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Abstract 
IVe report on a trace-driven simulation study to ex- 

amine the effect of a two-level cache hierarchy in unipre- 
cessors. A simulation model of a multiple-cycle-pcr- 
instruction processor was constructed to estimate the 
total cycles required to execute a synthetic benchmark. 
Results show that a second-level cache can be used to 
increase system performance when main memory access 
times are large relative to CPU cycle time. For exam- 
ple, the addition of a 4-cycle, 64K second-level cache 
following a l-cycle, 81< first-level cache increases per- 
formance by 15 percent when used in a system with a 
15-cycle primary memory. Second level caches are shown 
to be particularly effective when used behind small on- 
chip caches; adding an 81< second-level to a II< first-level 
increases performance by 26 percent, assuming similar 
parameters. We also evaluate the performance impact 
of different write strategies and separate I and D caches. 

1 Introduction 

Since its 19G8 introduction in the IBM 360/85 1171, the cache 
memory has become commonplace in computer architectures. 
The power of the cache derives from its high performance im- 
pact and low relative cost; the addition of a cache can easily 
double the performance of a system by greatly reducing effec- 
tive memory access time. Cache behavior has been extcusively 
studied through trace-driven simulation [23, 19, 13, 201, mod- 
elling [5, 251, and direct measurement (7, 91. 

Caches provide an additional level in the system memory 
hierarchy. In this paper we examine the performance impact 
of adding a third level to this hierarchy through the use of 
a two-level cache. Two level caches have been described in 
the literature [22, 12, 4, 241 but have rarely been used. The 
one notable exception is the FACOM-380/382 [14] which has 
a fast G4K local cache and a second-level cache of 12SI<-512IC 
bytes. Smith [19] initially discounted the feasibility of multi- 
level caches on the grounds that the ratio of memory to cache 
speed is too small for a third level; more recently, he suggested 
that multilevel caches would become more common 1211. 

Several trends in current technology have increased the vi- 
ability of a two-level cache, for example: 

1. Technology is yielding impressive reductions in processor 
speed, but memory speed has not kept pace. Therefore, 
the disparity between processor and memory speed is in- 

creasing. 

2. The appetite for memory is rapidly increasing and pri- 
mary memories of 100s to 1000s of megabytes will be 
common. Larger memories typically have larger access 
times because of packaging and physical constraints, 
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As on-chip densities increase, it becomes possible to in- 
clude small on-chip instruction and/or data caches [15, 1, 
6, 11,3]. These caches will need to be backed up by larger 
second-level caches. As one example, the MicroVAX 3500 
has a 1II on-chip cache and a G4K second-level cache. 

Shared memory multiprocessors require local caches to 
reduce bus contention. A second-level global cache can 
help to further reduce access time on cache misses [lo, 241. 

For these rea.sons, we believe that two-level caches will become 
commonplace within the next several years. 

This paper describes a simulation study of two-level caches 
in uniprocessors. VVhile the goal of most cache simulations is to 
determine hit ratios, we have relied on a detailed CPU model 
to produce a more detaiIed performance analysis. That is, in 
addition to hit ratios, the simulation estimates program per- 
formance in CPU cycles based on our CPU model. The need 
for using such a model is dictated by the nature of a two-level 
cache: large changes in hit ratio at the second level (further 
from the CPU) may have only a small impact on program pcr- 
formance. Therefore, our simulation determines CPU cycles 
as well as hit ratios for the synthetic stream that it executes. 
The following section describes the models we examined and 
the methodology used for the simulation. \Ve then describe 
the structure of the simulator and finally present results. 

