CS255 - APRIL 2005 - Marking Scheme

Section A Compulsory

(a)
(i)
Explain what is meant by the term abstract data type. State an advantage of using abstract data types.
[2]

· An abstract data type is a data type that is defined solely in terms of the operations that apply to the data without commitment as to how the value of such an object is to be represented.
[1]

· Suitable example (e.g. stack defined by push and pop operations)
[1]

(ii)
Encapsulation is an important concept in object-oriented programming. Explain what is meant by encapsulation and give one advantage of it.
[2]

· Encompassing data and operations in the same structure so that interior structure of data is entirely hidden from any other object.
[1]

· Suitable advantage (e.g. reusability)
[1]

(iii)
Explain the difference between a static member variable and non-static member variables, and give an example of when a static member variable could be used.
[2]

· Static is where the same instance is shared by all occurrences of the object
[1]

· Suitable example (e.g. reference counting)
[1]

(iv)
Explain what is meant by a virtual base class, and give an example of when it may be necessary to use a virtual base class.
[2]

· A class which can not be instantiated, where all members are virtual
[1]

· Suitable example (e.g. where base classes may require different implementations in differing subsequent derived classes).
[1]

(v)
State the purpose of a class destructor, and why it is important that classes include an appropriate destructor.
[2]

· To clean up after an object when it is no longer needed
[1]

· Suitable reason (e.g. resources must be properly and cleanly released
[1]

 (b)
Trace the following code and produce its output:
[5]

void main(void) {

 int NumList[5]= {1, 2, 3, 4, 5};

 int i, *one, *two;

one= &NumList[1];

two= NumList;

*(one-1)= 42;

*two= 66;

cout << “First= “ << *one << endl;

cout << “Second= “ << NumList[0] << endl;

one= one+3;

two= (++two) + 1;

cout << “Third= “ << *one << endl;

cout << “Fourth= “ << *two << endl;

for(i= 0; i< 5; i++) cout << NumList[i];

};

First= 2
[1]

Second= 66
[1]

Third= 5
[1]

Fourth= 3
[1]

66 2 3 4 5
[1]

(c)
An oil company requires a system to manage their oil tank farm. You are to implement such a system.

(i)
Define a class called OilTank that holds the following members:
[4]

A private integer pointer variable, which holds the tank number
A private floating point integer which holds the capacity in gallons
A destructor

Class OilTank {

private:

int* TankNumber;

float Capacity;

public:

~OilTank();

};

· Class structure
[1]

· A public destructor
[1]

· A private integer pointer
[1]

· A private floating point integer
[1]

(ii)
Add to your class a constructor, which takes in the parameters necessary to initialise the member variables, and performs the initialisation.
[2]

OilTank(int* x, float y) {

TankNumber= x;

Capacity= yl

};

· Constructor signature
[1]

· Initialisations
[1]

(iii)
Add to your class an overloading of the >> operator, such that it takes in a reference to an istream object, in, and a reference to an OilTank, Tank. The operator should prompt the user for a tanks number and capacity, input the number and capacity, and return the object with these values assigned.
[5]

istream& operator >> (istream& In, OilTank& Tank) {

cout << “Tank number?”;

In >> Tank.TankNumber;

cout << “Capacity?”;

In >> Tank.Capacity;

return Tank;

};

· Operator signature
[1]

· Input prompts
[1]

· Reading in the TankNumber
[1]

· Reading in the Capacity
[1]

· Returning the object
[1]

(iv)
Consider the following class TankCustomer, which holds a tank customers name, the customers telephone number, and the tank number which they rent:

class TankCustomer {

char* CustomerName;

char CustomerTelephone[7];

int TankNumber;

};
Add to this class a function, called Display, which takes as a parameter an OilTank, and displays the customers name, and both the capacity and number of the oil tank passed in should the customers tank number be the same as the tank passed in. Note that you will need to ensure that your function is able to override the default protection mechanisms as the variables it accesses in the Tank class are all private members.
[4]

friend void TankCustomer:Display(OilTank T) {

if(TankNumber== T->TankNumber) {

Cout << CustomerName

<< T.Capacity

<< T->TankNumber;

}

}
· Declaring the function a friend
[1]

· Suitable test
[1]

· Printing the output
[1]

· Correct referencing of member variables
[1]
(d) Briefly explain ONE (1) objective of each of the following terms used in the Object-oriented C++ programming language context.

