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ABSTRACT

Based on the Galerkin’s method, a numerical method is developed to analysis the cutoff frequencies of guided modes
of optical waveguides with arbitrary refractive index profile. Solutions are presented in the quasi-vector regime.
Optical waveguide structures with single core of arbitrary shape are considered in this paper. The calculated results
are compared favorably with exact vector solution and circular-harmonic expansion method.
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1. INTRODUCTION

For a complete study of guiding properties of optical waveguides, not only propagation constants and modal fields but
also cutoff frequencies are needed. This is especially important for designing single mode devices. While the full-vector
modal field solutions are most informative, the calculation is known to be tedious.1 It is found more promising to use
the quasi-vector solutions which including polarization correction and is essential for designing polarized waveguides.2

In this paper, a numerical method is proposed to calculate the quasi-vector modal solutions of optical waveguide
with arbitrary refractive index profile. While this paper is concentrated in the calculation of cutoff frequencies, the
method developed here can calculate propagation constants and modal fields as well. The numerical method used
is the Galerkin’s method which transform the quasi-vector wave equation into an eigenvalue problem. The problem
is readily solved using LAPACK subroutines.3 Eigenvalues of the problem are cutoff frequencies of guided modes
which can be used to determine the single mode operating region of an optical waveguide.

The use of Galerkin’s method in solving the scalar wave equation for an optical waveguides with arbitrary
refractive index profiles was first proposed by Henry and Verbeek.4 Same method was used by Marcuse5 in solving
the full-vector wave equation. A mapping scheme was employed by Hewlett and Ladouceur6 to eliminate the need
of enclosing waveguide structures within a rectangle whose size affect the accuracy of calculations near modal cutoff.
Alternately, that elimination can be done by using Hermite-Gauss functions2 instead of sine functions4–6 as basis
functions. However, such elimination is only valid for waveguides with homogeneous cladding. For inhomogeneous
cladding waveguides like rib waveguides, the cladding have to be truncated if Hermite-Gauss basis functions are
used. On the other hand, no truncation of cladding is needed if sine basis functions are used in a mapped infinite
domains.6

While the mapping scheme was first developed for the modal cutoff calculations of optical waveguides in the
scalar regime,6 it is employed in this paper to found the cutoff frequencies of quasi-vector modes of optical waveguide
structures. In the next section, we will derive the quasi-vector wave equation and establish the details of solving this
equation using the Galerkin’s method. In Section 3, we compare numerical results of present method with those of
other authors. The summary section anticipates the range of potential applications of present method.
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Figure 1. An optical structure in (a) x-y plane and (b) transformed u-v domains. A rib waveguide is used as an
example.

2. MATHEMATICAL FORMULATION

2.1. Quasi-vector wave equation
Maxwell’s equations are employed to calculate the spatial variation of electric field E(x, y, z) and magnetic field
H(x, y, z) of an optical waveguide. The dielectric constant ε(x, y, z) of a waveguide is related to its refractive index
n(x, y, z) by ε = n2ε0, where ε0 is the free space electric permittivity. The magnetic permeability is taken to have
its free space value (µ = µ0) everywhere. The field vectors are taken to depend on time through the implicit factor
exp (−iωt). Under these conditions and regions are free of charges and current, Maxwell’s equations are written as

∇×E = i(µ0/ε0)1/2kH , (1)
∇×H = −i(ε0/µ0)1/2kn2E (2)

where k = 2π/λ is the free space wavenumber and λ is the wavelength of light in free space.

If we eliminate the magnetic field from (1) and (2) by ∇×(1) and substitute ∇×H from (2) into, we obtain the
vector wave equation

(∇2 + k2n2)E = −∇(E·∇ ln n2) (3)

by using two vector identities

∇×(∇×E) = ∇(∇·E)−∇2E (4)

and

∇·(n2E) = n2∇·E + E·∇n2 = 0 . (5)

The ∇2 in (3) is a vector operator. However, if the field vectors have components referred to fixed cartesian
directions x, y and z as indicated in Fig. 1(a), the vector operator ∇2 is replaced by the scalar Laplacian ∇2.
Moreover, if an optical waveguide with refractive index profile that does not change with distance z along the
waveguide, i.e. n = n(x, y). The electric field of the waveguide can be written in separable form as

E(x, y, z) = e(x, y) exp(iβz) (6)

where β is the propagation constant. Thus if we set

e = exx̂ + eyŷ + ezẑ (7)

in (6) where x̂, ŷ and ẑ are unit vector parallel to the axes in Fig. 1(a) and using

