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Abstract

In this article, it is shown how to obtain objects called Eichler integrals in the mathematical
literature that can be used for calculating scattering amplitudes in String Theory. These Eichler
integrals are also new examples of Eichler integrals with poles.

1 Introduction

The concept of an Eichler integral is closely related to the concept of automorphic forms. Although
automorphic forms have a large range of applications in Physics and, in particular in String Theory,
Eichler integrals remain relatively unknown objects to both mathematicians and physicists. One
can picture an Eichler integral as a generalization of the concept of automorphic forms, and they
are related to the better known Beltrami differentials that are used in String Theory, in particular
in the calculation of multiloop scattering amplitudes of strings.

This article begins with a description of the main properties of automorphic forms with some
examples that will be useful when we describe the new Eichler integrals. The definition of Eichler
integrals is given next, with some examples that can be used in String Theory.

2 Automorphic Forms

An automorphic form of weight q is a function [1] φ(z) that transforms in the following way under
a projective transformation Pa:

φ (Pa(z)) =
[
∂Pa(z)
∂z

]q
φ(z) .

Automorphic forms with just one pole will be more of our interest, since the order of the pole is
limited in a simple way by the Riemann-Roch theorem [2]. We now give some examples of these
functions.
∗Article published in the Journal of Mathematical Physics 37 (1996).
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2.1 Example 1

A simple case of an automorphic form of weight q can be given for the case where there is just one
projective transformation P (z) given by

P (z) = w(z − α) + α ,

where α is the finite fixed point of the transformation (the other fixed point is at infinity) and w is
the multiplier. An automorphic form φ(z) of weight q can then be given by

φ(z) = (z − α)q .

In the case where P (z) has two finite fixed points, when it can be expressed by

P (z) =
α(x− β)−wβ(z − α)

(z − β)−w(z − α)
,

an automorphic form of weight q is given by

φ(z) = [(z − α)(z − β)]q .

2.2 Example 2

In the case of a single projective transformation P (z) with just one fixed point, we may have
automorphic forms with poles, given by

φn(z) = (z − α)q
(
∂

∂t

)n−1

P(t) , t = ln(z − α)− ln(−α) ,

where n is the order of the pole and P(t) is the Wierstrass P function [3] with periods lnw and
2πi.

In the case of P (z) having two finite fixed ponits, we have

φ(z) = [(z − α)(z − β)]q
(
∂

∂t

)n−1

P(t) , t = ln
(
z − α
z − β

)
− ln

(
α

β

)
,

instead.

2.3 Example 3

Still another way of obtaining an automorphic form on a genus g Riemann surface is considering
the following function [1] (called a Poincaré series):

φ(z, ζ) =
∑
a

[
dTa(z)
dz

]−q ζ − k
Ta(z)− ζ

,

where k is an arbitrary constant and the sum
∑
a is over all elements of the Schottky group, which

is the group of all possible combinations of the projective transformations Pb(z), b = 1, . . . , g.
Under a transformation z → Tb(z), one gets

φ (Tb(z), ζ) =
∑
a

[
dTaTb(z)

dz

]−q ζ − k
TaTb(z)− ζ

.
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We now perform a change of variables TaTb(z) = Tc(z). Using the chain rule we have

d

dz
Tc(z) =

[
d

dz
TaTb(z)

]
× d

dz
Tb(z) ,

so that we have

φ (Tb(z), ζ) =
[
T ′b(z)

]q∑
a

[
dTc(z)
dz

]−q ζ − k
Tc(z)− ζ

.

Since we are summing over all the elements of the Schottky group, the series above is equivalent
to the original one, so that we have

φ (Tb(z), ζ) =
[
T ′b(z)

]q
φ(z, ζ) ,

i.e. it is an automorphic form of weight q.

2.4 Example 4

In the multiloop case, let us consider only projective transformations Pa with finite fixed points αa
and βa. We then consider the following series:

Pw(z) =
∑
b

(z − αb)(z − βb)
wb(αb − βb)

δwb
ε

, (1)

where the sum is over all the elements of the Schottky group formed by these transformations and
δwb and ε are infinitesimals. We then have that

Pw (Ta(z)) =
∑
b

[Ta(z)− αb] [Ta(z)− βb]

=
T ′a(z)

wa(αa − βa)2

∑
b

1
wb(αb − βb)

(αa − waβa − αb +waαb)(αa − waβa − βb +waβb)

×
[
z − (αaβa − waαaβa − αbβa +waαbαa)

(αa − waβa − αb + waαb)

] [
z − (αaβa −waαaβa − βbβa + waβbαa)

(αa −waβa − βb +waβb)

]
δwb
ε

.

