
CAS CS 560: Introduction to Database Systems
Solutions to Homework #3

Spring 2003

Problem 1:

(1) The capacity of a track is 512× 800 = 4.096× 105 bytes
The capacity of a surface is 512× 800× 10, 000 = 4.096× 109 bytes
The capacity of the disk is 4.096× 109 × 5× 2 = 4.096× 1010 bytes.

(2) 104

(3) The maximum rotation time is 60÷ 11, 000 = 5.45 ms
The average rotation time is 5.45÷ 2 = 2.73 ms.

(4) 4.096× 105 ÷ (5.45× 10−3) = 75 megabytes / second.

Problem 3:

1. (i) The number of blocks needed for the actual file is: 106/10 = 105.
The height of B+ tree is: dlog 106/ log 69e = 4.
The number of keys in B+ tree is: 106 × (1 + 1/69 + 1/692 + 1/693) = 1.0147× 106.
Then the total number of blocks needed is: 105 + 1.0147× 106/69 = 1.147× 105.

(ii) You need 4 disk I/O’s to traverse the tree in order to find the pointer for the record, then
use another I/O to get the actual record. Therefore, given its search key, it needs 5 I/O’s to
retrieve a record.

(iii) Since the records are stored sequentially, one only needs to find the pointer to the beginning
record of the range query, retrieve it from the block and keep retrieving the next 999 records
in the consecutive blocks.
The number of I/O’s is: 5 + 1000/10 = 105.

2. (i) The B+ tree now only stores pointers to the first record of each block. So the leaf node will
store 105 keys instead of 106.
The height of tree becomes: dlog 105/ log 69e = 3.
The number of keys in B+ tree would be: 105 × (1 + 1/69 + 1/692) = 1.0147× 105.
The total number of blocks needed is: 105 + 1.0147× 105/69 = 1.0147× 105.

(ii) We need 4 I/O’s to retrieve the correct block, and within the block, we can find the record.

(iii) As in 1, once we find the first record, we can retrieve the next 999 records in consecutive
blocks. So the total number of I/O’s needed is: 4 + 1000/10 = 104.

3. (i) Same as 1.

(ii) Same as 1.

(iii) Since the records are stored in no particular order, we need to find pointers for each one of
the 1000 records. But fortunately, B+ tree is ordered. We use 4 to find the pointer for the

1

beginning record, from there, we can find the next 999 pointers in the consecutive blocks,
and then get the actual records.
The number of I/O’s = the number of I/O’s for the pointers + the number of I/O’s for the
actual records = (4 + d999/69e) + 1000 = 1019

4. (i) The number of blocks needed for the leaf level is: 106/(10× 0.7) = 106/7.
The number of blocks needed for other nodes in B+ tree is: 106×(1/69+1/692+1/693)/69 =
14700/69.
The total number of blocks is: 106/7 + 14700/69 = 1.4307× 105.

(ii) 4

(iii) We need 5 I/O’s to find the first record, then retrieve the next 999 in consecutive blocks.
5 + 999/(10× 7) = 148.

3
 6
 10

1
 2

4 pointers case

6 pointers case

8

3
 5
 6
 7
 8
 9
 10
 11

6
 9

1
 2
 3
 5
 6
 7
 8
 9
 10
 11

Problem 2

(a) 2 possible results

2

4 pointers case

2
 6
 8

3
 5
 6
1
 2
 7
 8
 9
 10
 11

6 pointers case

3
 7

1
 2
 3
 5
 6
 7
 8
 9
 10
 11

(b)

Delete 6, 4

pointers case

5
 9

1
 2
 3

Delete 6, 6

pointers case

3
 10

1
 2

8

3
 5
 7
 8
 9
 10
 11

5
 7
 8
 9
 10
 11

3

Delete 7, 4

pointers case

Delete 7, 6

pointers case

3
 10

1
 2

8

3
 5
 8
 9
 10
 11

9

1
 2
 3
 5
 8
 9
 10
 11

Delete 5, 4

pointers case

Delete 5, 6

pointers case

8

1
 2
 3

10

8
 9
 10
 11

9

1
 2
 3
 8
 9
 10
 11

4

Values:
 H(x)
 bits

3
 3
 011

2
 2
 010

5
 5
 101

15
 7
 111

19
 3
 011

17
 1
 001

26
 2
 010

21
 5
 101

55
 7
 111

0

0

1. Initial extendable hash structure

hash prefix

bucket address table

bucket 1

0

0

0

3 (011)

2 (010)

2. insert 3 and 2

hash prefix

bucket address table

bucket 1

1

0

1

3 (011)

2 (010)

3. insert 5 and 15

hash prefix

bucket address table

1

1

5 (101)

15 (111)

bucket 1

bucket 2

Problem 4

5

2

00

2

17 (001)

4. insert 19 and 17

hash prefix

bucket address table

01

2

3 (011)

2 (010)

19 (011)

10

11

1

5 (101)

15 (111)

bucket 1

bucket 2

bucket 3

3

000

2

17 (001)

hash prefix

bucket address table

001

3

2 (010)

26 (010)

010

011

3

3 (011)

19 (011)

bucket 1

bucket 2

bucket 3

5. insert 26 and 21

100

101

110

111

1

5 (101)

15 (111)

21 (101)

bucket 4

6

3

000

2

17 (001)

hash prefix

bucket address table

001

3

2 (010)

26 (010)

010

011

3

3 (011)

19 (011)

bucket 1

bucket 2

bucket 3

5. insert 55

100

101

110

111

2

5 (101)

21 (101)
 bucket 4

2

15 (111)

55 (111)
 bucket 5

3

000

2

17 (001)

hash prefix

bucket address table

001

3

2 (010)

26 (010)

010

011

3

3 (011)

bucket 1

bucket 2

bucket 3

1. delete 19

100

101

110

111

2

5 (101)

21 (101)
 bucket 4

2

15 (111)

55 (111)
 bucket 5

7

3

000

2

17 (001)

hash prefix

bucket address table

001

3

2 (010)

26 (010)

010

011

3

3 (011)

bucket 1

bucket 2

bucket 3

2. delete 15

100

101

110

111

2

5 (101)

21 (101)
 bucket 4

2

55 (111)

bucket 5

3

000

2

17 (001)

hash prefix

bucket address table

001

3

2 (010)

26 (010)

010

011

3

3 (011)

bucket 1

bucket 2

bucket 3

3. delete 55

100

101

110

111

1

5 (101)

21 (101)
 bucket 4

Note: You can also merge the buckets in order to reduce the

directory size. In practice, people set an underload

threshold which specifies when the buckets will be merged,

for merging is very costly.

8

