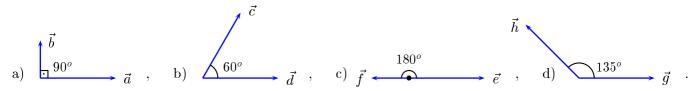
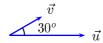

Lista de Exercícios de CVE Capítulo 5: Produtos entre vetores

Produto escalar.


Exemplo 1: calcule o produto escalar $\vec{u} \cdot \vec{v}$ entre os vetores \vec{u} e \vec{v} abaixo.

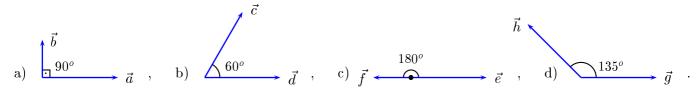
Solução: sabemos que $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$, onde θ é o ângulo entre os dois vetores. Temos, então,


$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta = 2.1.\cos 30^\circ = 2.\frac{\sqrt{3}}{2} = \sqrt{3}.$$

E1) Calcule os produtos escalares entre os vetores abaixo (dados: $|\vec{a}|=2, |\vec{b}|=1, |\vec{c}|=2, |\vec{d}|=2, |\vec{e}|=2,$ $|\vec{f}| = 1, |\vec{g}| = 2, |\vec{h}| = 2$:

Produto vetorial.

Exemplo 2: calcule o produto vetorial $\vec{u} \times \vec{v}$ entre os vetores $\vec{u} \in \vec{v}$ abaixo.


sabemos que $\vec{u} \times \vec{v} = |\vec{u}| |\vec{v}| \operatorname{sen} \theta \hat{n}$, onde θ é o ângulo entre os dois vetores e \hat{n} é um versor que é ortogonal a estes e cuja direção é dada pela regra da mão direita. Temos, então,

$$\vec{u} \times \vec{v} \longrightarrow \vec{u}$$

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta \ \hat{n} = 2.1. \sin 30^{\circ} \ \hat{n} = 2.\frac{1}{2} \ \hat{n} = 1 \ \hat{n}.$$

A direção e o sentido do vetor resultante são indicados na figura ao lado.

E2) Calcule os produtos vetoriais entre os vetores abaixo (dados: $|\vec{a}|=2, |\vec{b}|=1, |\vec{c}|=2, |\vec{d}|=2, |\vec{e}|=2,$ $|\vec{f}| = 1, |\vec{g}| = 2, |\vec{h}| = 2$:

Produto escalar em termos de componentes.

Exemplo 3: dados os vetores $\vec{u} = 3\hat{i} + 2\hat{j} - \hat{k}$ e $\hat{v} = -\hat{i} + 2\hat{j}$, calcule $\vec{u} \cdot \vec{v}$. Solução: $\vec{u} \cdot \vec{v} = (3\hat{i} + 2\hat{j} - \hat{k}) \cdot (-\hat{i} + 2\hat{j}) = 3.(-1) + 2.2 + (-1).0 = -3 + 4 + 0 = 1$.

Solução:
$$\vec{u} \cdot \vec{v} = (3\hat{i} + 2\hat{j} - \hat{k}) \cdot (-\hat{i} + 2\hat{j}) = 3 \cdot (-1) + 2 \cdot 2 + (-1) \cdot 0 = -3 + 4 + 0 = 1$$

E3) Dados os vetores $\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + \hat{j}$ e $\vec{c} = \hat{i} + \hat{j} - \hat{k}$, calcule: a) $\vec{a} \cdot \vec{b}$, b) $\vec{b} \cdot \vec{a}$, c) $\vec{a} \cdot \vec{c}$, d) $\vec{b} \cdot \vec{c}$, e) $\hat{a} \cdot \hat{a}$, f) $\hat{i} \cdot \hat{i}$, g) $\hat{i} \cdot \hat{j}$.

Produto vetorial em termos de componentes.

Exemplo 4: dados os vetores $\vec{u} = 3\hat{i} + 2\hat{j} - \hat{k}$ e $\hat{v} = -\hat{i} + 2\hat{j}$, calcule $\vec{u} \times \vec{v}$.

Solução.

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -1 \\ -1 & 2 & 0 \end{vmatrix} = \left[2.0\hat{i} + (-1).(-1)\hat{j} + 3.2\hat{k} \right] - \left[(-1).2\hat{i} + 3.0\hat{j} + 2.(-1)\hat{k} \right] = \\ = (0\hat{i} + \hat{j} + 6\hat{k}) - (-2\hat{i} + 0\hat{j} - 2\hat{k}) = (0 + 2)\hat{i} + (1 - 0)\hat{j} + (6 + 2)\hat{k} = 2\hat{i} + \hat{j} + 8\hat{k}$$

E4) Dados os vetores $\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + \hat{j}$ e $\vec{c} = \hat{i} + \hat{j} - \hat{k}$, calcule: a) $\vec{a} \times \vec{b}$, b) $\vec{b} \times \vec{a}$, c) $\vec{a} \times \vec{c}$, d) $\vec{b} \times \vec{c}$, e) $\hat{a} \times \hat{a}$, f) $\hat{i} \times \hat{i}$, g) $\hat{i} \times \hat{j}$.

Produto misto.

Exemplo 5: dados os vetores $\vec{u} = 3\hat{i} + 2\hat{j} - \hat{k}$, $\hat{v} = -\hat{i} + 2\hat{j}$ e $\vec{w} = 2\hat{i} - \hat{j} + 3\hat{k}$, calcule $\vec{u} \cdot (\vec{v} \times \vec{w})$.

E5) Dados os vetores $\vec{a} = 3\hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + \hat{j}$ e $\vec{c} = \hat{i} + \hat{j} - \hat{k}$, calcule: a) $\vec{a} \cdot (\vec{b} \times \vec{c})$, b) $\vec{b} \cdot (\vec{c} \times \vec{a})$, c) $\vec{a} \cdot (\vec{c} \times \vec{b})$.

Respostas

E1) a) 0, b) 2, c) -2, d) $-2\sqrt{2}$.

E2) a) $2\hat{n}$ \odot , b) $2\sqrt{3}\hat{n}$ \otimes , c) $\vec{0}$, d) $2\sqrt{2}\hat{n}$ \odot .

E3) a) -8, b) -8, c) 0, d) -1, e) 14, f) 1, g) 0.

E4) a) $-\hat{i} - 2\hat{j} - \hat{k}$, b) $\hat{i} + 2\hat{j} + \hat{k}$, c) $\hat{i} + 4\hat{j} + 5\hat{k}$, d) $-\hat{i} - 2\hat{j} - 3\hat{k}$, e) $\vec{0}$, f) $\vec{0}$, g) \vec{k} .

E5) a) -2, b) -2, c) 2.