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Abstract: One approach accounting for parameter and model uncertainty is implemented in the LCIA (life 
cycle impact assessment) method IMPACT 2002. The uncertainty is estimated for intermediate results from 
the chemical fate, human intake fraction, and two toxicological effect modules. Overall uncertainty estimates 
are then arithmetically calculated. Results are presented for impact contributions in the contexts of aquatic 
ecosystems and human health. The approach of Hofstetter (1998) was adapted for estimating the uncertainty 
related to chemical fate and human intake fractions. A fundamental problem when estimating uncertainties for 
1000’s of substances consists of the lack of uncertainty distributions for all of the input data and the need to 
have a practical approach to assign distributions to each chemical. Hofstetter (1998) proposed the use of fixed 
factors for clusters of substances. The choice of a factor is then dependent on the emission medium, exposure 
route, and the robustness of the model relative to the chemical being considered. The factors are initially 
determined for representative substances for each category using evaluation data, expert judgement, or 
approaches such as Monte Carlo. There is then no need to repeat the Monte Carlo calculations. Multiplying 
and dividing the geometric mean estimate by a factor provides an estimate of the upper and lower 95th 
percentile confidence interval bounds. The human health effect factor uncertainty is similarly defined and 
readily combined through addition with that of the intake fraction. Using expert judgement, three uncertainty 
classes were proposed to estimate uncertainty related to the human effects input data. These effects data 
account for both the risk of an effect, as well as the potential consequences of population-based exposures. 
The uncertainty for ecotoxicological effects is currently related to the number of species tested for aquatic 
species in the water column. The more species test results available, the more robust the estimate of the 
ecotoxicological factor is assumed to be. For estimating the ecotoxicological effect factor uncertainty, the 
combined use of two distinct approaches was suggested, – the higher uncertainty estimate being adopted. The 
combination of both guaranteed more robust results compared to applying either method – both being based 
on differing assumptions related to the sample versus the population distribution. The presented approach 
proved to be very transparent, robust but while reflecting our current level of knowledge, quick to use, and is 
easily applied in practice to combine the uncertainty of the emissions inventory with those of the impact 
assessment phase in a life cycle assessment study. 
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1. INTRODUCTION 

Accounting for uncertainty is vital in comparative 
assessments, although this has remained neglected 
in most life cycle assessment (LCA) studies and in 
related decision making. In LCA, uncertainty is, in 
part, due to the uncertainty associated with the 
model input data, at least those that are significant 
in the calculations of a characterisation factor (the 

impact per unit emission) for a particular chemical. 
This is the parameter, or data, uncertainty. 
Additionally, the uncertainty is related to the 
inherent uncertainty of the overall models and the 
underlying correlations themselves (model 
uncertainty). In combination, these model and 
parameter uncertainties could be considered the 
accuracy of the model. 

IMPACT 2002 (Pennington et al., 2003) provides 
estimates for the uncertainty accompanying every 



 

characterisation factor (CF). By proposing a 
straightforward way of combining uncertainties of 
intermediate results to derive the final overall 
characterisation factor uncertainty, which can then 
be combined with LCA inventory uncertainties, the 
IMPACT 2002 methodology facilitates the 
calculation of LCA results with a related overall 
uncertainty estimate. In this way, judgement of 
LCA results is improved as their reliability can be 
taken into consideration by decision makers. 

The general framework for calculating a human 
health effect characterisation factor is established 
as: 

hhh EFiFEFXFFFCF ⋅=⋅⋅=  (1) 

where FF denotes the fate factor, XF the exposure 
factor, EFh the human health effect factor, and iF 
the human intake fraction which is the product of 
FF and XF. 

Assuming that XF = 1, in IMPACT 2002 the 
parallel concept for (aquatic) ecotoxicological 
effect characterisation is: 

aquaqu EFFFCF ⋅=  (2) 

As an example we used the non-spatial version of 
IMPACT 2002 for an emission of 1,1,2,2-
Tetrachloroethane into European surface waters. 
Based on the framework presented in Equations 1 
and 2 we obtained the following illustrative results: 

Table 1:  Illustrative geometric mean estimates for 
an emission of 1,1,2,2-Tetrachloroethane into 
European surface waters. 

