a,

αy = b, ρ =
√

ab, AND Ne
m = Ne

n = N . THE PARAMETERSNe
m AND Ne

n

INDICATE THE NUMBER OF EVEN SPATIAL FREQUENCY COMPONENTS USED

IN THE x AND y DIRECTIONS

2Vb/π N F-OPT
10 15 20 25

Ex
11 mode

0.40 0.0346 0.0343 0.0337 0.0335 0.0400
0.45 0.0679 0.0664 0.0661 0.0661 0.0670
0.50 0.1077 0.1069 0.1069 0.1069 0.1068
0.55 0.1523 0.1522 0.1523 0.1522 0.1520
0.60 0.1991 0.1993 0.1992 0.1992 0.1990
0.65 0.2458 0.2459 0.2459 0.2458 0.2456
0.70 0.2909 0.2910 0.2910 0.2909 0.2907
0.75 0.3338 0.3339 0.3338 0.3338 0.3336
0.80 0.3741 0.3742 0.3741 0.3741 0.3739
0.85 0.4117 0.4118 0.4117 0.4117 0.4116
0.90 0.4467 0.4467 0.4467 0.4467 0.4465
0.95 0.4791 0.4791 0.4791 0.4791 0.4789
1.00 0.5090 0.5091 0.5091 0.5091 0.5089

Ey
11 mode

0.40 0.0274 0.0315 0.0320 0.0307 0.0483
0.45 0.0603 0.0617 0.0614 0.0614 0.0612
0.50 0.0999 0.1004 0.1000 0.1005 0.1003
0.55 0.1444 0.1443 0.1440 0.1444 0.1441
0.60 0.1908 0.1903 0.1901 0.1902 0.1900
0.65 0.2370 0.2363 0.2361 0.2361 0.2359
0.70 0.2817 0.2810 0.2809 0.2808 0.2805
0.75 0.3243 0.3237 0.3236 0.3235 0.3232
0.80 0.3645 0.3640 0.3639 0.3638 0.3635
0.85 0.4021 0.4018 0.4017 0.4016 0.4013
0.90 0.4372 0.4370 0.4369 0.4368 0.4365
0.95 0.4698 0.4697 0.4696 0.4695 0.4692
1.00 0.5001 0.5000 0.5000 0.4998 0.4996

(a) (b)

Fig. 3. Field pattern of (a)ex of Ex
11 mode and (b)ey of Ey

11 mode at2Vb/π =
0.5 for N = 25. The core region is shaded. Contour lines are at 10%
intervals of peak amplitude.
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TABLE II

P 2 OF THE FIRST SIX BOUND MODES OF THE HIGH REFRACTIVE INDEX

CONTRAST RECTANGULAR CORE WAVEGUIDE. Ne
m = Ne

n = N FOR

MODES (a), (b) AND (f ); No
m = Ne

n = N FOR MODES(c) AND (d); AND

Ne
m = No

n = N FOR MODE(e). THE PARAMETERSNe,o
m AND Ne,o

n

INDICATE THE NUMBER OF EVEN AND ODD SPATIAL FREQUENCY

COMPONENTS USED IN THEx AND y DIRECTIONS RESPECTIVELY

N Mode
(a) (b) (c) (d) (e) (f)
Ex

11 Ey
11 Ey

21 Ex
21 Ex

12 Ey
31

10 0.7591 0.7007 0.5041 0.5000 0.3390 0.1979
15 0.7585 0.6968 0.5008 0.4991 0.3386 0.1961
20 0.7584 0.6972 0.5012 0.4961 0.3386 0.1965
25 0.7580 0.6953 0.4995 0.4962 0.3382 0.1950
30 0.7580 0.6960 0.5001 0.4947 0.3383 0.1955