∇2 = ∇2 =
∂2

∂x2
+

∂2

∂y2
− β2 , (8)



(3) is reduced to two equations coupling the field components ex and ey as follows:

∂2ex

∂x2
+

∂2ex

∂y2
+ (k2n2 − β2)ex + 2

∂

∂x

(
ex

∂ ln n

∂x
+ ey

∂ ln n

∂y

)
= 0 , (9)

∂2ey

∂x2
+

∂2ey

∂y2
+ (k2n2 − β2)ey + 2

∂

∂y

(
ex

∂ ln n

∂x
+ ey

∂ ln n

∂y

)
= 0 . (10)

If the coupling terms in (9) and (10) are neglected, we have

∂2ex

∂x2
+

∂2ex

∂y2
+ (k2n2 − β2)ex + 2

∂

∂x

(
ex

∂ ln n

∂x

)
= 0 , (11)

∂2ey

∂x2
+

∂2ey

∂y2
+ (k2n2 − β2)ey + 2

∂

∂y

(
ey

∂ ln n

∂y

)
= 0 . (12)

These are in fact the scalar wave equation with polarization correction which are referred here as the quasi-TE wave
equation and the quasi-TM wave equation.

2.2. Galerkin’s method

The quasi-TE wave equation (11) will be solved below using the Galerkin’s method. Since the formulation of the
quasi-vector wave equation (11) and (12) are the same, the procedures developed here are applicable for solving the
quasi-TM wave equation (12).

To eliminate the need of enclosing optical waveguide structures within a rectangle,4,5 the whole x-y plane is
mapped onto a unit square in u-v space as shown in Fig. 1 using the transformation functions6:

x = αx tan
[
π

(
u− 1

2

)]
, (13)

y = αy tan
[
π

(
v − 1

2

)]
(14)

where αx and αy are scaling parameters in the x and y directions respectively. The same change of variables is
applied to the quasi-TE wave equation (11) and in the u-v space it is written as(

du

dx

)2
∂2ex

∂u2
+

d2u

dx2

∂ex

∂u
+

(
dv

dy

)2
∂2ex

∂v2
+

d2v

dy2

∂ex

∂v

+ (k2n2 − β2)ex + 2
(

du

dx

)2
∂

∂u

(
ex

∂ ln n

∂u

)
+ 2

d2u

dx2
ex

∂ ln n

∂u
= 0 (15)

where ex = ex(u, v), n = n(u, v). The unknown electric field component ex is expanded as

ex =
NmNn∑

i

aiφi(u, v) =
Nm∑

mi=1

Nn∑
ni=1

ami,niφi(u, v) (16)

where the index i and spatial frequencies mi and ni are related to each other through integer quotient function div
and remainder on division function mod as follow:

mi = (i − 1) div Nn + 1 , (17)
ni = (i − 1) mod Nn + 1 . (18)

The expansion functions φi(u, v) are chosen as the complete set of orthonormal sine basis functions as

φi(u, v) = 2 sin(miπu) sin(niπv) . (19)



The field expansion (16) is substituted into (15), it is then multiplied by φj(u, v) and integrated over the unit square
shown in Fig. 1(b) and yield the result:

NmNn∑
i

(Sj,i + Pj,i −W 2δj,i)ai = 0 (20)

where
Sj,i = V 2Aj,i + Bj,i (21)

correspond to the scalar wave equation6 with

Aj,i =
∫ 1

u=0

∫ 1

v=0

g(u, v)φi(u, v)φj(u, v)dudv , (22)

Bj,i = ρ2(I1 + I2 + I3 + I4) , (23)

and

g(u, v) =
n2(u, v)− n2

cl

n2
co − n2

cl

. (24)

The delta function δj,i in (20) is defined as

δj,i =
{

1 if j = i ,
0 if j 6= i .

(25)

The waveguide parameter V and cladding parameter W are defined as follows7:

V = kρ(n2
co − n2

cl)
1/2 , (26)

W = ρ(β2 − k2n2
cl)

1/2 . (27)

The core and cladding refractive index, nco and ncl, and normalization parameter ρ are selected base on the refractive
index profile of an optical waveguide structure. Moreover,

Pj,i = ρ2(I5 + I6) (28)

correspond to the polarization correction. The six integrals I1 to I6 in (23) and (28) are defined in the Appendix
as (31) to (36) and can be evaluated analytically in terms of sum of trigonometric functions if the refractive index
profile n(x, y) is approximated by rectangles of uniform refractive index.

