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Abstract— Galerkin’s method applied to mapped

infinite domains is employed to analysis the quasi-

vector modes of optical waveguide structures. Re-

sults are presented for rib waveguides and com-

pare favourably with a near exact Fourier operator

transform method.

I. Introduction

The use of Galerkin’s method in solving scalar wave
equation for optical waveguides with arbitrary refrac-
tive index profiles was first proposed by Henry and
Verbeek [1]. Same method was used by Marcuse in
solving the vector wave equation [2]. However, there
is a large increase in computing time and memory re-
quirement. In considering that matter, we developed a
quasi-vector method based on Galerkin’s method that
include the polarization effects of optical waveguides
as an intermediate solution. The memory requirement
is the same and the computing time is slightly longer
as in solving the scalar wave equation. We also employ
the mapping scheme to eliminate the need of enclosing
waveguide structures within a rectangle which must
be large enough to ensure that the fields of the guided
modes of interest are zero at its boundary [3].

II. Mathematical Formulation

For a translationally invariant, real refractive index
profile n(x, y), the principal electric field component
Ex of the quasi-TE mode, i.e. Ey = 0, satisfies the
wave equation
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where Ex = Ex(x, y), n = n(x, y) and k = 2π/λ. We
map the whole x−y plane onto the unit square in u−v
space as in [3] using the transformation functions:
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where αx and αy are arbitrary scaling parameters in
the x- and y-directions respectively. By applying the

same change of variables, eq. (1) in the transformed
coordinate system becomes:
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where Ex = Ex(u, v) and n = n(u, v). Similar to the
scalar solution described in [3], the unknown electric
field Ex is expanded as

Ex =
NmNn∑

i=1

aiφi(u, v) =
Nm∑

mi=1

Nn∑
ni=1

ami,niφi(u, v) (4)

The expansion functions are chosen as the complete
set of orthonormal sinusoidal basis functions

φi(u, v) = 2 sin(miπu) sin(niπv) (5)

Follow the same procedures in [3], we substituting
eq. (4) into eq. (3), multiplying by φj(u, v) and in-
tegrating over a unit square to yield the result:
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)
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where
Sj,i = V 2Aj,i + Bj,i (7)

corresponding to the scalar wave equation and is de-
tailed in [3, eqs. (7)–(10)]. and

Pj,i = ρ2(I5 + I6) (8)

corresponding to the polarization correction. ρ is a
normalisation parameter. The two integrals I5 and I6

are given in eqs. (9) and (10).
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Fig. 1. Normalized propagation constants b for fundamental
quasi-TE mode against d. λ = 1.15µm. Ne

m = Nn = 40.

×∂2 ln(n)
∂u2

dudv

=
1
α2

x

∫ 1

u=0

du

∫ 1

v=0

dv {ln(n)

×{{
16[c(2u)− c(4u)] − m2

j [c(4u) − 4c(2u)
+3]si(u)sj(u)si(v)sj(v)}
+mimj [c(4u) − 4c(2u) + 3]ci(u)cj(u)si(v)sj(v)
−4mi[s(4u) − 2s(2u)]ci(u)sj(u)si(v)sj(v)
−8mj[s(4u)−2s(2u)]si(u)cj(u)si(v)sj(v)}} (9)

I6 =
∫ 1

u=0

∫ 1

v=0

2
(

d2u

dx2

)
φi(u, v)φj(u, v)

∂ ln(n)
∂u

dudv

=
2
α2

x

∫ 1

u=0

du

∫ 1

v=0

dv {ln(n)

×{4[c(4u)− c(2u)]si(u)sj(u)si(v)sj(v)
+mi[s(4u) − 2s(2u)]ci(u)sj(u)si(v)sj(v)
+mj[s(4u) − 2s(2u)]si(u)cj(u)si(v)sj(v)}} (10)

The sine and cosine functions have been abbreviated
by the symbols s and c respectively. Eq. (6) can be
written in matrix form by defining a vector a consisting
of the elements ai and by also defining a matrix M
composed of the coefficients Sj,i and Pj,i. Equation (6)
can now be written in form of a matrix eigenvalue
equation with eigenvector a and eigenvalue W 2.

III. Numerical Results and Discussions

We have applied the present method to study the
optical rib waveguide shown in the inset of Fig. 1. A
near-exact solution is available for that rib structure
by applying a Fourier operator transoform (F-OPT)
method [4]. Figure 1 shows the normalised propaga-
tion constant b = [(β/k)2−n2

2]/(n2
1−n2

2) as a function

TABLE I
Normalised propagation constant b for quasi-TE modes as calculated by

present and F-OPT method for rib waveguide structure shown in inset

of Fig. 1. The parameter Ne
m indicate the number of even spatial

frequency components used in the x-directions and Nn indicate the

number of spatial frequency components used in the y-directions.

b present (Ne
m = Nn) F-OPT

d(µm) 20 30 40
0.0 0.2939 0.2963 0.2970 0.2992
0.1 0.2966 0.2990 0.2996 0.3018
0.2 0.3006 0.3029 0.3035 0.3055
0.3 0.3062 0.3084 0.3089 0.3108
0.4 0.3136 0.3156 0.3161 0.3178
0.5 0.3229 0.3248 0.3253 0.3267
0.6 0.3343 0.3361 0.3365 0.3373
0.7 0.3480 0.3496 0.3500 0.3509
0.8 0.3645 0.3661 0.3664 0.3668
0.9 0.3860 0.3875 0.3879 0.3880
1.0 0.4245 0.4264 0.4269 0.4273

of d for the fundamental quasi-TE mode. It is observed
that present results are slight below the corresponding
F-OPT results. Follow the convergence of solutions as
show in Table I, results of present method should be-
come much closer to the corresponding F-OPT results
if the number of spatial frequency components Ne

m and
Nn are increased.

IV. Conclusion

We have presented a straightforward, simple, and
practical method for calculating the modal propaga-
tion constant of quasi-TE mode for optical waveguide
structures with arbitrary refractive index profiles. Fu-
ture research should be continued to include the quasi-
TM mode, its formulation is similar to that of quasi-
TE mode presented here, and full vector wave solution
of optical waveguide structures comprised of arbitrary
materials with any shapes or index profiles.
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