2 Cache Models and Methodology 

For this study we chose to examine several system organiza- 
tions, including (a) a baseline system with a single cache, (b) a 
system with a two-level cache, and (c) a two-level system with 
separate local instruction and data caches. Figure 1 shows the 
basic two-level cache organization with a sinile combined in- 
struction and data cache, from which most of our results are 
reported. We refer to the processor-local cache as the L1 cache 
and the second-level cache as the L2 cache. At a high level, the 
components of this system operates in the following way; 

l The instruction fetch unit contains an instruction register 
and a prefetch buffer into which the next instruction is 
read while the current instruction is executing. When 
the prefetch buffer is empty, the instruction fetch unit 
sends an address to the cache and waits for the instruction 
to return. This provides a simple model of instruction 
prefetch. 

s The instruction execution unit fetches operands and stores 
results. The instruction execution unit waits until an in- 
struction is ready in the instruction register, begins fetch- 
ing operands from the cache, executes the instruction, 
and then stores results. 
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Memory system 

Figure 1: Basic Two-Level Simulation Model 

. The L1 cache receives addresses from the prefetch and re- 
turns instructions either from the cache or from the next 
level of the memory hierarchy. The cache also receives 
addresses from the execution unit and reads or writes 
operands, again from the cache or from the next level of 
the hierarchy. The handling of writes varies with differ- 
ent write algorithms. If separate Ll instruction and data 
caches are present, they respond to the instruction fetch 
and instruction execution units, respectively. 

. The L2 cache receives addresses from the Ll cache (or 
caches) and reads or writes operands from its storage or 
from the primary memory system. The handling of writes 
varies with different write algorithms. 

l The bus is a half-duplex datapath connecting the caches 
to the memory system. Devices on the bus must arbitrate 
for bus ownership before commands or data can be sent. 

l The primary memory consists of a number of interleaved 
memories. Simulation parameters include the interleav- 
ing factor, access time, and cycle time of main memory. 

As previously stated, the goal was to estimate the total cy- 
cles required to execute a synthetic instruction stream. To do 
this, we defined the sequential operations required for the pro- 
cessing of each instruction: instruction fetch, operand fetch, 
instruction execution, and results storage. Some overlap OC- 

curs - for example, instruction prefetch is overlapped with 
current instruction execution - and this is handled by the 
model. Times were assigned to each of the possible operations 
modelled by the simulation, as defined in Table 1. Some times 
are fixed and some are parameters of the model. As shown in 
the table, the principal parameters we wished to vary were the 
L2 cache and main memory access times. The final operation, 
result write, is shown as overlapped because, although it uses 
cache bandwidth, it does not impede the progress of the fol- 
lowing instruction until that instruction attempts an operand 
read. 

These timings do not represent any specific computer and 
are meant to be realistic for the canonical models used. They 
more closely represent a CISC architecture than a RISC ar- 
chitecture because of the estra cycles required for execution 
and address generation. For example, Figure 2 shows the tim- 
ing for some typical instruction executions through our model. 

0 Operation 

instruction cache access 
instruction decode 
operand address generation 
data cache access 
address transfer on bus 
L2 cache access 
primary memory access 
transfer memory to L2 cache 
transfer L2 cache to Ll cache 
instruction execution 
generate result address 
result write 

Cycles 

1 
1 

1 
1 
1 
1 

var 
var 

1 
1 
2 
1 

overlapped 

Table 1: Simulation Model Timing Parameters 

Figure 2a shows an instruction with a hit at the first level cache. 
In this case, an instruction takes 7 cycles through our model. 
For comparison, the average execution of an instruction takes 
about 10.6 cycles on a VAX-11/780 and 8.4 cycles on a VAX 
8800 [S]. In Figures 2b and 2c we see the effect of L2 cache 
hits and misses, respectively. 

Our simulation program is driven by a stream of instruc- 
tion trace data obtained through the ATUM microcode trace 
facility on the VAX 8200 [2]. ATUM is capable of recording up 
to 400,000 consecutive references at a time. The advantage of 
microcode-generated traces over traces collected through soft- 
ware emulation is the inclusion of operating system as well as 
user instructions in the data. We used a selection of ATUM 
traces from scientific and system programs executed on the 
VAXjVMS operating system. Tl iese included simulations, cir- 
cuit analysis programs, the Pascal compiler, and the VMS as- 
sembler. 