2.2.1. Modal propagation constants

The double summation series in (20) can be written as a matrix eigenvalue equation, Ma = W 2 a, by defining a
vector a consisting of the elements ai and a matrix M composed of the elements Sj,i +Pj,i. LAPACK subroutines are
used to solve this equation,3 the propagation constants of the bound modes of an optical waveguide are calculated
from the real, positive eigenvalues W 2 and the corresponding modal field is calculated via the Fourier coefficients of
associated eigenvectors a.

2.2.2. Modal cutoff frequencies

For a given optical waveguide structure, its guided mode will become cutoff when the operating wavelength is longer
than its cutoff wavelength λco. A cutoff value Vco is also defined as the waveguide parameter V at modal cutoff.
During the cutoff of guided mode, its modal propagation constant β = kncl or cladding parameter W = 0. Combining
those cutoff conditions, (20) becomes

NmNn∑
i

(V 2
coAj,i + Bj,i + Pj,i)ai = 0 . (29)

Same as in the last section, the double summation series in (29) can be written as a matrix eigenvalue equation,
Ma = (1/Vco)2 a, by defining a vector a consisting of the elements ai and a matrix M composed of the elements
−(Bj,i +Pj,i)−1Aj,i. LAPACK subroutines are used to solve this equation,3 the cutoff wavelength or cutoff frequency
νco = c/λco, c is the velocity of light in free space, of the guided mode of a waveguide is calculated from the real,
positive eigenvalue (1/Vco)2 and the corresponding modal field at cutoff is calculated via the Fourier coefficient of
associated eigenvector a.
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Figure 2. Structure of a circular core optical fiber. The core is represented by 25 rectangles.

Table 1. Cutoff values Vco of quasi-TE E21 mode for different core refractive index nco. The calculation was done
with ncl = 1, αx = αy = ρ, and No

m = Ne
n = N . The parameters No

m and Ne
n indicate the number of odd and even

spatial frequencies used in the x and y direction respectively.

nco N Exact %
10 15 20 25 vector error

1.01 2.4078 2.4072 2.4069 2.4069 2.4048 0.09
1.02 2.4111 2.4105 2.4106 2.4107 2.4048 0.25
1.05 2.4210 2.4208 2.4217 2.4224 2.4048 0.73

3. NUMERICAL RESULTS

3.1. Circular core optical fiber

Step-index circular core optical fibers are considered in this section. Figure 2 depicts its structure. The cutoff values
Vco = kcoρ(n2

co − n2
cl)

1/2, kco = 2π/λco, of the first higher quasi-TE E21 mode for different core refractive index is
given in Table 1. Notice that the guided mode of an optical waveguide is denoted by the Emn mode (m, n are both
positive integers with m− 1 and n− 1 field zeros in the x and y directions, respectively.

From the table, Vco is converging as the number of spatial frequencies N are increased. By comparing with the
exact vector solution,7 the first zero of J0—Bessel function of first kind of order zero, i.e. Vco ≈ 2.4048, we found
that the accuracy of present method is decrease as the core refractive index is increased. This is expected as the
neglecting of minor field ey (in quasi-TE case) is only valid for small difference in refractive index between core and
cladding.1 Nevertheless, percentage error of cutoff values are less than 1% for practical optical fibers with difference
(< 5%) in refractive index between core and cladding.

3.2. Elliptical core optical fiber

The next waveguide structure to be considered is an elliptical core optical fiber. Its structure is shown in Fig. 3.
Table 2 gives the modified cutoff values V ?

co for different core refractive index nco and core aspect ratio a/b. V ?
co is

defined as
V ?

co = Vco(a/b)1/2 ; Vco = kcob(n2
co − n2

cl)
1/2 . (30)

Both quasi-vector solutions (TE and TM) are given together with full-vector numerical results using circular-harmonic
expansion method by Su.8

Among the quasi-TE modes, the larger the nco, the larger the difference of V ?
co between present method and

full-vector solutions. The explanation for those results have been given in the last section. On the other hand, the
larger the aspect ratio a/b, the better the agreement of V ?

co between present quasi-vector solutions and full-vector
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Figure 3. Structure of an elliptical core optical fiber. The core is represented by 25 rectangles.

Table 2. Modified cutoff values V ?
co of elliptical core optical fibers for different core refractive index nco and core

aspect ratio a/b. The calculation was done with ncl = 1, αx = a; αy = b, and No
m = Ne

n = 25 for E21 mode;
N e

m = No
n = 25 for E12 mode; Ne

m = Ne
n = 25 for E31 mode; No

m = No
n = 25 for E22 mode. The parameters Ne,o

m

and Ne,o
n indicate the number of odd and even spatial frequencies used in the x and y direction respectively.