Making then the following change of variables:

αc =
(1− wa)αaβa − (βa − waαa)αb

αa −waβa − (1− wa)αb
, (2)

βc =
(1−wa)αaβa − (βa −waαa)βb

αa − waβa − (1−wa)βb
, (3)

wc = wb , (4)

we may write

Pw (Ta(z)) = T ′a(z)
∑
c

(z − αc)(z − βc)
wc(αc − βc)

δwc
ε

,

where we have used
δwc =

∂wc
∂wb

δwb .

Since we are summing over all elements of the Schottky group (with the condition that the fixed
points are finite), we then see that the expression on the right hand side is equivalent to the series
we started with, so that

Pw (ta(z)) = T ′a(z)Pw(z) .
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We may also consider the following two series:

Pα(z) =
∑
b

(1−wb)
wb(αb − βb)2

(z − βb)2 δαb
ε

, (5)

Pβ(z) =
∑
b

(1−wb)
wb(αb − βb)2

(z − αb)2 δβb
ε

. (6)

Using the same change of variables (2)-(4) and the fact that

δαc =
∂αc
∂αb

δαb =
wa(αa − βa)2

[αa −waβa − (1−wa)αb]2
δαb ,

δβc =
∂βc
∂βb

δβb =
wa(αa − βa)2

[αa −waβa − (1−wa)βb]2
δβb ,

we then obtain

Pα (Ta(z)) = T ′a(z)Pα(z) ,
Pβ (Ta(z)) = T ′a(z)Pβ(z) .

We have then obtained three examples of automorphic forms with weight 1.

3 Eichler Integrals

An Eichler integral of order q is defined in the following way [4] [5]: it is a function f(z) that
transforms like

f (Ta(z)) =
[
∂Ta(z)
∂z

]q [
f(z) + P q+1(z)

]
,

where P q+1(z) is a polynomial at most of order q + 1. It can be pictured as a generalization of the
concept of automorphic form. Eichler integrals are related with automorphic forms in the following
way [4]: given an Eichler integral f(z) of order q, we then have

φ(z) =
(
∂

∂z

)2q+1

f(z) , (7)

where φ(z) is an automorphic form of weight q + 1, i.e.

φ (Ta(z)) =
[
∂Ta(z)
∂z

]q+1

φ(z) .

Here are some examples of Eichler integrals.

3.1 Example 1

A trivial example of an Eichler integral is given by any polynomial of order 2, i.e. any function of
the form

f(z) = a + bz + cz2 ,

where a, b, and c are constants. Such a function transforms like

f (Ta(z)) = T ′a(z)
[
f(z) +

1
w(α− β)2

(d+ ez + fz2)
]
,
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where

d = (1−w)2a+ (1−w)(α−wβ)b−
[
wβ2(1− w)− 2w(αβ − 1) + wα2

]
c ,

e = 2(wα− β)(1− w)a− 2αβ(1− w)2b+ [2wβ(α+ β)− 2αβ(wβ + α)] c ,
f = (β2 − wα2)(1−w)a+ αβ(1− w)(β −wα)b−wαβ2(2−wα)c .

Differentiating it three times, we obtain

d3

dz3
f(z) = 0 ,

which is a sort of automorphic form (a trivial one) so equation (7) holds.

3.2 Example 2

There are not many examples of Eichler integrals with poles in the literature. The first one was
given by Ahlfors [4]. In our notation, his Eichler integral is given by

f(z, ζ) =
∑
b

[z − Tb(ζ)]−1 [T ′b(ζ)]q , (8)

where the sum is over all elements of the Schottky group.
This function transforms in the following way:

f (Ta(z), ζ) =
[
T ′a(z)

]q−1

{
f(z, ζ) +

∑
b

[
T ′aTb(ζ)

(T ′a(z))
q−1/2

− 1

]
[z − Tb(ζ)]−1 [T ′b(ζ)]q

}
. (9)

The second term in the right hand side can be shown to be a polynomial of degree q. This Eichler
integral has just one simple pole at ζ = z.

