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Abstract— Galerkin's method is employed to analyze the quasi-vector v
wave equation for optical waveguides with arbitrary refractive index profile 1.0
in a mapped infinite domains. Results are presented for a range of waveg-
uide structures which include rectangular core, circular core, rib, and mul-
tiple quantum well. Solutions are compared favorably with exact vector
solution and numerical results using Fourier operator transform method
and beam propagation method. >
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I. INTRODUCTION

HE use of Galerkin’s method in solving the scalar wave
equation of optical waveguides with arbitrary refractive in- 00 05 10w
dex profiles was first proposed by Henry and Verbeek [1]. Same @ ©
method was used by Marcuse in solving the vector wave eqear 1. An optical structure in (a)-y plane and (b) transformegtv domains.
tion [2]. However, there is a large increase in computing time A rib waveguide is used as an example.
and memory. In considering that matter, we decide to use the

guasi-vector results which include the polarization effects of 0P~ ce value)( = i) everywhere. The field vectors are taken
tical waveguides as an intermediate solution. The memory t “depend on t;ngothrough the irﬁplicit factarp (—iwt). Un-
quirement is the same as in solving the scalar wave equatloon D )

while the computing time is moderate er these condit?ons and regions are free of charges and current,
Wi i ’ - M?xwell’s equations are written as
e also employ a mapping scheme to eliminate the need o
enclosing waveguide structures within a rectangle whose size VXE = i(uo/e0)/?kH, (1)
affect the accuracy of calculations near modal cutoff [3]. Al- UxH — —i 1/2).02R >
ternately, the elimination can be done by using Hermite-Gauss x - i(=0/ o) s, (2)

functions as basis functions [4] rather than sine functions whigf a7 — 21/ is the free space wavenumber, akds the
are used in present studies. However, such elimination is OW)ﬁvelength of light in free space. ’

valid for waveguides with homogeneous cladding. For inhomo-¢\ue eliminate the magnetic field from (1) and (2) By (1)

geneous cladding waveguides like rib waveguides, the claddifey substitutdy x H from (2) into, we obtain the vector wave
have to be truncated if Hermite-Gauss basis functions are u Jation

On the other hand, no truncation of cladding is needed if sine

basis functions are used in a mapped infinite domains. (V2+E*22)E = —V(E-Vinn?) (3)
In the next section, we will derive the quasi-vector wave equa-

tion and establish the details of solving this equation using thg using two vector identities, viz.

Galerkin’s method. In Section Ill, we compare some of our

numerical results with those of other authors. The summary VX(VXE) = V(V-E)-V’E, (4)
section anticipates the range of potential applications of present V-(n’E) = n’V-E4+E.-Vn?>=0. (5)
method.

The V? in (3) is a vector operator. However, if the field

I[l. MATHEMATICAL FORMULATION vectors have components referred to fixed cartesian directions
z, y and z as indicated in Fig. 1(a), the vector operal@?
is replaced by the scalar Laplaci&ff. Moreover, if an opti-

Maxwell's equations are employed to calculate the spaal waveguide with refractive index profile that does not change
tial variation of electric fieldE(z,y,~) and magnetic field with distancez along the waveguide, i.en = n(z,y). The
H(xz,y,2) of an optical waveguide. The dielectric constandlectric field of the waveguide can be written in separable form
e(z,y,z) of a waveguide is related to its refractive indexs

n(z,y, z) by e = n%eq, whereg is the free space electric per- E(z,y,z) = e(z,y) exp(if32) (6)

mittivity. The magnetic permeability is taken to have its free . ) .
whereg is the propagation constant. Thus if we set
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A. Quasi-vector wave equation



in (6) wherex, ¥ andz are unit vector parallel to the axes inthe quasi-TE wave equation (11) and in the space it is writ-

Fig. 1(a) and using ten as
2 2 2 92 2 2 52 2
veVegmem e (3) GEemhe(3) S
€T u T< Ou Y v y< Ov
(3) is reduced to two equations coupling the field components 919 2 du\? 0 dlnn
e, ande, as follows: + (R = ea +2 ) o | ea—pg
0%, 0%, - 9 dQ_u Olnn _
oz T g T = e T2 oy (13)
9 dlnn dlnn wheree,, = e, (u,v), n = n(u,v).
2— — - — , 9 x T ’ ’ ; ) ’ .
+ or <6 ox tey dy ) 0 ©) The unknown electric field componest is expanded as
ey 0%y + (k202 — e, Ny N, Np  Nn
8.1?2 ayQ €r = ai¢i(uﬂ ’U) = Am, nd)z (U,’U) (16)
I 0 ( Olnn . Olnn 0 (10) z; 7;1 721 ,
—|ee—F—+ey3——— ) =0.
oy " ox Y oy

where integer quotient functiadiv and remainder on division
If the coupling terms in (9) and (10) are neglected, we haveunction mod are employed to relate the inde,and spatial
9 9 frequenciesin; andn;, as
0%e; 0%y