H-G[4] 0.7577 0.6949 0.4988 0.4985 0.3375 0.1942

TABLE III

P 2 AS A FUNCTION OF FIBER PARAMETERV = kρ(n2
1 − n2

2)
1/2 FOR THE

FUNDAMENTAL QUASI-VECTOR MODES OF THE CIRCULAR CORE OPTICAL

FIBER. αx = αy = ρ AND Ne
m = Ne

n = N

V Mode
Ex

11 Ey
11 HE11

N N
10 15 20 25 =25

0.8 — 0.0043 0.0049 0.0046 0.0047 0.0043
1.0 0.0339 0.0330 0.0325 0.0325 0.0325 0.0322
1.2 0.0920 0.0918 0.0918 0.0918 0.0918 0.0911
1.4 0.1696 0.1692 0.1691 0.1690 0.1689 0.1681
1.6 0.2510 0.2506 0.2505 0.2504 0.2503 0.2494
1.8 0.3286 0.3283 0.3281 0.3280 0.3280 0.3270
2.0 0.3991 0.3988 0.3987 0.3986 0.3985 0.3976
2.2 0.4615 0.4613 0.4612 0.4611 0.4610 0.4603
2.4 0.5163 0.5161 0.5160 0.5159 0.5158 0.5151
2.6 0.5640 0.5639 0.5638 0.5637 0.5636 0.5630
2.8 0.6056 0.6055 0.6054 0.6054 0.6053 0.6048
3.0 0.6420 0.6419 0.6418 0.6418 0.6417 0.6412

Results ofP 2 are in good agreement with results using Hermite-
Gauss (H-G) basis functions [4]. This is expected as present
method with sine basis functions in the transformed domains
have field zero at infinity as Hermite-Gauss basis functions does.

B. Step-index core optical fiber

The next structure to be studied is a circular core optical fiber
(Fig. 5) with nco = n1 = 1.6 and ncl = n2 = 1.5. The
first quadrant of the circular core is resembled by 25 unifrom
rectangles and the rest is found by symmetry.P 2 of the two
fundamental quasi-vector modes are almost the same as listed
in Table III. Theoretically, with infinite number of rectangles,
the fundamental quasi-vector modes are degenerated. Results of
present quasi-vector solutions are compared with the exact vec-
tor solutions [6],HE11mode, and they are in good agreement.

The field patterns of the quasi-vector modes atV = 1 is

(a) (b)

(c) (d)

(f)(e)

Fig. 4. (a)-(f) Field patterns,ex for quasi-TE mode andey for quasi-TM mode,
of the first six bound modes of the high contrast rectangular core waveguide
for N = 30. Designation of the modes are given in Table II.

x

y

ρ

0

n2

n1

Fig. 5. Structure of a circular core optical fiber.
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(a) (b)

Fig. 6. Field patterns of (a)ex of Ex
11 mode and (b)ey of Ey

11 mode of the
circular core optical fiber atV = 1 for N = 25.

given in Fig. 6. Discontinuity of field is clearly seen at the
core-cladding boundary. The field componentex of Ex

11 mode
along thex axis as a function of normalized distanceX = x/ρ
is shown in Fig. 7(a). As can be seen from the figure, the
quasi-vector modal fields are agree with the exact vector solu-
tion except near the core-cladding boundary which is detailed
in Fig. 7(b). From this figure,ex of quasi-TE mode near the
boundary is likely to be an average of the exact vector solution
and it is converge moderately to the exact vector solution asN
is increased.

C. Rib optical waveguide

A rib optical waveguide as shown in Fig. 8 is considered in
this section. Here,nco = n1 = 3.44, ncl = n2 = 3.4, n3 = 1,
t = 1µm, w = 3µm andλ = 1.15µm. Table IV showsP 2

for the fundamental quasi-vector modes as a function ofd. By
comparison with results from F-OPT method [8] and beam prop-
agation method (BPM) [9], the convergence of present solutions
is better forEx

11 mode thanEy
11 mode. This could be explained

by the fact that higher spatial frequency components are needed
to model the large discontinuity of field componentey of Ey

11

mode at the core-air interfaces perpendicular toy axis of Fig. 8
which are clearly seen form the field patterns at Fig. 9.

D. IID MQW waveguide

The last example is to apply present method to multiple quan-
tum well (MQW) waveguide fabricated by impurity induced dis-
ordering (IID) technique [10]. The IID technique provides an
efficient way to realize waveguiding structure in optoelectronic
integrated circuits [11]. The structure to be modeled consists of
Al0.3Ga0.7As/GaAs QWs and thickAl0.3Ga0.7As buffer layer
grown on a GaAs substrate; the schematic of the structure is
shown in Fig. 10. In our model,Ga+ ion is implanted with a
projected range located around the center of the QW layers. The
implantation process produces a modification of the QW mate-
rial which in turn leads to differences in refractive index in dif-
ferent region [10]. The implanted region has a lower refractive
index than the non-implanted region, hence produce lateral con-
finement of light. Figure 11 shows a IID MQW refractive index
profile which is represented by rectangles of constant refractive
index. The profile was calculated for2a = 3µm, 2b = 0.6µm at
λ = 0.901085µm. The maximum and minimum refractive in-
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Fig. 7. (a) Electric field componentex of quasi-TE mode as a function of
normalized distanceX for N = 10, 15, 20 and 25. The electric field com-
ponentex of the exact vector (vt) solution is given in solid line. (b) Details
of (a) nearX = 1.
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0
n

n
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Fig. 8. Structure of a rib optical waveguide.
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TABLE IV