Instead of measuring the execution time of several individ- 
ual benchmarks, we used the ATUM traces to construct a single 
composite “multiuser” benchmark., This gives us an estimate 
of the overall performance impact of the cache, including the 
effect of context switching. Our composite file consists of fifty 
thousand references from one source, followed by fifty thousand 
references from another source, and so on. The total composite 
trace consists of over 4.3 million instructions. These instruc- 
tions generate 6.2 million read references (including 4.3 million 
for instruction reads) and 631,000 write references. 

a. Instruction with data cache hit. 

b. Instruction with second-level cache hit and 
second-level access time of two cycles. 

c. Instruction with second-level cache miss and memory access time 
of three cycles, starting after data cache miss. 

Figure 2: Example Instruction Timings 
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The addresses included by ATUM in the trace file are VAX 
virtual addresses. Because we are assuming a physically ad- 
dressed cache, and it is possible that different process virtual 
addresses map to the same physical address, we required a 
scheme to map virtual addresses to physical addresses. This 
translation cannot be done exactly because ATUM does not 
record page table entries. However, because these programs 
were recorded under VAX/VMS and addressing under that 
system is deterministic, it is possible to differentiate in most 
cases addresses that are private from those that are shared by 
all processes. VAX virtual address space is divided into two 
parts: system space and process space [lGj. All of system ad- 
dress space and some parts of the process-local address space 
are known to be shared. 

To perform the virtual to physical address translation, each 
of the individual traces was treated as a separate independent 
process which may share some of its address space with other 
processes. Each process is assigned a unique number and this 
number is appended to the high end of its virtual addresses. 
Each process’s memory is thus given a unique portion of the 
system-wide physical address space. Similarly, shared segments 
are given a unique portion of this address space and process vir- 
tual addresses to shared memory are mapped to the appropriate 
common regions, 

3 Simulation Results 

This section reports the results of executing our simulation 
model on the data stream described above. Our simulation 
model is fairly complex and permits many parameters to be 
varied. We have chosen to fix a number of the parameters and 
to concentrate primarily on those which we consider most rel- 
evant, namely the sizes of the L1 and L2 caches. In general, 
we have examined systems with primary memory access times 
that are large compared to cycle time. We have also made a 
number of simplifying assumptions. First, the line sizes of the 
Ll and L2 caches are identical (4 bytes). We examined vari- 
ations in fill size (i.e., the number of cache lines read on each 
miss) but don’t report here results for all combinations of sizes 
(more data is available in [18]). Second, we assume only direct 
mapped organization. Third, we assume no write allocate on 
write misses, and only limited write buffering. 

Following subsections show simulation results given our 
model, parameters, and trace data. Obviously, changes in 
model (e.g., using a lockup-free cache), parameters (e.g., dif- 
fcrcnt line size or average cycles per instruction), or workload 
would cause a change in the results. 

3.1 Hit Ratios 

Frgure 3 shows hit ratios for a single-level cache of various sizes. 
These hit ratios are consistent with those reported in a study 
of VAX cache behavior 171. Of course, the hit ratio for a single- 
level cache will be the same as the hit ratio for the L1 cache in 
our two-level model. The figure also shows the effect of using 
l-, 2-, and 4-line cache fills. 

The total variation in cache hit ratio when increasing cache 
size from SIC bytes to 512Ii bytes is less than 10 percent. For 
a memory access time of 15 cycles, this difference in hit ratio 
accounts for almost a 50 percent increase in performance. The 
change in fill size can also be significant, particularly with small 
cache sizes; increasing fill size from 1 to 2 lines produces a 10 
percent performance increase for an SK byte cache. 

Figure 4 shows the hit ratio of the L2 cache in our two-level 
cache system. As the figure shows, varying the size of the L2 
cache has a significant effect on hit ratio, and our simulation 
shows L2 hit ratios ranging from 20 to 90 percent. Fill size can 
also affect the hit ratio of the L2 cache. For example, using 
an 8K Ll cache, increasing the L2 fill size from 2 to 4 lines 
increases its hit ratio by 7 to 20 percent, depending on its size. 
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As would be expected, hit ratios of L2 caches are relatively 
low because the L2 cache sees a reference stream consisting of 

only misses to the Ll cache. This is true even for Iarge L2 

caches; with our trace data, an L2 cache of 512K bytes has a 
hit ratio of less than 75 percent when placed behind a lFI< Ll 
cache, and less than 65 percent when placed behind a 321< Ll 
cache. As the Ll cache size increases, its hit ratio increases, 
and the hit ratio of the L2 cache decreases. This is shown more 
drsmatically in Figure 5. Here we see that a G4K L2 cache 
suffers a one third decrease in hit ratio when its Ll cache is 
increased from 8K to 16K bytes. A 128K L2 caches suffers a 
23 percent decrease for the same Ll size change. 