+ + (K2n? = 3%)e,
ezt T = e m; = (i—1)divN,+1, (17)
+2ﬂ exalnn _ 0 (11) ni = (i—1)mod N, +1. (18)
ox ox ’
92e e The expansion functions; (u, v) are chosen as the complete set
any + ay'z‘y + (k*n* — B%)e, of orthonormal sine basis functions as
n 22 . Olnn —0 (12) ¢i(u,v) = 2sin(m;mu) sin(n;mv) . (19)
oy 'Y oy '

The field expansion (16) is substituted into (15), it is then multi-

These are in fact the scalar wave equation with polarization cgfied by ¢, (u, v) and integrated over the unit square in Fig. 1(b)
rection which are referred here as the quasi-TE wave equaltigyy yield the result:

and the quasi-TM wave equation.

The assumption used in (11) and (12), ieg. > e, in (11) N Nn
ande, > e, in (12), is accurate for three classes of waveg- > (Sji+ Py — W?5;0)a; =0 (20)
uides [5]: (i) weakly guiding waveguides [6] with arbitrary i
shape and small difference in refractive index between core EWﬁiere
cladding or substrate, (ii) rectangular core waveguides with ar-
g (i) g g S;:=V2A;; + B 1)

bitrary core-cladding refractive index operated in the far-from-
cutoff region, (iii) arbitrary refractive index profile waveguidesorrespond to the scalar wave equation with
with an elongated or slab like cross section. Numerical results

for these three classes of waveguides will be given in Section A
. :

1 1
/ / (1, 0) 4, 0) (u, v)dudv , (22)
u=0 Jv=0

B. Galerkin’s method Bii = Pt Lot Ts+ 1), (23)
Since the formulation of the quasi-vector wave equation (1afid 5
and (12) are the same, the quasi-TE wave equation (11) will be g(u,v) = 27cl ) (24)
solved below using Galerkin’s method and the procedure devel- Neo = Mgy
oped is applicable for solving the quasi-TM wave equation (129Iere,5j,i is a delta function and defined as
To eliminate the need of enclosing waveguide within a rect-
angle, the whole:-y plane is mapped onto a unit squareuiy 5 = { 1 ifj=1, (25)

space as shown in Fig. 1 using the transformation functions: 0 ifj#i.
_ 1 The modal parametei$ andWW are defined as
T = agptan |7 |u— 3 , (13)
1 Vo= kp(ng, —nd)'?, (26)
Yy = oytan |:7T <v — 5)} , (14) W o= p(5? - k2n§1)1/2 . 27)

wherea, ande, are scaling parameters in theandy direc- The core and cladding refractive index,, andn., and nor-
tions respectively. The same change of variables is appliedmalization parametep are chosen to be representative of the
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n, TABLE |
A P2 AS A FUNCTION OF2V}, /7 FOR THE FUNDAMENTAL QUASFVECTOR
MODES OF THE RECTANGULAR CORE OPTICAL WAVEGUIDEa, = a,
n ay =b, p=+ab, AND NS, = NS = N. THE PARAMETERSNE, AND N¢
1 INDICATE THE NUMBER OF EVEN SPATIAL FREQUENCY COMPONENTS USED
2h 5 x IN THE 2 AND y DIRECTIONS
0
W/ N F-OPT
10 15 20 25
v E¥; mode
, 2a . 0.40 0.0346 0.0343 0.0337 0.0335 0.0400
N 4 0.45 0.0679 0.0664 0.0661 0.0661 0.0670
Fig. 2. Structure of a rectangular core optical waveguide. 0.50 0.1077 0.1069 0.1069 0.1069 0.1068