P 2 AS A FUNCTION OFd FOR FUNDAMENTAL QUASI-VECTOR MODES OF

THE RIB OPTICAL WAVEGUIDE. αx = w/2, αy = t/2, ρ =
√

αxαy ,

Ne
m = N AND Nn = 2N

d N F-OPT BPM
10 20 30

Ex
11 mode

0.0 0.2879 0.2961 0.2971 0.2992 0.3001
0.1 0.2911 0.2989 0.2997 0.3018 0.3026
0.2 0.2957 0.3029 0.3036 0.3055 0.3066
0.3 0.3019 0.3084 0.3091 0.3108 0.3116
0.4 0.3101 0.3158 0.3163 0.3178 0.3188
0.5 0.3202 0.3251 0.3255 0.3267 0.3269
0.6 0.3324 0.3364 0.3368 0.3373 0.3380
0.7 0.3468 0.3500 0.3503 0.3509 0.3504
0.8 0.3639 0.3666 0.3667 0.3668 0.3655
0.9 0.3859 0.3880 0.3886 0.3880 0.3871
1.0 0.4241 0.4268 0.4271 0.4273 0.4273

Ey
11 mode

0.0 0.2495 0.2559 0.2567 0.2652 0.2664
0.1 0.2523 0.2581 0.2588 0.2678 0.2685
0.2 0.2561 0.2614 0.2619 0.2703 0.2720
0.3 0.2615 0.2659 0.2664 0.2746 0.2762
0.4 0.2682 0.2719 0.2723 0.2804 0.2823
0.5 0.2769 0.2798 0.2800 0.2880 0.2892
0.6 0.2877 0.2896 0.2898 0.2976 0.2990
0.7 0.3002 0.3016 0.3017 0.3095 0.3101
0.8 0.3161 0.3166 0.3166 0.3244 0.3237
0.9 0.3367 0.3370 0.3367 0.3446 0.3441
1.0 0.3765 0.3769 0.3769 0.3851 0.3854

(a) (b)

(d)(c)

(e) (f)

Fig. 9. Field patterns,ex of Ex
11 mode (left side) andey of Ey

11 mode (right
side), of the rib waveguide forN = 30 at (a)-(b)d = 0µm, (c)-(d) d =
0.5µm, and (e)-(f)d = 1µm.

2b

air

IID MQW

AlGaAs
buffer

mask

2a

x

y

0

Fig. 10. Schematic of an IID MQW waveguide.
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Fig. 11. Refractive index profile (half symmetry) of the IID MQW waveguide.

dex are assigned asnco(= 3.52695) andncl(= 3.46782) respec-
tively. Other parameters are refractive index ofAl0.3Ga0.7As
buffer layer and air cover which is equal to 3.35447 and 1 re-
spectively.P 2 of the fundamental quasi-vector modes are listed
in Table V. The associated modal fields are shown in Fig. 12.
Results show that present method is applicable for finding the
waveguiding properties of an optical waveguide with a diffused
refractive index profile.

IV. CONCLUSION

A numerical method for solving the guided quasi-vector
modes problem of optical waveguide with aribtrary refractive in-
dex in a mapped infinite domains is described. Solving the prob-
lem with the Galerkin’s method, the mode field is expanded into
a two dimensional Fourier sine series and resulting in a matrix
eigenvalue equation which is solved using the LAPACK subrou-
tines.
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TABLE V

P 2 FOR THE FUNDAMENTAL QUASI-VECTOR MODES OF THEIID MQW

WAVEGUIDE. αx = a, αy = b, AND ρ =
√

ab

Ne
m Nn Mode

Ex
11 Ey

11

10 20 0.1352 0.0110
15 30 0.1375 0.0111
20 40 0.1380 0.0096
25 50 0.1382 0.0094

(a)

(b)

Fig. 12. Field patterns of (a)ex of Ex
11 mode and (b)ey of Ey

11 mode of the
IID MQW waveguide forN = 25. The shaded region is the MQW under
the mask.