3.2 Performance 

Figure Ga shows the performance effect of increasing L2 cache 
size for various Ll cache sizes. It is interesting to note that 
while increasing the size of the L2 cache has a substantial im- 
pact on its hit ratio, the hit ratio change may have little effect 
on the real system-level performance. For example, consider 
the hit ratio and performance of an 8K Ll cache with $-line 
fill and different L2 cache sizes. Increasing the size of the L2 
cache from 32K to 512I< increases its hit ratio from G3 to SS 
percent - a 25 percent improvement. This improved hit ratio 
decreases the runtime from 30 million cycles to 28 million cy- 
cles, a performance improvement of only 7 percent. The reason 
for the disparity is straightforward; most memory requests are 
satisfied at the Ll cache, and only the small percentage that 
miss are sent to the second level. For example, if the Ll cache 
has a 90 percent hit ratio, only 10 percent of the requests are 
passed on to the L2 cache. Even if the L2 cache has a hit ratio 
as low as 50 percent, only 5 percent of memory requests will be 
passed to primary memory. In this case, improving the ~2 hit 
ratio can at best improve on this 5 percent of requests going to 
primary memory. Of course, for primary memories with large 
access times, the improvement may be worthwhile. 
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IiK 3iK 
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Figure 5: Erect of Ll size on L2 hit ratio. Figure F: Performance of Two-Level Caches 

It is clear from Figure Ga that a larger L2 cache will always 
outperform a smaller L2 cache. On the other hand, an L2 
cache is not always beneficial. This can be seen in Figure 6b 

which shows the same two-level data plotted as a function of 
Ll cache size. Compared to a system with a one-level 8Ii cache 
(the top line in Figure Gb), adding a 32K L2 cache improves 
performance by almost 12 percent, while adding a 64K L2 cache 
shows a 15 percent improvement. However, adding a 128K L2 
cache to a system with 641< L1 cache has no impact, and adding 
a 25GK L2 cache to a system with 128Ii Ll actually degrades 
performance. 
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The esistence of an L2 cache can degrade overall system 

performance because it increases the total memory access time 
for accesses that miss. This becomes more of a problem as the 
Ll cache size increases a.nd the L2 hit ratio decreases. If the 
L2 hit ratio is less than 50 percent, more than half of the ac- 
cesses to the L2 cache will take an additional penalty in getting 
to primary memory. Starting the L2 lookup and the primary 

memory access in parallel will alleviate this problem but at the 
cost of wasted bus and memory bandwidth. 

Figure 7 illustrates the effect of increasing the L2 cache ac- 
cess time for an L2 size of 128K. Ll sizes of SK, lGI<, and 321< 
are shown with various primary memory access times. An in- 
crease in L2 cache access time causes a linear increase in execu- 
tion cycles with a greater slope for smaller Ll sizes. Obviously 

the smaller the Ll cache, the lower the Ll hit ratio, and the 
greater the effect of a slower L2 cache. Increasing the memory 
access time for a particular configuration results in a larger y 
intercept. 

35 

34 

y 33 

I 

1 32 
I 
0 
n 31 
s 

030 
f 

C 
29 

Y 
= 28 
I 
c 
I 27 

26 

25 

. 

. .,,., 

_. 