In order to obtain Eichler integrals with poles of higher order, one just has to form derivatives
with respect to ζ:

fk+1(z, ζ) =
∂k

∂ζk
f(z, ζ)

where fk+1(z, ζ) is an Eichler integral with a pole of order k + 1 at ζ = z.

3.3 Example 3

As it will be shown now, not all Eichler integrals must transform in such a complicated way. It is
not hard to find examples of Eichler integrals with simple and useful transformations.

As explained before, an Eichler integral can be obtained by simply integrating an automorphic
form a certain number of times. It is possible to show that every automorphic form of weight q can
be expressed in terms of the following Poincaré series:

g(z, ζ) =
∑
b

[
T ′b(z)

]−q ζ − k
Tb(z)− ζ

, (10)

where k is an arbitrary constant.
If we now take the case q = −1 we have simply

g(z, ζ) =
∑
b

[
T ′b(z)

]−1 ζ − k
Tb(z)− ζ

=
∑
b

(ζ − k)
[

1
z + (bb − ddζ)/(ab − cbζ)

− 1
z + db/cb

]
,

5



and, by (7), we may obtain an Eichler integral of weight zero simply by integrating this expression
once. Doing this we obtain the following:

f(z, ζ) =
∑
b

(ζ − k) ln
(

cb
(ab − cbζ)

[(ab − cbζ)z + (bb − dbζ)]
(cbz + db)

)
+ c′ , (11)

where c′ is a constant of integration that can be set to zero.
We may then make the following change of coefficients:

am = ab − cbζ , cm = cb ,

bm = bb − dbζ , dm = db , (12)

and the function f(z, ζ) becomes simply

f(z, ζ) =
∑
m

(ζ − k) ln
(
cm(amz + bm)
am(cm + dm)

)
.

Performing the conformal transformation

Ta(z) =
aaz + ba
caz + da

(13)

with ca 6= 0 in the expression above, we obtain

f (Ta(z), ζ) =
∑
m

(ζ − k) ln
(
cm [am(aaz + ba) + bm(caz + da)]
am [cm(aaz + ba) + dm(caz + da)]

)
. (14)

If we now make another change of variables,

ab = amaa + bmca , cb = cmaa + dmca ,

bb = amba + bmda , db = cmba + dmda , (15)

we then have

f (Ta(z), ζ) =
∑
b

(ζ − k) ln
(

(cbda − cadb)
(abda − cabb)

(abz + bb)
(cbz + db)

)

=
∑
b

(ζ − k)
[
ln
(
cb(abz + bb)
ab(cbz + db)

)
+ ln

(
ab(cbda − cabb)
cb(abda − cabb)

)]
. (16)

Since we are summing over all transformations Tb(z) with cb 6= 0, the first term of expression
(16) is just f(z, ζ) and we then have

f (Ta(z), ζ) = f(z, ζ) +
∑
b

(ζ − k) ln
(
ab(dbaa − cbba)
cb(bbaa − abba)

)
. (17)

The second term of expression (17) can be readily identified as a constant, i.e. a polynomial in z
of degree 0, so that it is proved that the function f(z, ζ) is an Eichler integral with weight 0.

We now consider automorphic form (10) with weight −2:

g(z, ζ) =
∑
b

[
T ′b(z)

]2 ζ − k
Tb(z)− ζ

, (18)
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where k is a constant and the sum is over all elements of the Schottky group. According to the
theory of Eichler integrals, if we integrate an automorphic form of weight −2 three times we shall
obtain an Eichler integral of weight 1.

If we take Tb(z) to be of the form

Tb(z) =
abz + bb
cbz + db

we may then write this function in the following form:

g(z, ζ) =
∑
b

ζ − k
ab − cbζ

1
(cbz + db)3 [z + (bb − dbζ)/(ab − cbζ)]

.

This can be easily integrated. Considering the case where cb 6= 0 and performing integration three
times on this automorphic form we obtain the following function:

f(z, ζ) =
∑
b

1
2

(ζ − k) [(ab − cbζ)z + (bb − dbζ)]2

× ln
(

cb
(ab − cbζ)

[(ab − cbζ)z + (bb − dbζ)]
(cb + db)

)
+

1
2cb(ab − cbζ)

z − 2(ab − cbζ)db + 1
4c2
b(ab − cbζ)2

+ c1z
2 + c2z + c2 (19)

where c1, c2 and c3 are constants resulting from the integrations. Choosing these integration
constants in such a way as to cancel with the polynomial part of expression (19) we then obtain

f(z, ζ) =
∑
b

1
2

(ζ − k) [(ab − cbζ)z + (bb − dbζ)]2

× ln
(

cb
(ab − cbζ)