[4]

1. Class
contains the related data and operations that act on the data together.

2. friend function

to access private data in a class which is a non member function

3. multiple inheritance

allow to inherits more than one base class

4. virtual function

allow derived classes to replace the implementation provided by the base class.

[accept alternative explanation, max. 1 mark each]

(e) How do message and method in Object-oriented programming relate to each other ?
[2]

Message is a request to invoke a method in a class through an object. [1]

Method is an operation in the class to act on the data member. [1]

[accept alternative correct explanation, max. 1 mark each]

(f) Polymorphism literally means many forms. Briefly explain the relationship between parametric and polymorphism.

[2]

Parametric means the class and/or functions are created without being specifying the type and they are later instantiated. [1] As such, the class and/or functions may appear in different types. [1]

(g) Constructor execute automatically in two phases:

1. Initialisation

2. Assignment

Name two types of data member that require initialisation list syntax other than reference data type.
[2]

Constant data type[1]

Another class object that has a constructor and either the constructor requires parameters or we want to override the default values. [1]

B1.

(a)
Explain what is meant by the term “Information hiding” in the context of object oriented programming.
[2]

· Programmers can re-use modules without knowing how they are implemented
[1]

· They need only know how the interface works
[1]

(b)
An IT computer school wishes to have a system to administer the student mark system. You are required to implement such a system. Consider the following description of the class Unit, which is used to hold the details of a particular unit that a student has enrolled for:

class Unit {

private:

float ExamMark;

char* UnitName;

public:

Unit(char* name= “default”, float mark= 0.0);

};
(i)
Implement an accessor function that returns the ExamMark.
[2]

Unit::GetExamMark() {

return ExamMark;

}
· Function signature
[1]

· Returning the mark
[1]

(ii)
A student must take 5 units per semester. Write a class, called StudentUnits, which contains the following members, which should be visible only to the class itself, and any derived classes:

An array of 5 Units, indicating the units the student is currently enrolled for

An integer, which indicates the students identification number
[4]

class StudentUnits {

private:

Units Current[5];

int IdNumber;

};
· Declaring the members private (or protected)
[1]

· An array of Units
[1]

· The Id number
[1]

(iii)
Add to your StudentUnits class a function, called Display, which prints out each of the five units and the student number to the screen.
[3]

void StudentUnits::Display() {

for(int i= 0; i< 5; i++)

cout
<< Current[i].ExamMark

<< Current[i].UnitName

<< IdNumber

<< endl;

}
· Iterating over the whole array
[1]

· Printing out details
[1]

· Accessing the members correctly
[1]

(iv)
Add to your StudentUnits class a constructor function that performs a deep copy of the object. You may not use any library functions.
[4]

StudentUnits::StudentUnits(StudentUnits& S) {

IdNumber= S.IdNumber;

for(int i= 0; i< 5; i++)

Current[i]= Unit(S.Current[i].GetName(),

 S.Current[i]GetExamMark());

}

· Signature
[1]

· Copying the Id number
[1]

· Iterating over all the units
[1]

· Copying the correct elements of each unit
[1]

(v)
Show how to make a deep copy of an existing object.
[1]

StudentUnits x= new StudentUnits(&x);
[1]

(c)

(i) Create a class named CreditCard that has private two members are a reference object named cust of type customer and a static member issueno that is initialised to 10000.

Include a constructor that takes an appropriate parameter for initialising the data member and increments member issueno by one for each new instance created.

[4]

class CreditCard {

 Customer &cust [1]

 static int issueno=10000; [1]

 public:CreditCard(Customer &c) :cust (c){ [1]

 issueno++; } [1]

}

 (ii) Implement a static member function getIssueNo that returns the static member issueno. Note: The definition getIssueNo is part of the CreditCard class.
[2]
static int getIssueNo () [1]

 { return issueno;} [1]

 (iii) Briefly explain static member functions able to call non-static member functions. Why?
[2]

No. [1] static member functions have no ‘this’ pointer. [1]

 (iv) Assume the existence of method display() in CreditCard class, but the C++ compiler reports an error on the main() below. Briefly explain the error.
[2]

void main() {

 Customer cust(“DBS”);

 const CreditCard DBS(cust);

 DBS.display(); }

Constant object DBS gives an error [1] when attempting to call non const member display().[1]

 (v) Create a class named CreditList that has two private members : a creditHolder which is a pointer to CreditCard and an integer creditNo.