“’ 

i- 

\ j / : 

; / : 

: ; i 
pLl - BK, LZ - 128K. M - 30 cycles 

“’ “““‘! ..;... 
L, -UK, L2 - 128X. M - 20 cycles 

0 2 4 6 8 10 12 14 16 18 

Second Level Cache Access Time 

Figure 7: Execution Time vs. L2 Cache Access Time 

AS previously stated, high on-chip densities make it possible 
to include small on-chip caches on current microprocessors. lt is 
interesting to know whether even tiny on-chip caches are worth- 
while, particularly when backed up by second-level caches. T\% 
modelled small Ll caches with sizes varying from 128 bytes to 
4096 bytes, backed up by L2 caches of SK to 128Ii bytes, to 
cheek the utility of such configurations. These measurements 
assume a l-cycle Ll cache and a &cycle L2 cache. For compar- 
ison, we also show the performance of a single l-cycle Ll cache 
and a single 4-cycle “L2” cache. 

The results are summarized in Figure 8. First, we see the 
significant impact of adding a second level; adding an SK L2 
cache to the 128 byte Ll cache nearly doubles the performance. 
Adding an on-chip cache is also significant; compared with no 
Ll cache, a 12%byte Ll cache gives a 3.5 percent performance 
over a single 81< L2 cache. Given a two-level structure, the size 
of the Ll cache is clearly the most crucial parameter. \Vith the 

128 byte Ll cache, changing the size of the L2 cache from SK 
to 128K produces less than a 12 percent improvement. This is 
because the four cycles needed to process Ll cache misses are 
large enough that eliminating misses from the second level is 

relatively insignificant. The effect is similar on larger Ll caches 
but is magnified by the higher miss ratio in small local caches. 

3.3 Write Strategy 

Different write strategies were modelled by our simulation. As 
might be expected, the use of a write-back strategy can sub- 
stantially reduce traffic to the next level in a multi-level hier- 

archy. 
In the two-level cache, the choice of write strategy can be 

made indcpeudently at each level. Figure 0 shows the perfor- 
mance of our simulated system with SK Ll cache using various 
write strategies. In this case, if write-back is to be used at 
only one level, it @ould be used in the Ll cache, since this 
will eliminate mosf: of the write traffic between the two caches. 

Unfortunately, we could not measure the effect of I/O inter- 
ference on an Ll cache with write-back. On disk writes, for 

example, the L2 cache would not have up-to-date copies of re- 
cently written data, so I/O would have to pass through the Ll 
cache or the Ll data would have to be written back before the 
I/O begins. Disk reads also present consistency problems. 

A write-back L2 cache with write-through Ll cache provides 
about 5 percent lower performance than write-through L2 with 

write-back Ll. This is the result of the increased inter-cache 
write traffic. Because the cycle time of the L2 cache is not as 
critical as that of the first level, it may be more practical to 
include the write-back strategy in L2 than in Ll. If the Ll 

cache is write-through and multi-level inclusion [4] is imposed 
(i.e., Ll is a subset of L2), then only the L2 cache directory 
needs to be checked on I/O operations; still, invalidations will 
need to be passed up to the Ll cache. 

As shown in Figure 0, the best performance is achieved 
by using a write-back strategy in both caches. Bowevcr, this 
also rcrluircs the most complex implementation and the small 
illcrease in performance is probably not worthwhile. 
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Figure 8: Performance of Small Ll Caches 
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3.4 Sequerrtial Cache Misses 

In a high speed system it may be possible to process more than 
one memory request simultaneously, i.e., when a read misses 
in the cache and a request for the data is sent to memory the 
next sequential read can be started before the first has com- 
pleted. With a long memory access time and several indepen- 

dent memory banks, the first reference will require the entire 
memory access time to complete. But, if a following reference 
can be started before the first finishes, there will be a signifi- 
cant performance advantage. If one provides this feature in the 
cache controller the nest question to be addressed is how many 
memory references should be processed at a time? 

Our simulation is capable of creating a histogram of the 
number of adjacent misses in the local cache. The results show 
that smaller caches with low hit ratios would benefit greatly 
from the ability to be able to process two reads simultane- 
ously (10% - 15% fewer cycles). The incremental improvement 
made possible by increasing the number of simultaneous reads 
to three is extremely small, on the order of one percent. How- 
ever, as the cache size is increased there is a much smaller 
performance improvement. With a 32Kbyte local cache and a 
30 cycle memory access time the improvement is approximately 
five percent. The hardware to control two outstanding refer- 
ences does not seem very complicated and would appear to be 
justified. 