Mode nco a/b = 1.5 a/b = 2.0 a/b = 1.5 a/b = 2.0
TE Su8 TE Su8 TM Su8 TM Su8

E21 1.001 2.192 2.193 2.076 2.084 2.192 2.193 2.076 2.084
1.020 2.198 2.201 2.081 2.132 2.203 2.206 2.090 2.139
1.500 2.353 2.294 2.206 2.241 2.454 2.389 2.405 2.399

E12 1.001 2.686 2.686 2.936 2.935 2.686 2.686 2.937 2.935
1.020 2.691 2.692 2.940 2.947 2.695 2.696 2.946 2.954
1.500 2.800 2.896 3.015 3.090 2.939 2.976 3.212 3.233

E31 1.001 3.383 3.351 3.120 3.104 3.383 3.351 3.120 3.104
1.020 3.387 3.355 3.123 3.126 3.391 3.360 3.131 3.135
1.500 3.504 3.408 3.223 3.127 3.554 3.483 3.363 3.300

E22 1.001 3.899 3.898 4.026 3.976 3.899 3.898 4.027 3.976
1.020 3.905 3.905 4.030 4.042 3.911 3.912 4.041 4.053
1.500 4.044 4.043 4.126 4.116 4.221 4.183 4.414 4.379

solutions by Su.8 This can be explained by the fact that the minor field (ey in quasi-TE mode) is getting smaller
as the aspect ratio is increased. In other words, the assumption of minor field equals zero in quasi-vector solution is
more convincing for optical waveguide with an elongated or slab like cross section.1 Similar features of the calculated
results are seen for the quasi-TM modes.

3.3. Rectangular core optical waveguide
The last structure to be considered is optical waveguide with a rectangular core. Its structure is show in Fig. 4.
Same as in the last section for elliptical core, the modified cutoff values V ?

co for different core refractive index nco and
core aspect ratio a/b are given in Table 3.

The calculated results carry the same trend as those in elliptical core. However, the agreement of present method
with full-vector solution by Su8 is more profound as the aspect ratio is increased when compared with results for
elliptical core in last section. This is expected as rectangular cores have a more slab like cross section.

4. CONCLUSION

A numerical method for solving the problem of finding the cutoff frequencies of guided quasi-vector modes of optical
waveguide with arbitrary refractive index is described. The problem was solved using the Galerkin’s method in a
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Figure 4. Structure of a rectangular core optical fiber.

Table 3. Modified cutoff values V ?
co of rectangular core optical waveguide for different core refractive index nco and

core aspect ratio a/b. The calculation was done with ncl = 1, αx = a; αy = b, and No
m = Ne

n = 25 for E21 mode;
N e

m = No
n = 25 for E12 mode; Ne

m = Ne
n = 25 for E31 mode; No

m = No
n = 25 for E22 mode. The parameters Ne,o

m

and Ne,o
n indicate the number of odd and even spatial frequencies used in the x and y direction respectively.

Mode nco a/b = 1.0 a/b = 1.5 a/b = 2.0 a/b = 1.0 a/b = 1.5 a/b = 2.0
TE Su8 TE Su8 TE Su8 TM Su8 TM Su8 TM Su8

E21 1.001 2.136 2.137 1.929 1.929 1.816 1.849 2.137 2.137 1.929 1.929 1.816 1.849
1.020 2.146 2.143 1.937 1.953 1.823 1.857 2.142 2.146 1.937 1.953 1.826 1.860
1.500 2.370 2.097 2.125 2.026 1.983 1.988 2.257 2.175 2.113 2.094 2.054 2.096

E12 1.001 2.137 2.137 2.413 2.408 2.660 2.704 2.137 2.137 2.414 2.408 2.660 2.704
1.020 2.412 2.161 2.417 2.443 2.663 2.705 2.146 2.173 2.423 2.443 2.670 2.715
1.500 2.257 2.327 2.457 2.519 2.711 2.745 2.370 2.592 2.679 2.754 2.943 2.987

E31 1.001 3.383 3.325 3.042 3.011 2.793 2.936 3.383 3.325 3.042 3.011 2.794 2.836
1.020 3.385 3.366 3.046 3.044 2.798 2.838 3.385 3.366 3.048 3.045 2.802 2.841
1.500 3.421 3.425 3.161 3.032 2.916 2.838 3.421 3.425 3.149 3.098 2.966 2.917

E22 1.001 3.199 3.196 3.263 3.220 3.387 3.471 3.199 3.196 3.263 3.220 3.388 3.471
1.020 3.209 3.237 3.270 3.311 3.393 3.477 3.209 3.237 3.276 3.318 3.403 3.487
1.500 3.434 3.286 3.422 3.422 3.503 3.594 3.434 3.286 3.582 3.648 3.762 3.855

mapped infinite domains, the mode field is expanded into a two dimensional Fourier sine series and resulting in a
matrix eigenvalue equation which is solved using the LAPACK subroutines.