[(ab − cbζ)z + (bb − dbζ)]
(cb + db)

)
. (20)

We can now make the change of coefficients (12) and the function f(z, ζ) becomes

f(z, ζ) =
∑
m

1
2

(ζ − k)(amz + bm)2 ln
(
cm(amz + bm)
am(cm + dm)

)
. (21)

This expression should be an Eichler integral and we are going to show it indeed is. If we
perform the conformal transformation

Ta(z) =
aaz + ba
caz + da

(22)

with ca 6= 0 in the expression above, we obtain

f (Ta(z), ζ) =
∑
m

1
2

(ζ − k)
[
am(aaz + ba) + bm(caz + da)

caz + da

]2

× ln
(
cm [am(aaz + ba) + bb(c− iz + da)]
am [cm(aaz + ba) + dm(caz + da)]

)
. (23)
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If we now make another change of variables, given by (15), we then have

f (Ta(z), ζ) = T ′a(z)
∑
b

1
2

(ζ − k)(abz + bb)2 ln
(

(dbaa − cbba)(abz + bb)
(bbaa − abba)(cbz + db)

)

= T ′a(z)
∑
b

1
2

(ζ − k)(abz + bb)2
[
ln
(
cb(abz + bb)
ab(cbz + db)

)
+ ln

(
ab(dbaa − cbba)
cb(bbaa − abba)

)]
.(24)

Since we are summing over all transformations Tb(z) with cb 6= 0, the first term of expression (24)
is just f(z, ζ), and we then have

f (Ta(z), ζ) = T ′a(z)

[
f(z, ζ) +

∑
b

1
2

(ζ − k)(abz + bb)2 ln
(
ab(dbaa − cbba)
cb(bbaa − abba)

)]
. (25)

The second term of expression (25) can be readly identified with a polynomial in z of degree 2
so that it is proved that the function f(z, ζ) is an Eichler integral.

4 Example 4

We consider now the case
T (z) =

az + d

cz + d
, (26)

that can be written in terms of the finite fixed point α and the multiplier w as

T (z) = w(z − α) + α . (27)

In String Theory, and in particular in the Group Theoretic approach [6], we will be interested
in functions that are associated with conformal transformations that cause infinitesimal changes in
the moduli of a Riemann surface with genus g. In one loop, i.e. a Riemann surface with genus 1,
we have one finite fixed point α, one fixed point at infinity, and the multiplier w. In order to fix the
modular invariance of the theory, we must fix three variables. Besides the one fixed point that has
been already fixed at infinity, we can choose to fix the finite fixed point and one of the variables
associated with the incoming strings so that the multiplier w will be the only variable associated
with the loop left.

We then want a function that has the effect of changing the multiplier w infinitesimally, i.e. we
want a function that transforms like

f (T (z)) = T ′(z)f(z)− ∂T (z)
∂w

δw

ε
, (28)

i.e.
f (T (z)) = T ′(z)

[
f(z)− δw

εw
(z − α)

]
(29)

and
f (S(z)) = f(z) , (30)

where S(z) = e2πiz and where ε and δw are infinitesimals.
A function that transforms in this way was found in references [6] and [7] in the context of

String Theory. It is given by

f(z) =
δw

εw
(z − α)ζ̄ (ln(z − α)) , (31)

8



where the function ζ̄(t) is given by

ζ̄(t) = ζ(t)− ζ(πi)
πi

t .

The function ζ(t) is Weierstrass’ ζ function,

ζ(t) =
1
t

+
∑
p 6=0

(
1

t− p +
1
p

+
1
p2

)
,

where p is the semi-period of the function and is given by p = nw1 +mw2, (n,m ∈ Z), where

w1 = lnw , w2 = 2πi .

