

American Institute of Aeronautics and Astronautics

1

Space Mission Operations DBMS (SMOD)

David P. Roland*
Computer Sciences Corporation, Moffett Field, CA, 94035-1000

Software tools for applications such as activity sequence planning, resource estimation,
simulation, command preparation and verification, and resulting data analysis support
space mission planning and operations. Historically, these applications have been loosely
coupled via flat files in various formats. These usually require transformations between
operational steps creating validity, consistency and accountability issues, slowing down
communication, making working independently with subsets of data difficult, and overall
increasing the effort of managing the mission. Recently NASA Ames Research Center (ARC)
and the Jet Propulsion Laboratory (JPL) have collaborated on Ensemble, an integrating
framework for supporting the ongoing Mars Explorer Rovers (MER) and the upcoming
Phoenix and Mars Science Laboratory missions using a common Graphical User Interface
based upon the Eclipse Open Source Development Platform. Ensemble uses a central
RDBMS for storing the various data objects used in a mission. However, it still embodies the
“file oriented” architecture of the previous MER approach, a legacy based upon such plan
files of one or more sols’ activities (a sol is one Martian day). This paper presents an
alternative architecture focused upon a database repository and the lifecycle of an activity—
proposal, scheduling, expansion, simulation, uploading, and execution. The key difference
being the mission is viewed as a continuous set of activities rather than a set of plan files.
Activities may be grouped in various combinations as required for analysis, scheduling,
uploading or data review over whatever span is necessary. These state transitions are
tracked and controlled using well tested and widely used relational database management
system (RDBMS) techniques and architectural elements. The key architectural elements are
described with the resulting derived benefits highlighted. Typical user concerns and
approaches to mitigating user reluctance to these changes are discussed.

I. Background
Space mission planning and operations involve proposing, evaluating, scheduling, and uploading action

commands and collecting, processing and correlating the resulting data products. Whereas mission requirements
vary widely, the support problems and resulting solutions are remarkably similar. Some of these variations and
similarities are examined below:

A. Mission planning timing cycles
Many factors affect space mission operations: the mission science goals, the spacecraft’s instrumentation, the

predictability of its location and the amount of control available.
1. Long range planning

Some missions have long preparation times and fixed scientific agendas For example, Cassini Investigation
Scientist/Science Planning Engineer Dr. Kevin R. Grazier of the Jet Propulsion Laboratory, in an abstract for a lunch
time seminar given Feb 24, 2004, describes the Cassini Saturn/Titan mission as follows:

During its four-year nominal mission, the Cassini spacecraft will make nearly a quarter of a million observations.
Understandably, then, the entire science planning process is a monumental effort. The observation planning for Cassini’s
nominal mission ostensibly ended over a year ago, meaning the bulk of the spacecraft’s prime mission observations are
cast in stone or at least rapidly-hardening concrete. Numerous factors have, however, dictated changes in the nominal
mission trajectory, shifting several observations out of their “window of opportunity.”

* Senior Computer Scientist, NASA Ames Research, Moffett Field MS 269-4, CA 94035-1000.

American Institute of Aeronautics and Astronautics

2

This quote says that even apparently
fixed trajectory missions will experience
late changes requiring new planning. The
ability to select sections of a mission as a
group, i.e., a plan, is a common
requirement for mission operations.
2. Daily planning

Other missions require repeated rapid
planning cycles. The Mars Exploration
Rovers (MER) missions in particular
required plans to be developed every half
Martian day (sol) for each spacecraft.
Teams of scientists review the previous
sol’s downloaded images and data to
decide on the next sol’s activities. This
information is then combined with the
engineering team’s needs for managing
energy and vehicle safety, and
communication windows to produce the
best possible plan. For the MER mission,
an artificial intelligence augmented planner
is employed to aid the Tactical Activity
Planner fit the maximum science into the
typically over subscribed schedule.

The plan is converted into spacecraft
commands, verified via simulation or
execution on a lab vehicle, and sent to the
Martian orbiter for relay to the spacecraft
upon its awakening. Figure 1 describes the
Planning and Operations workflow for the
MER missions1.
3. Common daily workflow

Although these missions have widely varying planning horizons, the workflow is remarkably similar. The MER
plans naturally fit into a daily framework, the Cassini mission also organizes its plans into daily segments. Figure 2
shows a daily timeline for the Cassini mission drawn from the complete mission plan.