0.55 0.1523 0.1522 0.1523 0.1522 0.1520

0.60 0.1991 0.1993 0.1992 0.1992 0.1990

refractive index profile of the optical waveguide under consider- 965 0.2458 0.2459 0.2459 0.2458 0.2456
ation. Moreover, 0.70 0.2909 0.2910 0.2910 0.2909 0.2907
Pji = p*(Is + Io) (28) 0.75 0.3338 0.3339 0.3338 0.3338 0.3336

0.80 0.3741 0.3742 0.3741 0.3741 0.3739
0.85 0.4117 0.4118 0.4117 0.4117 0.4116
0.90 0.4467 0.4467 0.4467 0.4467 0.4465
0.95 0.4791 0.4791 0.4791 0.4791 0.4789

correspond to polarization correction. The six integifalto I

is given in the Appendix as (29) to (34) and can be evaluated
analytically in terms of sum of trigonometric functions if the
refractive index profilex(r y) 15 approximated by rectangules 3 0o 05090 0.5091 0.5091 0.5091 0.5089

The double summation series in (20) can be written as a ma- E7, mode

trix eigenvalue equationMa = W2a, by defining a vector 0.40  0.0274 0.0315 0.0320 0.0307 0.0483
a consisting of the elements, and a matrixM composed of 045 0.0603 0.0617 0.0614 0.0614 0.0612
the coefficientsS; ; and P; ;. LAPACK subroutines are usedto ~ 0-50 ~ 0.0999  0.1004 0.1000 0.1005 0.1003
solve this equation [7], the propagation constants of the bound 0-55  0.1444 0.1443 0.1440 0.1444 0.1441
modes of a waveguide are calculated from the real, positive 0-60 ~0.1908 0.1903 0.1901 0.1902 0.1900
eigenvalues’2 and the corresponding modal field is calculated 0-65  0.2370  0.2363 0.2361 0.2361 0.2359

via the Fourier coefficients of associated eigenveciors 0.70  0.2817 0.2810 0.2809 0.2808 0.2805
0.75 0.3243 0.3237 0.3236 0.3235 0.3232
[1l. NUMERICAL RESULTS 0.80 0.3645 0.3640 0.3639 0.3638 0.3635

0.85 0.4021 0.4018 0.4017 0.4016 0.4013
0.90 0.4372 0.4370 0.4369 0.4368 0.4365
Figure 2 shows a optical waveguide with a rectangular core 0.95 0.4698 0.4697 0.4696 0.4695 0.4692
of width 2a and heigh®b. The core and cladding refractive in- 1.00 0.5001 0.5000 0.5000 0.4998 0.4996
dex aren., = ny = 1.5 andng = ne = 1.45. A = 1.15um
anda/b = 2. Table | gives the normalized propagation con-
stantsP? = [(B/k)? — n?]/(nZ, — n?) for the fundamen-
tal quasi-vector modes as a function 2, /7 whereV, =
kb(n? — n3)Y/2. The bound modes are denotedRjs, mode

for the quasi-TE mode anHl?,, mode for the quasi-TM mode

A. Rectangular core optical waveguide

respectively. Then andn are both positive integers meaning

m — 1 andn — 1 field zeros in ther andy directions of the

modal fields respectively. The calculated results are in excellg

agreement with Fourier operator transform (F-OPT) method [}

except akV}, /7 equal 0.4 where present method is more acc

rate as shown by the convergencef®f. The modal fields at

2V, /m = 0.5 is shown Fig. 3. As can be clearly seen the present

method is able to reproduce the discontinuity in the field at theK

core-cladding boundaries, vertical side walls for quasi-TE mode

and horizontal side walls for quasi-TM mode. @ ()

Results of P* for the first six bound modes of another rectrig. 3. Field pattern of ()., of E¥, mode and (b}, of Y, mode a2V}, /= =
angular core waveguide with high refractive index contrast, 0.5 for N = 25. The core region is shaded. Contour lines are at 10%
ni = 2, my = 1, is shown in Table 1. The associated field of Ntervals of peak amplitude.
these modes are shown in Fig. 4. H&fg= 3 anda/b = 5/3.