The Weierstrass ζ function transforms in the following way:

ζ(t+ w1) = ζ(t) + 2ζ(w1/2) ,
ζ(t+ w2) = ζ(t) + 2ζ(w2/2) ,

and the term ln(z − α) transforms like

ln (T (z)− α) = lnw + ln(z − α) ,

ln
(
e2πiz − e2πiα

)
= ln(2πi) + ln(z − α) ,

so that we have
f (T (z)) = T ′(z)

[
f(z)− δw

εw
(z − α)

]
. (32)

The function ζ̄(t) can be related to the theta function [3] in the following way:

ζ̄(t) =
d

dt
ln θ(t, τ) ,

where θ(t, τ) has periods w1 = lnw and w2 = 2πi.
If we take the third derivative of the function f(z), we obtain

g(z) = f ′′′(z) =
δw

εw

1
(z − α)2

[
P(t) +

ζ(πi)
πi
−P ′′(t)

]
,

where t = ln(z − α) and P(t) is Weierstrass’ P function with periods w1 = lnw and w2 = 2πi,
given by

P(t) = − d

dt
ζ(t)

which transforms like
P(t+w1) = P(t+w2) = P(t) ,

i.e. it is an elliptic function.
Since P(t) and its derivatives do not change under a transformation of t+ lnw or t+ 2πi, we

then have
g (T (z)) =

1
w2
g(z) =

[
T ′(z)

]−2
g(z) ,

i.e. g(z) is an automorphic form with weight −2, as expected from the relation (7). So we have
verified that f(z) is an Eichler integral.
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4.1 Example 5

We shall now search for a function with transformation properties similar to those of (28), but now
for the case of many projective transformations. We want a function that transforms like

fw (Ta(z)) = T ′a(z)fw(z)− ∂Ta(z)
∂wa

δwa
ε

, (33)

where
Ta(z) =

αa(z − βa)− waβa(z − αa)
(z − βa)−wa(z − αa)

,

for every a = 1, . . . , g, i.e. the action of Ta(z) on this function causes infinitesimal changes in the
multipliers wa. So this function must transform like

fw (Ta(z)) = T ′a(z)
[
fw(z) +

(z − αa)(z − βa)
wa(αa − βa)

δwa
ε

]
. (34)

In addition to this, we also demand that

fa (Sa(z)) = fa(z) , (35)

where z → Sa(z) is the transformation that takes z once around the aa loop for a = 1, . . . , g.
In order to find the Eichler integral that transforms like this, we shall make analogies between

the function in one loop and the function that we must have for the multiloop case. First we notice
that the series Pw(z) defined in (1),

Pw(z) =
∑
b

(z − αb)(z − βb)
wb(αb − βb)

δwb
ε

,

transforms like
Pw (Ta(z)) = T ′a(z)Pw(z) ,

so that it is the generalization for the multiloop case of the polynomial (z − α) for the one loop
case.

Now we must try to find an analog of the Weierstrass ζ function suitable to the multiloop case.
This can be obtained by first generalizing the concept of a θ function and of the Weierstrass ζ
function. This function is given by the hyperelliptic ζ function [8] [9] or best, by the ζ̄ function
defined in the Appendix. In our first attempt we attach a ζ̄b(v) function to every element of the
series Pw(z), so that we have

f1w(z) =
∑
b

δwb
ε

(z − αb)(z − βb)
wb(αb − βb)

ζ̄b(v) .

This function will not transform the way we want, since the term (z−αb)(z−βb)/(αb−βb) and the
first Abelian integrals vb(z) do not transform in the same way. We then go to the next step, which
is making ζ̄ a function not of the first Abelian integrals vb(z), but of the variables ub(z) (such a
change of variables is justified in Baker [8], section 192), such that

ub(z) = ln
(
z − αb
z − βb

)
− ln

(
αa
βa

)
.
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Under a change z → Ta(z), these variables will change like

ub (Ta(z)) =
Ta(z)− αb
Ta(z)− βb

=
(αa − waβa − αb + waαb)
(αa − waβa − βb + waβb)

[
z − (αaβa−waαaβa−αbβa+αbwaαa)

(αa−waβa−αb+waαb)

]
[
z − (αaβa−waαaβa−βbβa+βbwaαa)

(αa−waβa−βb+waβb)

] .
Performing the same change of variables as in (2)-(4), we then obtain

Ta(z)− αb
Ta(z)− βb

= wca
z − αc
z − βc

,

where the coefficient wca is given by

wca =
(1− wa)βc − (βa −waαa)
(1−wa)αc − (βa −waαa)

,

so that
ub (Ta(z)) = lnwca + uc(z) .

We then redefine the generalized θ function θ(v) in the following way:

θ(u) =
∞∑

n=−∞
exp

 g∑
c,d=1

(nc + δc)
1
2

lnwcd(nd + δd) +
g∑
c=1

2πiγc(nc + δc) +
g∑
c=1

uc(nc + δc)

 .