Include a constructor that takes an integer s to allocating exact memory s arrays for creditHolder and s is assigned to creditNo.
[4]

class CreditList {

 private:

 CreditCard * creditHolder; [1]

 int creditNo; }

[1 mark for correct creditNo and class syntax]

public:CreditList(int s)

{

 creditHolder=new CreditCard[s] ; [1]

 creditNo=s; }

[1 for correct signature and proper s assigning]
B2.

(a)
Define what is meant by the term inheritance with respect to object oriented programming, quoting a suitable example.
[3]

Inheritance is where one class takes on (includes) the properties of another
[1]

By deriving them
[1]

Suitable example
[1]

(b)
Consider the following class Vehicle, that stores a vehicles LicencePlate, which is an object of type String, and the Age of the car, which is an integer:

class Vehicle {

protected:

String LicencePlate;

int Age;

public:

Vehicle();

Vehicle(String Plate, int A);

};

(i)
Implement a class, RoadGoingVehicle, which inherits from the Vehicle base class, such that all of the public members of the base class are available as public members of the derived class. Include in your class a private integer variable, NumPassengers, which indicates the number of passengers the vehicle may have.
[3]

class RoadGoingVehicle public Vehicle {

private:

Integer NumPassengers;

};
· Class structure
[1]

· Public inheritance
[1]

· Private integer member
[1]

(ii)
Implement a constructor for your derived class that takes in a cars licence plate, the age of the car and the maximum number of passengers, and initialises all of the members appropriately.
[3]

RoadGoingVehicle::RoadGoingVehicle(String L, int A, int P) {

Vehicle(L,A);

NumPassengers= P;

}
· Constructor signature
[1]

· Calling superclass constructor with parameters
[1]

· Initialising local variables
[1]

(c)
The class Tool is used to store details of a tool. It contains the properties Purpose, which is a private String, and Usefulness, which is a private integer in the range 0…10. For example, a Hammer is a tool with purpose “Hitting nails”, and usefulness 9. If a tractor is both a RoadGoingVehicle and a Tool, we can define a class Tractor that inherits the properties of both the RoadGoingVehicle and the Tool class.

(i)
Give the object-oriented name for this situation.
[1]

· Multiple inheritance
[1]

(ii)
List, with their scope (i.e. pubic, private or protected) the member variables in the class Tractor, which are inherited from the class RoadGoingVehicle, assuming protected inheritance and Tool, assuming private inheritance.
[5]

· NumPassengers, which is private
[1]

· Licence, which is protected
[1]

· Age, which is protected
[1]

· Purpose, which is private
[1]

· Usefulness, which is private
[1]

(d.) Create a class named Job that holds the following members:

· An array of 20 characters, jobId

· A float pointer, cost

Both member variables are not made accessible to any other class.
[3]

class Job { [1]

 char jobId[20]; [1]

 float *cost; [1]

}

(e) Implement a constructor that takes two default parameters to initialise properly the member variables: jobId, which is a character pointer, and a float c. It uses the “new” operator to allocate memory storage for member variable cost. JobId should hold “default”, cost is 0.
[5]

Job::Job (char *jobId=”default”, flaot c=0)

 [1] [1] [1]

{ strcpy(this->jobId, jobId); [1]

 cost=new float (c); [1] }

(f) Implement a destructor for the class Job.

[2]

Job::~Job() [1]

{delete cost; } [1]

(g) Implement a method setCost for Job class that takes in input a parament float amtReduce. If cost is greater than amtReduce it reduces member variable cost by amtReduce and returns 1; otherwise it returns 0.
[3]

int Job::setCost(float amtReduce)

int Job::setCost(float amtReduce) {

 if (amtReduce<cost) [1]

 { cost-=amtReduce;[1]

 return 1;}

 return 0;} [1]

(h) Should the programmer need to implement a copy constructor for Job class to override the default copy constructor? Explain why.
[2]

Yes. [1] one of the data members is a pointer. [1]

B3.