(intermediate) Result Value 

Human health characterisation factor, CFh 
[number of cases /kgemitted] 

1.66E-06 

Ecotoxicological characterisation factor, CFaqu 
[PAF m3·day2/kg] 

2.93E+01 

  
Human health effect factor, EFh 
[number of cases/kgintake] 

8.74E-02 

Ecotoxicological aquatic effect factor, EFaqu 
[PAF m3·day/kg] 

2.4E+02 

  
Human Intake Fraction, iF 
[kgintake/kgemitted] 

1.90E-05 

Human exposure factor, XF 
[1/day] 

1.56E-04 

Fate factor, FF 
[day] 

1.22E-01 

 

Based on these geometric mean estimates their 95th 
percentile confidence intervals are calculated in the 
following subsections. 

2. UNCERTAINTY MODULES 

2.1. Fate and exposure uncertainty 

For estimating the overall uncertainty related to 
fate and exposure the approach of Hofstetter 
(1998) was adapted due to its straightforward and 
pragmatic, yet robust nature. By considering the 
emission medium, exposure route, and the 
appropriateness of the model relative to the 
chemical, this approach provides estimates for 
clusters of chemicals of the combined model, 
scenario, and parameter uncertainty – i.e. the likely 
overall accuracy of the results. 

A fundamental problem when calculating the 
uncertainties of results for many substances is that 
not every input parameter has a “known” 
uncertainty distribution that can be used to estimate 
the final uncertainty. Hofstetter (1998) therefore 
proposed a set of fixed factors, based on 
representative distributions for clusters of 
chemicals with similar attributes. These factors are 
the square geometric standard deviations (SDg

2) 
associated with log-normal distributions. The 
factors depend on the exposure route, emission 
medium, and certainty criteria classifying the 
robustness of the model in the context of the 
substance into one of three certainty classes (h – 
high, m – medium, l – low certainty). 

The representative uncertainty distributions for 
each cluster of chemicals can be estimated using 
evaluation data for representative substances and 
expert judgement, or other approaches such as 
Monte Carlo. Caution is advocated when using 
approaches such as Monte Carlo as only input data 
uncertainty is often taken into account. The 
uncertainty of also the correlations in a model, etc., 
are often not addressed in practice and may be 
more significant. For example, estimates of 
contaminant uptake into meat and vegetation can 
be a major source of the uncertainty in human 
exposure estimates for most persistent organic 
chemicals that is often associated with the 
correlations adopted and not the data input into the 
model. The factors in the Hofstetter approach are 
the square geometric standard deviation values, 
SDg

2. These factors are used to calculate the upper 
and the lower bound of the 95th percentile 
confidence interval by assuming a log-normal 
distribution of the uncertainty. For the intake 
fraction the calculations are: 

2
5.97 gSDiFiF ⋅=  (3) 

25.2
gSD

iF
iF =  (4) 



 

Tables 2 and 3 list the values originally proposed 
by Hofstetter (1998) for emissions to air and 
water/soil, respectively. It should be noted that 
Hofstetter did not provide factors for soil 
emissions; hence the working proposal in Table 3 
was adopted. Thus, the values for emissions to soil 
are the same as for water emissions. This might not 
be correct for soil emissions where exposure via 
drinking water or fish consumption are the main 
concern, but this may be rarely the case at a 
European population level for example (e.g. 
Bennett et al. 2002). 

Table 2:  Estimated fixed square geometric 
standard deviations for emissions to air (Hofstetter, 
1998) 

Exposure via: Certainty criteria Certainty 
class air water food 

- >95% of intake is inhaled
- chem. properties are well  
  known 
- substance is well suited for  
  model

h 2 4 8 

- substance partitions
- chem. properties are well  
  known
- substance is well suited for  
  model

m 3 6 12 

- substance properties are  
  uncertain or unknown
- substance is not well suited  
  for model

l 20 40 80 

 

Table 3:  Estimated fixed geometric standard 
deviations for emissions to water and soil 
(Hofstetter, 1998) 

Exposure via: Certainty criteria Certainty 
class air water food 

- >95% of intake by drinking  
  water
- chem. properties are well  
  known 
- substance is well suited for  
  model

h 4 2 8 

- substance partitions
- chem. properties are well  
  known
- substance is well suited for  
  model

m 6 3 12 

- substance properties are  
  uncertain or unknown
- substance is not well suited  
  for model

l 40 20 80 

Hofstetter (1998) also provided a list of example 
substances that fit into each of the established 
clusters. 