This function transforms like

θ(u+ Ω) = exp

{
−

g∑
c=1

pc

(
uc +

1
2

Ωc

)
−

g∑
c=1

[πipcqc − 2πi(qcδc − pcγc)]
}
θ(u) ,

where Ωb is now given by

Ωb =
g∑
c=1

(2πiδbcpc + lnwbcqc) = 2πipb +
g∑
c=1

lnwbcqc .

Defining now

ζ̄b(u) =
∂

∂ub
ln θ(u) , (36)

we have
ζ̄b (u (Ta(z))) = ζ̄b(u)− δab

and
ζ̄b (u (Sa(z))) = ζ̄b(u) .

We then define the following function:

f(z) =
∑
b

δwb
ε

(z − αb)(z − βb)
wb(αb − βb)

ζ̄b (u(z)) . (37)

This function transforms like

fw (Ta(z)) = T ′a(z)
∑
c

δwc
ε

(z − αc)(z − βc)
wc(αc − βc)

[
ζ̄c (u(z))− δac

]
= T ′a(z)

[∑
c

δwc
ε

(z − αc)(z − βc)
wc(αc − βc)

ζ̄c (u(z))− δwa
ε

(z − αa)(z − βa)
wa(αa − βa)

]
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and
fw (Sa(z)) = fw(z) .

Since we are summing over all the elements of the Schottky group, we then have

fw (Ta(z)) = T ′a(z)
[
fw(z)− δwa

ε

(z − αa)(z − βa)
wa(αa − βa)

]
,

fw (Sa(z)) = fw(z) ,

which are the transformation properties we wanted. So we have obtained the Eichler integral that
has the effect of changing infinitesimally the variables wa of a Riemann surface of genus g.

One way to verify this is a true Eichler integral is to take its third derivative. The result must
be an automorphic form of weight −2. Taking the third derivative of (37), we have

gw(z) ≡ d3

dz3
fw(z) =

∑
b

δwb
εwb

[
(αb − βb)

(z − αb)(z − βb)

]2 [
P̄bc (u(z))− P̄ ′′ (u(z))

]
, (38)

where
P̄bc(u) = − ∂

∂uc
ζ̄b(u)

is the hyperelliptic P function and

P̄ ′′bc(u) =
∂2

∂u2
c

P̄bc(ub) .

It can be easily verified that P̄bc(u) and its derivatives are invariant under changes z → Ta(z)
and z → Sa(z), so that the function g(z) transforms like

gw (Ta(z)) =
(
T ′a(z)

)−2
gw(z) , (39)

i.e. it is an automorphic form of weight −2. This confirms fw(z) as an Eichler integral.

4.2 Example 6

In the same way we found a function (Eichler integral) that changes the variables wa of a Rie-
mann surface infinitesimally we now want to find a function that will change the variables αa
infinitesimally. This means this function must transform like

fα (Ta(z)) = T ′a(z)fα(z)− ∂Ta(z)
∂αa

δαa
ε

,

for every a = 1, . . . , g, what implies that we want this function to transform like

fα (Ta(z)) = T ′a(z)
[
fα(z) +

(1− wa)
wa(αa − βa)2

(z − βa)2 δαa
ε

]
. (40)

We also demand that
fα (Sa(z)) = fα(z) .

The method to obtain this function is analogous to the one used in the example 5, but now we use,
instead of the Poincaré series Pw(z), the series given in (5):

Pα(z) =
∑
b

δαb
ε

(1− wb)
wb(αb − βb)2

(z − βb)2 .

12



The function (Eichler integral) with the properties we need is then given by

fα(z) =
∑
b

δαb
ε

(1−wb)
wb(αb − βb)2

(z − βb)2ζ̄b(u) . (41)

4.3 Example 7

Similarly, if want a function that changes the variables βa infinitesimally, we then need it to
transform like

fβ (Ta(z)) = T ′a(z)fβ(z)− ∂Ta(z)
∂βa

δβa
ε

,

for every a = 1, . . . , g, i.e.

fβ (Ta(z)) = T ′a(z)
[
fβ(z) +

(1−wa)
wa(αa − βa)2

(z − αa)2 δβa
ε

]
. (42)

We also demand that
fβ (Sa(z)) = fβ(z) . (43)