TABLE Il
P? OF THE FIRST SIX BOUND MODES OF THE HIGH REFRACTIVE INDEX
CONTRAST RECTANGULAR CORE WAVEGUIDE N, = N;; = N FOR

MODES (a), (b) AND (f); N3, = Ng = N FOR MODES(c) AND (d); AND
Ng, = N2 = N FOR MODE(e). THE PARAMETERSN,;;” AND N'° O O
INDICATE THE NUMBER OF EVEN AND ODD SPATIAL FREQUENCY

COMPONENTS USED IN THEr AND y DIRECTIONS RESPECTIVELY

N Mode
(@) (b) (©) (d) (e) ®
EL By, B E5 Ely B3
10 0.7591 0.7007 0.5041 0.5000 0.3390 0.1979
15 0.7585 0.6968 0.5008 0.4991 0.3386 0.196
20 0.7584 0.6972 0.5012 0.4961 0.3386 0.1965
25 0.7580 0.6953 0.4995 0.4962 0.3382 0.1950
30 0.7580 0.6960 0.5001 0.4947 0.3383 0.1955
H-G[4] 0.7577 0.6949 0.4988 0.4985 0.3375 0.1942

TABLE I
P2 AS A FUNCTION OF FIBER PARAMETERV = kp(n? — n3)'/2 FOR THE
FUNDAMENTAL QUASI-VECTOR MODES OF THE CIRCULAR CORE OPTICAL
FIBER. oz = ay = pAND N5, = NS = N

1% Mode
EY, EY, HEn
N N
10 15 20 25 =25
0.8 — 0.0043 0.0049 0.0046 0.0047 0.0043

1.0 0.0339 0.0330 0.0325 0.0325 0.0325 0.0322
1.2 0.0920 0.0918 0.0918 0.0918 0.0918 0.0911

(e) 0

Fig. 4. (a)-(f) Field patterns;,, for quasi-TE mode and, for quasi-TM mode,
1.4 0.1696 0.1692 0.1691 0.1690 0.1689 0.1681 of the first six bound modes of the high contrast réctangular core waveguide

1.6 0.2510 0.2506 0.2505 0.2504 0.2503 0.2494 for N = 30. Designation of the modes are given in Table II.

1.8 0.3286 0.3283 0.3281 0.3280 0.3280 0.3270
2.0 0.3991 0.3988 0.3987 0.3986 0.3985 0.3976
2.2 0.4615 0.4613 0.4612 0.4611 0.4610 0.4603
2.4 0.5163 0.5161 0.5160 0.5159 0.5158 0.5151
2.6 0.5640 0.5639 0.5638 0.5637 0.5636 0.5630
2.8 0.6056 0.6055 0.6054 0.6054 0.6053 0.6048
3.0 0.6420 0.6419 0.6418 0.6418 0.6417 0.6412 n2

Results ofP? are in good agreement with results using Hermite-
Gauss (H-G) basis functions [4]. This is expected as presen
method with sine basis functions in the transformed domain
have field zero at infinity as Hermite-Gauss basis functions doess.

B. Step-index core optical fiber

The next structure to be studied is a circular core optical fibe
(Fig. 5) withn.,, = ny = 1.6 andng = ny = 1.5. The
first quadrant of the circular core is resembled by 25 unifrom
rectangles and the rest is found by symmetB? of the two
fundamental quasi-vector modes are almost the same as listed
in Table Ill. Theoretically, with infinite number of rectangles,
the fundamental quasi-vector modes are degenerated. Results of
present quasi-vector solutions are compared with the exact vec-
tor solutions [6], HE;;mode, and they are in good agreement.

The field patterns of the quasi-vector modesvat= 1 is

y
N
~~_~~~
~\*\
*
n
1
AN
?X
0

Fig. 5. Structure of a circular core optical fiber.



ey (arbitrary units)

(a) (b)

Fig. 6. Field patterns of (&), of EY; mode and (b}, of E{l mode of the
circular core optical fiber &t = 1 for N = 25.

given in Fig. 6. Discontinuity of field is clearly seen at the
core-cladding boundary. The field componeptof E¥; mode
along thex axis as a function of normalized distan¥e= z/p

is shown in Fig. 7(a). As can be seen from the figure, the 0.90
guasi-vector modal fields are agree with the exact vector solu-

tion except near the core-cladding boundary which is detailed

in Fig. 7(b). From this figuree, of quasi-TE mode near the . 0.86
boundary is likely to be an average of the exact vector soluticé
and it is converge moderately to the exact vector solutiolV as
is increased.