For the 1,1,2,2-Tetrachloroethane example 
introduced above we chose the certainty class m as 
inhalation is below 95% of intake, the properties 

are peer reviewed high quality data and the model 
was considered well suited for this organic non 
dissociating compound.  

For an emission to water we find the SDg
2 

estimates for different exposure routes in Table 3. 
The detailed results suggest drinking water as the 
exposure pathway associated with the highest risk, 
hence SDg

2 = 3. The 95th percentile confidence 
interval is calculated according to Equations 3 and 
4, resulting in: 

iF97.5 = 5.70E-05 

iF2.5 = 6.33E-06 

Hence, it is assumed that there is a 95% confidence 
that the true intake fraction is within a factor of 3 
of the geometric mean estimate. 

2.2. Effects uncertainty 

The uncertainty of the effect factors is exclusively 
linked here to the likely reliability of the related 
input data, e.g. the Toxic Dose causing tumours in 
50% of species (TD50), the No Observed Adverse 
Effect Level (NOAEL), etc. used to derive the 
effect factor (EF). Only parameter uncertainty is 
addressed. 

Different approaches and values are proposed to 
estimate the uncertainties for human health and for 
ecosystem effects. These methods have been 
chosen with consideration of the need to assess 
thousands of substances and their related input 
data, as consistently as possible, while being 
appropriate for use in comparative assessments. 
Further research and development is strongly 
encouraged, particularly in the context of 
estimating the low dose-responses that will be 
associated with many of the emissions and 
toxicological impacts assessed using tools such as 
LCA. 

2.3. Human health effects uncertainty 

The human health effect factor (effect per unit 
intake) uncertainty is currently estimated based on 
a rough orders-of-magnitude approach, pending 
completion of reviews of the various uncertainties 
and propositions for more robust values and rules. 

Using expert judgement and building on classical 
approaches, three uncertainty classes were 
proposed to estimate uncertainty related to the 
human health effects input data (see Table 4). This 
is typical of current practice for regulatory 
chemical risk screening, except the uncertainty 
factors are retained as a measure of the uncertainty 
and, unlike in screening, were not included in the 
estimate of the effect factor. This helps to avoid 
bias amongst factors with similar geometric means 



 

in a relative comparison context, whilst retaining 
information on the different uncertainties. 

Table 4:  Expert judgement based uncertainty 
factors estimation of human health effects data 
uncertainty. 

Uncertainty criteria 
Uncertainty 

factor 
Data from peer reviewed sources, such as the 
critical effect from US EPA’s IRIS (IRIS, 2004) or 
Gold et al.'s carcinogenic data handbook (Gold & 
Zeiger, 1997) for example. These data should also 
be for chronic exposures. 

10 

Data from less peer reviewed sources that are 
based on chronic or sub-chronic exposure test 
results. 

100 

Data extrapolated from acute test results to 
humans (based on insights in e.g. Crettaz et al., 
2002 and Pennington et al., 2002, as well as many 
other non-LCA sources). 

1000 

 

The calculation of the upper and the lower bound 
of the 95th percentile confidence interval of the 
effect factor (EF) is performed in a similar way to 
Equations 3 and 4. 

For the 1,1,2,2-Tetrachloroethane example, peer 
reviewed high quality chronic effects data were 
used. This justifies an uncertainty factor of 10 
(there is 95% confidence that the estimate is within 
a factor of 10 of the geometric mean). Hence, the 
upper and lower bounds of the effect factor can be 
estimated as: 

EFh, 97.5 = 8.74E-01 

EFh, 2.5 = 8.74E-03 

2.4. Ecosystem effects uncertainty 

Ecosystem effects uncertainty is currently related 
to the uncertainty of the underlying Hazardous 
Concentration data used to calculate the effect 
factor (0.5/HC50) (Payet & Jolliet, 2004 
Pennington et al. 2004). These HC50 data reflect 
the concentration at which 50% of species are 
likely to be affected. 