The accuracy of present method is compared with the Fourier
operator transform method and the beam propagation method
for a rectangular core waveguide and a rib waveguide. More-
over, solutions for step-index circular core optical fiber are com-
pared with the exact vector solution. Results shown that the
present quasi-vector solutions provide a good approximation of
the exact solution.

The application of present method to a waveguide with dif-
fused refractive index profile is demonstrated using a multiple
quantum well waveguide fabricated by impurity induced disor-
dering technique. The normalized propagation constants of the
fundamental quasi-vector modes converge moderately as we in-
crease the number of spatial frequencies.

APPENDIX

The integralsI1 to I6 in (23) and (28) are given as follows:

I1 = −m2
i π

2

∫ 1

u=0

∫ 1

v=0

(
du

dx

)2

φi(u, v)φj(u, v)dudv

= − m2
i

2α2
x

{
3δmi,mj

4
− δmi,mj−2

2
− δmi,mj+2

2

+
δmi,2−mj

2
+

δmi,mj−4

8
+

δmi,mj+4

8

− δmi,4−mj

8

}
δni,nj , (29)

I2 = miπ

∫ 1

u=0

∫ 1

v=0

(
d2u

dx2

)
1

tan(miπu)
×φi(u, v)φj(u, v)dudv

=
mi

α2
x

{
δmi,2−mj

4
+

δmi,mj−2

4
− δmi,mj+2

4

− δmi,4−mj

8
− δmi,mj−4

8
+

δmi,mj+4

8

}
δni,nj ,

(30)

I3 = −n2
i π

2

∫ 1

u=0

∫ 1

v=0

(
dv

dy

)2

φi(u, v)φj(u, v)dudv

= − n2
i

2α2
y

{
3δni,nj

4
− δni,nj−2

2
− δni,nj+2

2

+
δni,2−nj

2
+

δni,nj−4

8
+

δni,nj+4

8

− δni,4−nj

8

}
δmi,mj , (31)

I4 = niπ

∫ 1

u=0

∫ 1

v=0

(
d2v

dy2

)
1

tan(niπv)
×φi(u, v)φj(u, v)dudv

=
ni

α2
y

{
δni,2−nj

4
+

δni,nj−2

4
− δni,nj+2

4

− δni,4−nj

8
− δni,nj−4

8
+

δni,nj+4

8

}
δmi,mj , (32)

I5 = miπ

∫ 1

u=0

∫ 1

v=0

2
(

du

dx

)2 1
tan(miπu)

×φi(u, v)φj(u, v)
∂ ln(n)

∂u
dudv

+
∫ 1

u=0

∫ 1

v=0

2
(

du

dx

)2

φi(u, v)φj(u, v)

×∂2 ln(n)
∂u2

dudv

=
1
α2

x

∫ 1

u=0

du

∫ 1

v=0

dv {ln(n)

×{{16[c(2u)− c(4u)]
− m2

j [c(4u) − 4c(2u) + 3]si(u)sj(u)si(v)sj(v)}
+ mimj [c(4u) − 4c(2u) + 3]ci(u)cj(u)si(v)sj(v)
− 4mi[s(4u) − 2s(2u)]ci(u)sj(u)si(v)sj(v)
− 8mj [s(4u) − 2s(2u)]si(u)cj(u)si(v)sj(v)}} ,

(33)

I6 =
∫ 1

u=0

∫ 1

v=0

2
(

d2u

dx2

)
φi(u, v)φj(u, v)

∂ ln(n)
∂u

dudv

=
2
α2

x

∫ 1

u=0

du

∫ 1

v=0

dv {ln(n)

×{4[c(4u)− c(2u)]si(u)sj(u)si(v)sj(v)
+ mi[s(4u) − 2s(2u)]ci(u)sj(u)si(v)sj(v)
+ mj [s(4u) − 2s(2u)]si(u)cj(u)si(v)sj(v)}} . (34)

In (33) and (34), sine related functionss(2u) = sin(2u),
si(u) = sin(miπu), si(v) = sin(niπv), etc. For cosine related
functions, they are abbreviated by the symbolc.
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