(a)
Polymorphism is an important concept in object-oriented programming. State two benefits of polymorphism.
[2]

· Adding a new data type does not require modification of existing code
[1]

· One name can be used to refer to one concept, regardless of implementation
[1]

· Any other suitable benefit
[1]

(b)
Quoting a suitable example, state what is meant by a template class in C++.
[2]

· A template class is a class with a parametersable type when it is instantiated
[1]

· A suitable example
[1]

(c)
Consider the following definition of a polymorphism linked list:

template <class T>

class LIST {

T* Front;
int Length;

public:

LIST();
// Construct a list of type List<T>

T RemoveFromBack();
// Remove and return last element

void AddToFront(T);
// Add new element to front
int Empty();
// Return 0 if list is empty, else 1

int Length();
// Return the length of the list

List<T> Reverse(List<T>)
// Return a reversed copy of the list

};

(i)
Construct an object MyList, which is an instantiation of the List class with a float template type.
[2]

List<float> MyList;

· Correctly structuring the template declaration
[1]

· Using float to instantiate it
[1]

 (ii)
Implement the function ReturnN, which takes two parameters, a list of type List<T> and an integer N. The function should return a pointer to the N’th element of the list, or a suitable value should the length of the list be less than N.
[4]

T* ReturnN(List<T> L, int N)

{

T* tmp;

while(N> 0) {

tmp= RemoveFromBack();

N--;

}

return *T;

}

· Function signature, passing list by value
[1]

· Local copy of pointer
[1]

· Loop bound by N
[1]

· Returning copy of pointer when N’th elem reached
[1]

(iii)
Implement the function Reverse, which returns a copy of the list, with all of the elements in reverse order. You may use any of the member functions of List necessary.
[5]

List<T> Reverse(List<T> L)

{

List<T> tmplist;

T tmp;

while(! L.Empty()) {

tmp= L.RemoveFromBack();

Reverse(L);

tmplist.AddToFront(tmp);

return tmp;

}

}
· Loop bound by non empty list
[1]

· Removing element at end of old list
[1]

· Recursing
[1]

· Adding element
[1]

· Returning copy of list
[1]

(d) A class can be a friend to another class. Briefly explain what you have understood in the context of C++ object-oriented programming.
[3]

All the functions in the friend class can access all the private elements of the other class.[1] this is useful when objects of a class are managed by another class. [1] Friendship status is one way. A class specifies a friendship relationship by placing the function prototype with the friend keyword. [1]

[accept alternative answer]

(e) Implement a recursive function named aboveCost – whose signature is given below – that takes an array called project of n objects of type Job and returns an integer that represents the number of projects that are equal to or greater than the tgtcost.

 int aboveCost (int n, Job project[], float tgtcost)

[5]

int aboveCost(int n, Job project[], float tgtcost)

 {

 int count;

 if (n==-1) return 0; [1]

 else count=aboveCost(n-1, project, tgtcost) ;[2]

 if (project[n].getCost()>=tgtcost)[1]

 return count+1;

 else

 return count ; [1]

 }

(f) Create an array of 15 objects of type Product named productCost.
[2]

 Product productCost[15];

 [1] [1]

(g) Fill in the missing C++ code so that the given method performs as a

recursive function. The method SearchBook takes in an array of books

ListOfBooks, an integer size that represents the size of the array, a

character pointer findISBN. The method should return a book that has

the given ISBN code. Otherwise it should return a book that is initialized

with default values.
[5]

book SearchBook(book ListOfBooks[], int size, char *findISBN)

{ if (_____________)

return ___________;

else if (_________________________________)

return __________;

else

return ______________________________;

}

book SearchBook(book ListOfBooks[], int size, char *findISBN){

if(size = = -1) [1]

 return book [1] ;

else if (ListOfBook[size].FoundBook(findISBN)) [1]

 return ListOfBook[size]; [1]

 else

 return SearchBook(ListOfBook, size-1, findISBN); [1]

}
B4.

(a)
Explain what is meant by dynamic binding in C++.
[1]

Dynamic binding is where function calls are resolved at run time
[1]

(b)
Assume the following definition of the class String:

class String {

unsigned len;

char *buf;

public:

int length();
// return the length of the string

char char_at(int x);
// return the character at position x

void update(int i , char c);
// update the element at i with c

 };

(i)
Implement the member function remove, such that it takes a character p, and removes all occurences of p from the string. The function should also return the number of occurences which have been removed. You may not use any library functions.
[4]

int remove(char c)

{

int this, next, removed;

this= 0; next= 0, removed= 0;

while(next!= this.length())

{

while(c== this.char_at(this) {

next++;

removed++;

}

update(this, this.char_at(next));

this++;

next++;

}

return removed;

}
· Bounding the iterations by the length of the string
[1]

· Updating characters to be removed with the next viable character
[1]

· Ensuring that this character itself isn’t one to be removed
[1]

· Returning the number of characters removed
[1]

 (ii)
Implement the overloaded operator +, the signature of which is given below, that takes two strings by reference and returns a new string, which consists of both strings added together. For example, if X is the string “AB” and Y is the string “CD”, A + B would give the string “ABCD”. You may not use any library functions, but may use other member functions in the class String.