In practice, the HC50 is estimated using the 
geometric mean of test results for different species 
in the relevant medium, currently in the water 
column for IMPACT 2002. The more species 
tested, the larger the sample size that is available to 
estimate the HC50 and the more robust it is 
considered to be. This robustness is expressed in 
terms of parameter uncertainty, the lower the 
sample size the higher the uncertainty. 

As with the uncertainty calculations discussed 
above, the lower 95th percentile confidence interval 
HC50 is calculated by dividing by the square 

geometric standard deviation (similar to Equation 
4) and the upper bound by multiplying by SDg

2 
(similar to Equation 3). 

For estimating uncertainties related to the 
ecotoxicological effect factors, the combined use 
of two distinct statistical approaches was suggested 
(pending further investigation) – the higher 
uncertainty estimate being adopted: 

Payet & Jolliet (2004) proposed adoption of the 
Student approach to calculate the 95%ile 
confidence interval from the sample distribution of 
the logarithmic values to estimate the 2.5th and the 
97.5th percentiles (assuming a log-normal 
distribution). Secondly, a fixed-factor approach, 
dependent only on the sample size (n), was 
adopted based on a review of methods, 
distributions, and available data to determine the 
95th percentile confidence interval for the HC50 
(Pennington, 2003). 

As shown in Table 5 for the fixed factors, the 
uncertainty significantly decreases with sample 
sizes higher than three. 

Table 5:  Median and upper 95th percentile 
confidence interval limits for extrapolations from 
the sample-based estimate to the population HC50 
as a function of sample size – sample/population 
HC50 97.5th percentile ratio (Pennington, 2003) 

Sample 
size (n) 

Log-logistic 
distributed 

Log-
triangular 
distributed 

Log-normal 
distributed 

1 - - - 

2 231 266 231 

3 134 242 168 

4 53 88 68 

5 44 87 69 

6 27 46 38 

7 25 45 36 

8 18 29 26 

 

The two approaches differ in terms of the assumed 
relationship between the distribution of the sample 
and of the actual population. The Student approach 
assumes that the distribution standard deviation is 
equivalent in the sample and in the population. 
Approaches considered in Pennington (2003) 
assumed that the standard distribution of the 
population was between likely limits observed 
from available toxicological insights, but not that it 
is equal to that of the sample. 

So far, as both include necessary assumptions, the 
combination of the two estimates was considered 
to provide a more robust result compared to 
applying one or the other. In practice, this 
combination is applied by simply choosing the 



 

higher uncertainty estimate from the two 
approaches. 

From Table 5, the choice of model is less 
important for the estimation of the geometric mean. 
The log-normal distribution is consistent with the 
approach adopted in IMPACT 2002 and reflects 
the middle estimate for the uncertainty for each 
sample size from these different common 
distributions. When compared with the Students 
approach, the estimate may be higher or lower for 
a given sample size depending on the distribution 
of the actual sample of test results (noting again 
that this is then assumed to be equivalent to the 
actual, or population, distribution). 

In practice, the tendency is that the Student’s 
approach typically estimates lower uncertainty 
values and therefore reliance is more on the values 
in Table 5. The estimates in Table 5 were based on 
the assumption of a maximum plausible standard 
deviation from observations. It could be argued 
that smaller plausible deviations could be adopted 
for certain chemicals based on their likely modes 
of action, although this is not without complexity 
and may not be justifiable in a practical context in 
LCA. 

These calculations do not currently account for 
acute-to-chronic uncertainty, which is likely to be 
negligible according to both Payet & Jolliet (2004) 
and Pennington (2003), nor was additional 
uncertainty from using QSARs taken into account 
(where such data are adopted). Further research is 
required to account for the scenario and model 
uncertainty associated with these effect factor 
estimates, particularly in the context of estimating 
toxicological effects at likely low concentrations in 
the context of complex mixtures at regional scales 
that are relevant in LCA. 