0.82¢

(arbitrary u

C. Rib optical waveguide

A rib optical waveguide as shown in Fig. 8 is considered in
this section. Herep., = n1 = 3.44, n¢gg = no = 3.4, n3 = 1,
t = luym, w = 3um and\ = 1.15um. Table IV showsP?
for the fundamental quasi-vector modes as a functioé dy
comparison with results from F-OPT method [8] and beam prop- 0.74 ‘ ‘ ‘ ‘ ‘ ‘ :
agation method (BPM) [9], the convergence of present solutions 0.6 0.8 1.0 12 14
is better forE¥, mode tharts}; mode. This could be explained X
by the fact that higher spatial frequency components are needed (b)
to model the large discontinuity of field componentof EY; Fig. 7. (a) Electric field component, of quasi-TE mode as a function of
mode at the core-air interfaces perpendiculay txis of Fig. 8 normalized distanc& for N = 10, 15, 20 and 25. The electric field com-

which are clearlv seen form the field patterns at Fid. 9 ponente,, of the exact vector (vt) solution is given in solid line. (b) Details
y P g% of (a) nearX = 1.

0.78

D. IID MQW waveguide

The last example is to apply present method to multiple quan-
tum well (MQW) waveguide fabricated by impurity induced dis-
ordering (lID) technique [10]. The IID technique provides an M
efficient way to realize waveguiding structure in optoelectronic
integrated circuits [11]. The structure to be modeled consists of n3 y
Al 3Gag.7As/GaAs QWS and thickAly 3Gag 7 As buffer layer T

0

N
v

grown on a GaAs substrate; the schematic of the structure is
shown in Fig. 10. In our mode{za™ ion is implanted with a
projected range located around the center of the QW layers. The
implantation process produces a modification of the QW mate- d nq
rial which in turn leads to differences in refractive index in dif-
ferent region [10]. The implanted region has a lower refractive
index than the non-implanted region, hence produce lateral con-
finement of light. Figure 11 shows a IID MQW refractive index
profile which is represented by rectangles of constant refractive
index. The profile was calculated fas = 3um, 2b = 0.6m at Fig. 8. Structure of a rib optical waveguide.
A = 0.901085um. The maximum and minimum refractive in-




TABLE IV i

P2 AS A FUNCTION OFd FOR FUNDAMENTAL QUASI-VECTOR MODES OF |
THE RIB OPTICAL WAVEGUIDE. ag = w/2, ay = t/2, p = \/Qzay, . :
Ng, = N AND N,, = 2N alr |

2a

&— AN
N | 7

d N F-OPT BPM

0 20 30 mask
EX, mode '

0.0 02879 02961 02971 0.2992 0.3001 y
0.1 02911 0.2989 0.2997 0.3018 0.3026 N
0.2 0.2957 0.3029 0.3036 0.3055 0.3066 11D MQW 0 X 2b
0.3 0.3019 0.3084 0.3091 0.3108 0.3116
0.4 03101 0.3158 0.3163 0.3178 0.3188
0.5 0.3202 0.3251 0.3255 0.3267 0.3269
0.6 0.3324 0.3364 0.3368 0.3373 0.3380
0.7 0.3468 0.3500 0.3503 0.3509 0.3504
0.8 0.3639 0.3666 0.3667 0.3668 0.3655 AlGaAs
0.9 0.3859 0.3880 0.3886 0.3880 0.3871 buffer
1.0 04241 04268 0.4271 0.4273 0.4273

Ej, mode

0.0 0.2495 0.2559 0.2567 0.2652 0.2664
0.1 0.2523 0.2581 0.2588 0.2678 0.2685 Fig. 10. Schematic of an IID MQW waveguide.
0.2 0.2561 0.2614 0.2619 0.2703 0.2720
0.3 0.2615 0.2659 0.2664 0.2746 0.2762
0.4 0.2682 0.2719 0.2723 0.2804 0.2823
0.5 0.2769 0.2798 0.2800 0.2880 0.2892
0.6 0.2877 0.2896 0.2898 0.2976 0.2990
0.7 0.3002 0.3016 0.3017 0.3095 0.3101
0.8 0.3161 0.3166 0.3166 0.3244 0.3237
0.9 0.3367 0.3370 0.3367 0.3446 0.3441
1.0 0.3765 0.3769 0.3769 0.3851 0.3854

Fig. 11. Refractive index profile (half symmetry) of the IID MQW waveguide.

dex are assigned as, (= 3.52695) andn.(= 3.46782) respec-
tively. Other parameters are refractive indexAdf) 3Gag.7As
buffer layer and air cover which is equal to 3.35447 and 1 re-
spectively.P? of the fundamental quasi-vector modes are listed
in Table V. The associated modal fields are shown in Fig. 12.
Results show that present method is applicable for finding the
waveguiding properties of an optical waveguide with a diffused
refractive index profile.