We then use the Poincaré series (6),

Pβ(z) =
∑
b

δβb
ε

(1− wb)
wb(αb − βb)2

(z − αb)2 ,

and build the Eichler integral

fβ(z) =
∑
b

δβb
ε

(1−wb)
wb(αb − βb)2

(z − αb)2ζ̄b(u) , (44)

which has the correct transformation properties.
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A Some geometrical objects defined on a genus g Riemann surface

A.1 Generalized θ functions

The generalized ϑ function is defined in the following way [8]:

ϑ(v; γ, δ) =
∞∑

n=−∞
exp


g∑

a,b=1

[
1

2πi
vaη(2)abvb + πi(na + δa)τab(nb + δb)

]

+
g∑
a=1

[va(na + δa) + 2πiγa(na + δa)]

}
,

13



where the sum
∑∞
n=−∞ means the sum over all na, a = 1, . . . , g. Here, va and vb are the g first

Abelian integrals, η(2)ab is a symmetric g × g matrix, na and nb are integers and γa and δa are
vectors with g components that are the characteristics of the function.

If all the lements in the rows p and q are integers, this function transforms like [8]

ϑ(v + Ω; γ, δ) = exp

{
g∑
a=1

[
Ha

(
va +

1
2

Ωa

)
− πipaqa + 2πi(qaδa − paγa)

]}
ϑ(v; γ, δ)

where v + Ω stands for the sums va + Ωa (a = 1, . . . , g) where

Ωa = 2πi
g∑
b=1

[
2η(1)abpb + 2η(2)abqb

]
and

Ha =
g∑
b=1

[
2η(1)abpb + 2η(2)abqb)

]
where η(1) and η(2) are g × g matrices and p, q are g-vectors.

We can fix η(2)ab = 0. Thsi implies

η(1)ab = −1
2
δab .

We then have the following function:

θ(v; γ, δ) =
∞∑

n=−∞
exp


g∑

a,b=1

πi(na + δa)τab(nb + δb) +
g∑
a=1

[va(na + δa) + 2πiγa(na + δa)]

 ,

which transforms like

θ(v + Ω; γ, δ) = exp

{ g∑
a=1

[
Ha

(
va +

1
2

Ωa

)
− πipaqa + 2πi(qaδa − paγa)

]}
θ(v; γ, δ) .

This is the function that is generally reffered to as the generalized θ function in the literature.
We may define the well-known object called the prime form in terms of the generalized θ

function, which is its most general definition. It is given by

E(z, ζ) = θ (v(z)− v(ζ))

[ g∑
a=1

∂aθ(0)wa(z)

]−1/2 [ g∑
b=1

∂bθ(0)wb(z)

]−1/2

,

where
∂aθ(0) ≡ ∂

∂va
θ(v)

∣∣∣∣
v=0

, ∂bθ(0) ≡ ∂

∂vb
θ(v)

∣∣∣∣
v=0

,

and wa(v), wb(v) are first Abelian differentials.
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A.2 Hyperelliptic ζ function

We now define the hyperelliptic ζ-function [8] [9]:

ζa(v) =
∂

∂va
lnϑ(v; γ, δ) .

This function transforms in the following way:

ζa(v + Ω) = Ha + ζa(v) =
g∑
b=1

[
2η(1)abpb + 2η(2)abqb

]
+ ζa(v) .

The analogy with the one loop ζ-functions is complete when we associate the matrices η(1) and η(2)

with the numbers ζ(w1/2) and ζ(w2/2), respectively. We then have the identity

g∑
c=1

2πiτacη(2)cb − 2πiη(1)ab = δab .

A function that will be more useful to us is one that is invariant under a change Ω = 2πiqa so
that we must fix η(2)ab = 0. Such a function, say ζ̄a, is defined by

ζ̄a(v) =
∂

∂va
ln θ(v; γ, δ)

and transforms like
ζ̄a(v + Ω) = −pa + ζ̄a(v) .

More particularly, this formula shows that the function ζ̄ is invariant under a change Ωa = 2πiτabpb
for b 6= a. It only changes, and then only by a constant term, under the transformation Ωa =
2πiτaapa for any pa.

A.3 Hyperelliptic P function

We now define the hyperelliptic P function in the following way [8] [9]:

Pab =
∂

∂vb
ζa(v) =

∂

∂vb

∂

∂va
ln θ(v) .

This function is invariant under changes Ωa = 2πi
∑g
b=1 τab + 2πiqa, i.e.

Pab(v + Ω) = Pab .
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