CAS CS 560: Introduction to Database Systems
Solutions to Homework #3
Spring 2003

Problem 1:

(1) The capacity of a track is 512 x 800 = 4.096 x 10° bytes
The capacity of a surface is 512 x 800 x 10,000 = 4.096 x 10? bytes
The capacity of the disk is 4.096 x 10° x 5 x 2 = 4.096 x 100 bytes.

(2) 104

(3) The maximum rotation time is 60 <+ 11,000 = 5.45 ms
The average rotation time is 5.45 +~ 2 = 2.73 ms.

(4) 4.096 x 105 = (5.45 x 1073) = 75 megabytes / second.

Problem 3:

1. ()

(i)

(iii)

(i)
(i)

3. (i)
(i)
(iii)

The number of blocks needed for the actual file is: 10°/10 = 10°.

The height of B+ tree is: [log 10%/log69] = 4.

The number of keys in B+ tree is: 10% x (1 + 1/69 + 1/69% + 1/69%) = 1.0147 x 10°.
Then the total number of blocks needed is: 105 + 1.0147 x 10°/69 = 1.147 x 10°.

You need 4 disk I/O’s to traverse the tree in order to find the pointer for the record, then
use another I/O to get the actual record. Therefore, given its search key, it needs 5 I/O’s to
retrieve a record.

Since the records are stored sequentially, one only needs to find the pointer to the beginning
record of the range query, retrieve it from the block and keep retrieving the next 999 records
in the consecutive blocks.

The number of I/O’s is: 5 + 1000/10 = 105.

The B+ tree now only stores pointers to the first record of each block. So the leaf node will
store 10° keys instead of 10°.

The height of tree becomes: [log10°/1og69] = 3.

The number of keys in B+ tree would be: 10° x (1 +1/69 + 1/69%) = 1.0147 x 10°.

The total number of blocks needed is: 10° + 1.0147 x 10°/69 = 1.0147 x 10°.

We need 4 I/O’s to retrieve the correct block, and within the block, we can find the record.
As in 1, once we find the first record, we can retrieve the next 999 records in consecutive
blocks. So the total number of I/O’s needed is: 4 + 1000/10 = 104.

Same as 1.

Same as 1.

Since the records are stored in no particular order, we need to find pointers for each one of
the 1000 records. But fortunately, B+ tree is ordered. We use 4 to find the pointer for the

beginning record, from there, we can find the next 999 pointers in the consecutive blocks,
and then get the actual records.

The number of 1/O’s = the number of I/O’s for the pointers 4+ the number of I/O’s for the
actual records = (4 4 [999/69]) + 1000 = 1019

(i) The number of blocks needed for the leaf level is: 105/(10 x 0.7) = 106/7.
The number of blocks needed for other nodes in B+ tree is: 10 x (1/69+41/69?+1/69%)/69 =
14700/69.
The total number of blocks is: 10°/7 + 14700/69 = 1.4307 x 10°.

(i) 4
(iii) We need 5 I/O’s to find the first record, then retrieve the next 999 in consecutive blocks.
5+ 999/(10 x 7) = 148.

Probl em 2
(a) 2 possible results

4 poi nters case

/

3 (S 10
L
"/ / \
1 2 3 5 6 7 8 =] 10 11
6 poi nters case
6 =]

4 pointers case

L
1 2 3 8 10 11
6 pointers case
112 |3 > 9| |10| |11
(b)
Del ete 6, 4
poi nters case
3 10
1 2 E— 3 5 7 8 9 10| |11
Del ete 6, 6
poi nters case
1 2|3 = |9 |10 11

Delete 7, 4

poi nters case
8
3 10
1 2 3 5 8 10| (11
Del ete 7, 6
poi nters case
9
- N
1 |2 |3||5| |8 = |9 |10 | 11
Del ete 5, 4
poi nters case
8 10
1 2 3 > 8 o 10 11
Del ete 5, 6
poi nt ers case
o
1 |2 3 8 - 10 11

Pr obl em 4

Val ues: H(x) bi ts
3 3 o11
2 2 o10
5 5 101
15 7 111
19 3 o11
17 1 o001
26 2 o10
21 5 101
55 7 111
1. Initial extendable hash structure
hash prefi x [:j

]

bucket address tabl e

bucket 1
2. insert 3 and 2

hash prefi x

(O]
2 (010)

bucket address tabl e

bucket 1
3. insert 5 and 15

hash prefi x

#’//l///,////’/’/’ 3 (011)

o bucket 1
2 (010)

bucket address tabl e
5 (101)
15 (111) bucket 2

4. insert 19 and 17

hash prefix

5. insert

hash

bucket

/ 17 (001)
00 —
01
10
11
3 (011)
k I
bucket address table 2 (010)
19 (011)
5 (101)
15 (111)
26 and 21
prefix l!l
3
/ 17 (001)
000
01 | —
010
011 \\\\\\\\\\\\\\\\\$|!I
2 (010)
100
26 (010)
101
110
111 =a
3 (011)
address table 19 (011)
5 (101)
15 (111)
21 (101)
6

bucket 1

bucket 2

bucket 3

bucket 1

bucket 2

bucket 3

bucket 4

5. insert 55

hash prefi

X

(2]
17 (001)
000
oo1i
010
3
o011
2 (010)
100

101

26 (010)

110

111

3 (011)
bucket address tabl e 19 (011)
5 (101)
21 (101)
[2]

15 (111)
55 (111)
1. delete 19
hash prefi x
2]
17 (001)
000
oo1
010
o11
2 (010)
100

101

26 (010)

110

111

bucket address tabiéiiiiiiiii:::::::

3 (011)
5 (101)
21 (101)

[2]

15 (111)
55 (111)

bucket

bucket

bucket

bucket

bucket

bucket

bucket

bucket

bucket

bucket

5

5

2. del ete 15
hash prefi x
2
17 (001)
000 7
o001
o10
3
o011 \\\\\\\\\\\\\\\\\\‘II.
2 (010)
100
26 (010)
101
110
l!l
111
3 (011)
bucket address tabl e
5 (101)
21 (101)
55 (111)
3. del ete 55
hash prefi x
2]
17 (001)
000 7
o001
010
[3]
o011 \\\\\\\\\\\\\\\\\\‘I..
2 (010)
100
26 (010)
101
110
111
3 (011)
bucket address tabl e
5 (101)
21 (101)
Not e: You can al so nerge the buckets in order

di rectory si ze.
t hreshol d whi ch speci fies when the buckets w I |

f or

mer gi ng

In practice, peopl

is very costly.

e set

to

bucket

bucket

bucket

bucket

bucket

bucket

bucket

bucket

bucket

r educe t he

an under | oad

be ner ged,

5