String operator+(String& s1, String &s2);
[4]

String operator+(String& s1, String &s2)

{

String ADD;

for (int x = 0; x< s1.len-1 ; x++)

ADD.UpdateAt (x, s1.char_at(x))

for (int x = 0; x< s2.len-1 ; x++)

ADD.UpdateAt (x, s2.char_at(x))

ADD.UpdateAt(x+1, ‘\0’);

Return ADD;

}

Bounding iterations over both strings by their length
[1]

Adding the contents of the first to a local string
[1]

Appending the second to the local string
[1]

Returning the local string
[1]

(iii)
Explain what is meant member wise copy in the context of object- oriented programming.
[1]

Copying objects such that both objects point to the same object in memory.
[1]

 (iv)
The assignment operator is used whenever one object is assigned to another object that has been declared of the same class. The assignment is a member-wise copy of the object to the variable. Implement the operator =, the signature of which is given below, such that it takes a String by reference and assigns the value of that string to the variable. You may not use any library functions, but may use the members of the class String.
[5]

String& String :: operator=(String &s)

String& String :: operator=(String &s)

{

if (&s == this) return *this;
[1]

len = s.len;
[1]

delete [] buf;
[1]

buf = new char[len+1];

for (int x= 0; x< len ; x++)

buf[x] = s.buf[x];
[1]

buf[x+1] = ‘/0’;

return *this;
[1]

}

(c) Given the following C++ program:

1. class String {

2. char *str;

3. int len;

4. public:

5. String(char *s) { len = strlen(s);

6. str = new char[len+1];

7. strcpy(str,s); }

8. void SetString(char *newstr) { strcpy(str, newstr); }

9. void Display() { cout << str << endl;

10. cout << len << endl; } };

11. void main() {

12. String word(“Successful”);

13. String copy_word(word);

14. word.SetString(“Failure”);

15. word.Display();

16. copy_word.Display(); }

(i) What are line 12 and line 13 doing?
[2]

Line 12 – creates an instance of String class [1]

Line 13 – makes a copy of the object word onto copy_word [1]

(ii) When the code is run, why does line 13 not generate an error message?
 [1]

The C++ compiler provides a default copy constructor [1].

(iii) What is printed out on line 15 and line 16?
 [4]

Failure [1]

10 [1]

Failure [1]

10 [1]
(d) Given the following C++ program.

1. class ObjCreated {

2. static int NoObj;

3. int whichObj;

public:

4. ObjCreated() { whichObj =NoObj;

5. NoObj--; }

6.

7. static void WhatHave() { cout << "No Objects = " << NoObj << endl;

8. cout << "Object Status " << whichObj << endl; }

9. static int GetNoObj() { return NoObj; }

10. };

11. void main(){ ObjCreated ObjArray[10];

12. cout << ObjArray[0].GetNoObj() << “\n ”<<ObjCreated::GetNoObj() <<

13. endl; }

(i) What is the difference between the two variables NoObj and whichObj

in ObjCreated class?
[2]

variable whichObj – each instance has a separate copy of the

variable [1]

variable NoObj – all instances share one copy of num [1]

(ii) How do static member functions differ from constant member

functions?
[1]

If a member function only needs to access the static data member

of a class, it can be defined as a static member function [1].

(iii) When compiling the above fragment of code, the error “Member

NoObj cannot be used without an object” is displayed. Explain why

this error occurs on line 5.
[2]

Static member functions do not have a “this” pointer [1] therefore non-static data members of an object cannot be accessed [1].

(iv) Write a C++ instruction that initializes the class static to 300.
[1]

int ObjCreated:: NoObj = 300; [1]

(v) What is/are printed on screen?
[2]

290 [1]

290 [1]
- END OF PAPER -
19 of 14