() (d)

IV. CONCLUSION

A numerical method for solving the guided quasi-vector
modes problem of optical waveguide with aribtrary refractive in-
@ ® dex in a mapped infinite domains is described. Solving the prob-
_ ' _ _ lem with the Galerkin’s method, the mode field is expanded into
Fig. 9. Field patternse,. of Y, mode (left side) and,, of 1}, mode (right - 5 two dimensional Fourier sine series and resulting in a matrix
side), of the rib waveguide faN = 30 at (a)-(b)d = Oum, (c)-(d)d = . . . .
0.54m, and (€)-(Nd = 1um. eigenvalue equation which is solved using the LAPACK subrou-
tines.




TABLE V 1
P2 FOR THE FUNDAMENTAL QUASIFVECTOR MODES OF THEIID MQW I, = mym / / (d 2)
w0 Joo \dz? ) tan(m;mu)
WAVEGUIDE. oz = @, oty = b, AND p = Vab

X (u, v)@j(u, v)dudv

N, N, Mode _om {5%2 my o Omimi=2  Omimyt2
Ef, E| a2 4 4 4
10 20 0.1352 0.0110 Omid—m;  Omimy,—a | Omimta
15 30 0.1375 0.0111 — s T g }5nn
20 40 0.1380 0.0096 (30)

25 50 0.1382 0.0094

Iy = —nin /u O/U O(d”> 3 (1, )b (4, v)dudv

’I’L% { 36711-,71] 5ni,n]72 5ni,nj+2

5n,1,2—nj 6n7:,nj—4 6"7’,77Lj+4
+ 2 8 + 8
5711,4 n;j
@) S e T (3D

1
I, = i
) e /u 0/v 0( ) tan(nmv)
X¢z(ua U)(bj (U7 U)dudv
_ n; {57L1‘,2—nj 57“7"7._2

T ; . 6”,;,%;’-‘,—2
045 4 4 4
571 4—n 5n n;—4 571 n;+4
iy J i5Tlj 157
— — + Om,.m.; » (32
(b) 3 3 mi,m; s (32)
Fig. 12. Field patterns of (a), of EY; mode and (b}, of E{l mode of the I = 1
IID MQW waveguide forN = 25. The shaded region is the MQW under 5 — ¢ 0 0 dx tan(mmu)
the mask. u=n e o1 ( )
n
X ¢i(u, v)d; (u,v) dudv

The accuracy of present method is compared with the Fourier 1 1 du
operator transform method and the beam propagation method / / ( ) (u,v)d;(u,v)
for a rectangular core waveguide and a rib waveguide. More- u=0 Jv=0

over, solutions for step-index circular core optical fiber are com- 32 In(n) , o
pared with the exact vector solution. Results shown that the 8u2
present quasi-vector solutions provide a good approximationof
the exact solution. = ? o du o dv {In(n)
The application of present method to a waveguide with dif- < {{16[c(2u) — c(4u)]
fused refractive index profile is demonstrated using a multiple 204 4e(2 3
quantum well waveguide fabricated by impurity induced disor- — mjle(du) — de(2u) + 3]si(u)s; (u)si(v)s; (v)}
dering technique. The normalized propagation constants of the + mimjle(du) — 4e(2u) + 3Je;(u)ej(u)s;(v)s;(v)
fundamental quasi-vector modes converge moderately as we in- —dm;[s(4u) — 25(2u)]c;(u)s;(u)s; (v)s; (v)
crease the number of spatial frequencies. — 8my[s(4u) — 25(2u)]s; (w)e; (w)s:(v)s; (v)}}
APPENDIX (33)
The integrald; to I in (23) and (28) are given as follows: 7. — / / ( ) (1, )b (uw)&l;(n) dudv
u=0 Jv=0 u
1
= d dv {1
e ot [ () st oy
) (a0 A 5 fafen) — e2ulsi(us; (w)s: ()50
- - { T + mafs(du) = 2s(2u)lei(u)s; (w)si(v)s; (v)
5;727% T . T +mjj[s(du) — 25(2u)]s;(u)cj(u)si(v)s;(v)}} . (34)
2 8 8 In (33) and (34), sine related functiong2u) = sin(2u),

Omi a—m, (29) si(u) = sin(m;mu), s;(v) = sin(n;mv), etc. For cosine related
) T functions, they are abbreviated by the symtol
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