The accuracy of present method is compared with the circular-harmonic expansion method for elliptical core
optical fibers and rectangular core optical waveguides. Moreover, solutions for step-index circular core optical fibers
are compared with the exact vector solution. Results shown that the present quasi-vector solutions provide a good
approximation of the full-vector solution.

The assumption used in cutoff frequencies calculation for quasi-vector modes i.e. ex � ey in quasi-TE mode and
ey � ex in quasi-TM mode, is accurate for two classes of waveguides. First, optical waveguides with arbitrary core
shape and small difference in refractive index between core and cladding. Second, arbitrary refractive index profile
waveguides with an elongated or slab like cross section.

Finally, the proposed method is easy to implement but extremely useful in analyzing optical waveguides with
arbitrary refractive index profile.
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APPENDIX

The integrals I1 to I6 in (23) and (28) are given as follows:

I1 = −m2
i π

2

∫ 1

u=0

∫ 1

v=0

(
du

dx

)2

φi(u, v)φj(u, v)dudv

= − m2
i

2α2
x

{
3δmi,mj

4
− δmi,mj−2

2
− δmi,mj+2

2
+

δmi,2−mj

2
+

δmi,mj−4

8
+

δmi,mj+4

8
− δmi,4−mj

8

}
δni,nj , (31)

I2 = miπ

∫ 1

u=0

∫ 1

v=0

(
d2u

dx2

)
1

tan(miπu)
φi(u, v)φj(u, v)dudv

=
mi

α2
x

{
δmi,2−mj

4
+

δmi,mj−2

4
− δmi,mj+2

4
− δmi,4−mj

8
− δmi,mj−4

8
+

δmi,mj+4

8

}
δni,nj , (32)

I3 = −n2
i π

2

∫ 1

u=0

∫ 1

v=0

(
dv

dy

)2

φi(u, v)φj(u, v)dudv

= − n2
i

2α2
y

{
3δni,nj

4
− δni,nj−2

2
− δni,nj+2

2
+

δni,2−nj

2
+

δni,nj−4

8
+

δni,nj+4

8
− δni,4−nj

8

}
δmi,mj , (33)

I4 = niπ

∫ 1

u=0

∫ 1

v=0

(
d2v

dy2

)
1

tan(niπv)
φi(u, v)φj(u, v)dudv

=
ni

α2
y

{
δni,2−nj

4
+

δni,nj−2

4
− δni,nj+2

4
− δni,4−nj

8
− δni,nj−4

8
+

δni,nj+4

8

}
δmi,mj , (34)

I5 = miπ

∫ 1

u=0

∫ 1

v=0

2
(

du

dx

)2 1
tan(miπu)

φi(u, v)φj(u, v)
∂ ln(n)

∂u
dudv

+
∫ 1

u=0

∫ 1

v=0

2
(

du

dx

)2

φi(u, v)φj(u, v)
∂2 ln(n)

∂u2
dudv

=
1
α2

x

∫ 1

u=0

du

∫ 1

v=0

dv {ln(n) {{16[c(2u)− c(4u)]−m2
j [c(4u)− 4c(2u) + 3]si(u)sj(u)si(v)sj(v)}

+ mimj [c(4u)− 4c(2u) + 3]ci(u)cj(u)si(v)sj(v) − 4mi[s(4u)− 2s(2u)]ci(u)sj(u)si(v)sj(v)
− 8mj[s(4u)− 2s(2u)]si(u)cj(u)si(v)sj(v)}} , (35)

I6 =
∫ 1

u=0

∫ 1

v=0

2
(

d2u

dx2

)
φi(u, v)φj(u, v)

∂ ln(n)
∂u

dudv

=
2
α2

x

∫ 1

u=0

du

∫ 1

v=0

dv {ln(n){4[c(4u)− c(2u)]si(u)sj(u)si(v)sj(v) + mi[s(4u)− 2s(2u)]ci(u)sj(u)si(v)sj(v)

+ mj [s(4u)− 2s(2u)]si(u)cj(u)si(v)sj(v)}} . (36)

In (35) and (36), sine related functions s(2u) = sin(2u), si(u) = sin(miπu), si(v) = sin(niπv), etc. For cosine related
functions, they are abbreviated by the symbol c.
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