Applying Student’s approach to the 1,1,2,2-
Tetrachloroethane example results in a SDg

2 
estimate of 4.7 for the lower bound and 0.75 for 
the upper bound HC50. As the HC50 is based on 10 
species choosing the log-normal distribution from 
Table 5 yields an SDg

2 of 26. A higher uncertainty 
is indicated by the latter approach. Applying the 
principle of Equations 3 and 4 to the HC50 results 
in the following interval: 

 

HC50 97.5 = 8.01E-05 

HC50 2.5 = 5.42E-02 

This will be a slight overestimation since the HC50 
is based on 10 species, while Table 5 only 
provided SDg

2 estimates for up to 8 species. The 
effect factor (0.5/HC50) is: 

EFaqu, 97.5 = 6.24E+03 

EFaqu, 2.5 = 9.23E+00 

3. COMBINING TWO INDEPENDENT 
UNCERTAINTIES 

Combining uncertainties is a vital step throughout 
the process of deriving a final overall uncertainty 
estimate for the model result (the characterisation 
factor in this case). It also provides a basis to 
quickly identify what is causing the highest 
uncertainty. 

Uncertainty estimates for the human intake 
fractions for the fate and exposure part and the 
effect factors for the effects side, are readily 
combined when both uncertainties are log-normally 
distributed (without the need for further 
assumptions). Table 6 presents the results for the 
1,1,2,2-Tetrachloroethane. 

The geometric mean fate and exposure estimate is 
multiplied by the geometric mean effect factor, to 
estimate the overall characterisation factor 
(Equations 1 and 2). The two square geometric-
standard deviations of the uncertainty distributions 
can be simply summed to calculate the overall 
uncertainty distribution’s standard deviation, as 
outlined for example in the appendices of 
Hofstetter (1998). This overall uncertainty estimate 
can similarly be combined in a quantitative manner 
with those of the inventory data if they are 
presented in the form of log-normal uncertainty 
distributions. 

To derive the overall uncertainty in the 1,1,2,2-
Tetrachloroethane example the previously 
calculated uncertainties have to be combined. For 
the human health CF: 

10313

)()()( 222

+=

+= hggg EFSDiFSDCFSD
 (6) 

In this particular case and using the values 
presented, the uncertainty of the effect factor is 
clearly dominating the overall uncertainty. Similar 
to Equations 3 and 4, the 95th percentile confidence 
interval bounds on the CFh are then given by 
multiplying and dividing the geometric mean 
estimate by a factor of 13. There is 95% 
confidence that the CFh is within a factor of 13 of 
the geometric mean): 

CFh, 97.5 = 2.16E-05 

CFh, 2.5 = 1.28E-07 

The uncertainty of EFaqu is dominating the overall 
CFaqu uncertainty (as the combined fate and 



 

exposure uncertainty is a factor 3 compared to that 
of EFaqu of 26).  

Table 6:  Illustrative IMPACT 2002 based 
geometric mean estimates accompanied by upper 
and lower bounds of the 95th percentile confidence 
interval for an emission of 1,1,2,2-
Tetrachloroethane into European surface water. 

(intermediate) Result 
Lower 
bound 

Geometric 
mean 

Upper 
bound 

Human health CFh 

[number of cases /kgemitted] 
1.28E-07 1.66E-06 2.16E-05 

Ecotoxicological CFaqu 

[PAF m3·day2/kg] 
1.13E+00 2.93E+01 7.62E+02 

Human health eff. fact., EFh 

[number of cases/kgintake] 
8.74E-03 8.74E-02 8.74E-01 

Ecotox. aquatic eff. f., EFaqu 

[PAF m3·day/kg] 
9.23E+00 2.4E+02 6.24E+03 

Human Intake Fraction, iF 
[kgintake/kgemitted] 

6.33E-06 1.90E-05 5.70E-05 

Human exposure factor, XF 
[1/day] 

 1.56E-04  

Fate factor, FF 
[day] 

 1.22E-01  

 

While some insights have been provided in the 
literature related to uncertainty in LCA (Hofstetter, 
1998; Hertwich et al., 1999; Hertwich et al., 2000; 
Huijbregts et al., 2000) and a working framework 
has been presented here for use in a relative 
comparison context, further research and 
development remain necessary for the 
quantification, but also to help take these 
uncertainties better into account in decision 
making. 
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