3.5 Separate Instruction and Data Caches 

The effect of separating the instruction and data caches and of 
varying the size and fill rate for each was modelled. With our 
simulation, we found little performance difference between a 
separate I and D cache and a shared cache with the same total 
cache size and access time. Separating the caches provided a 
performance increase in the range of five to ten percent. The 
extra complexity of adding a complete set of cache control logic 
and an extra cache directory would not seem to be cost effec- 
tive. 

This result is an effect of the complex instruction set archi- 
tecture. In our simulated architecture the average instruction 
takes 7 cycles; a cache access takes 1 cycle, so there is plenty of 

time during an instruction to retrieve multiple items from the 
shared cache. In a RISC-like architecture with a small num- 

ber of cycles per instruction, separate I and D caches may be 
required because the I fetches will saturate the cache. 

On the other hand, separate I and D caches may have an 
advantage in our system. As previously stated, larger memories 
typically have longer access times due to physical constraints; 

the shared cache model, with the same total amount of memory, 
might require a slower clock frequency than would separate 
caches. In’effect, adding an extra cache may allow us to double 
the effective size of the cache without decreasing the system 

cycle time. This performance increase would be in the range of 
ten to almost twenty percent and may justify the extra expense 
and complexity. 

4 Conclusions 

We have studied several aspects of two-level cache memories 

in uniprocessors. In particular, we examined the hit ratio and 
performance impact of varying the sizes of first- and second- 

level caches. We also simulated the effect of splitting the local 
cache into separate data and instruction parts. 

An extra level of cache memory can provide a worthwhile 
performance gain when used with proper combinations of small 
first-level caches and large main memory access times. Adding 
a small amount of fast first-level cache (e.g., a few hundred 
words on a VLSI chip) to a system with a four- to six-cycle 
second-level cache can also achieve substantial gains. How- 
ever, in some cases with relatively fast main memories or slow 
second-level caches, the addition of the second cache can ac- 
tually degrade performance. Starting the L2 lookup and the 
primary memory access in parallel will alleviate this problem 
but at the cost of wasted bus and memory bandwidth. 

For our model and data, separate caches for instructions 
and data did not by themselves produce a worthwhile per- 
formance increase. However, because smaller memories have 
shorter access times providing separate instruction and data 
caches allows more memory to be used without a decrease in 
the processor cycle time. Separate instruction and data caches 
may be more worthwhile in a system with fewer cycles per in- 
struction. 

Write-through and write-back strategies were studied for 
both cache levels. The best performance is provided by write- 
back at both levels, however this method is also the most com- 
plex to implement. The principal effect of write-back was the 

reduction of write bandwidth required at the next higher level 
of memory. If only one of the caches were to use write-back, 
then write-back should be included in the LI cache because 
(1) the Ll cache typically has a faster access time, and writes 
could be processed more quickly without buffering, and (2) the 
Ll cache is smaller than the L2 cache. Also , a write-back 

cache must include error correction logic for reliability; thus, 
there may be significant cost saving in using write-back at Ll 
and write-through at L2. 

However, there are other issues that might affect this de- 
cision. First, a write-back cache is more complex and might 
lengthen the Ll access time when compared to a write-through 
cache. Second, if the Ll cache is write-back then the two caches 
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will be inconsistent; this may cause problems for I/O opera- 
tions. Therefore, a write-through Ll and write-back L2 might 
make more sense for engineering reasons; it is simpler to imple- 
ment and still reduces traffic between the L2 cache and main 
memory. 

Multilevel caches provide a fruitful area for study, and much 
more needs to be done. The number of relevant parameters 
that can be varied is large and the amount of data that can be 
collected and analyzed is tremendous. For this paper, we have 
fixed many of the parameters to show representative examples 
of our results. Obviously, changes to these parameters would 
cause different results; for example, a larger line size may either 
increase or decrease performance, and different Ll and L2 line 
sizes will certainly be used in actual implementations. 

Certainly an important area for further evaluation is multi- 
level caches in multiprocessors. In this study, we concentrated 
on uniprocessors, partially because of the difficulty of obtaining 
multiprocessor traces. 
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