This is reasonable considering most people’s work is measured in daily doses; “What will I do today?” It isn’t
clear the data should be organized into these chunks? A MER file represents one plan, usually for one Mars day. The
activities have unique identifiers but will appear in only one plan. A common practice is to create a new plan from

pieces of previous sols and
merge several sets of activities
from various groups such as
the science operations working
group and engineering.

B. Technology
Software technology has

evolved over the years that
space mission centers have
developed planning and
operations software. Each
project’s desire to save cost
and reuse trusted existing
software has been tempered by
the need to accommodate
expanding spacecraft
functionality that requires

Figure 2 Single daily timeline for Cassini mission

Constraint EditorConstraint Editor
•• Add constraints between Add constraints between

activitiesactivities

MAPGENMAPGEN
• Plan selected activities

within resources, flight rules

Command Command
SequencingSequencing

Science PlanningScience Planning
• Request activities
• Set priorities

Activity
Scheduling

1.5 hrs

Figure 1 MER planning and operations upload process

American Institute of Aeronautics and Astronautics

3

more capable support. New languages and technologies are often introduced only when new staff members decide
the cost of modification exceeds the cost of replacement. Mission management is often suspicious but may be
unable to counter the technology wave. One aspect that continues to influence the architecture of mission support
software is the need to have many organizations involved.

1. Loosely coupled applications
Many software tools support mission planning and operations during phases such as activity sequence planning,

resource estimation, simulation, spacecraft command preparation and verification, and returned data analysis. This
software is typically written within each functional group, often using inputs from several sources, each with its own
view of the data.
2. Files for data transfer

Historically, these applications have been loosely coupled via flat files in various formats. This inter-group
communication often requires transformations between operational steps. The locally developed software written to
do this creates issues of validity, consistency and accountability. The use of these files slows down operations,
introduces opportunities for errors, makes isolating subsets difficult, and increases the effort to manage the mission.
The Activity Planning Support System (APSS) for the MER’s Spirit and Opportunity shown in Figure 3 is a good
example of such loosely integrated mission support tools. Note the lines labeled APF, RML, SSF, CPF, etc.; each
represents a different type of communication file.

Figure 3 Applications workflow for MER missions

The literature on space mission planning and operations makes little reference to the details of this data

transmission. An effort was made to use a standard Extensible Markup Language (XML) schema for defining the
data results2. It’s common for the communicating groups to simply have one deliver “what it has” to another that
then converts it as needed. On MER, an XML based schema called Rover Markup Language is used in several
phases but must be converted to another format for use in other tools. In addition, different phases use different
subsets of RML and don’t necessarily pass unused information through their phase.
3. IT analogy

The use of flat files and a mix of technology levels in various organization teams have an analogy in the
information technology (IT) departments of most companies around 1970. At that time, the mainly COBOL shops
using cards and multiple tape processing started converting to hierarchical fourth generation databases and
languages. Within 10 years they moved on to online application processing (OLAP), relational database
management systems (RDBMS) and the SQL language. This trend continues today with web browser based .NET™
and Java™ Enterprise (J2EE) applications. Although this technology shift seems to have occurred overnight, in fact

American Institute of Aeronautics and Astronautics

4

it has taken the better part of three decades and was greatly accelerated by the need to fix the “Year 2000 problem”.
No one should be surprised, then, that teams whose primary interest is controlling scientific instrumentation or
analyzing downloaded results would be reluctant to rush into a software development using the latest “fad”
approach, regardless its real or extolled benefits.

C. Recent developments
The MER mission software was mentioned earlier as an example of many tools integrated via file transfers. As

successful as this approach has been, managers of the upcoming Mars Science Laboratory rover mission recognized
that the interaction of these tools must be improved to support its greatly expanded capabilities. They have reviewed
the MER process and prototyped new approaches that incorporate multiple functions within a consistent user
interface using a central database. From a multi-mission perspective, this development, called Ensemble, has
progressed to operational status on the ongoing MERs for some phases. Ensemble has made the following
improvements over the original MER software:

1. Maestro/Ensemble Eclipse/Hibernate integration
The Jet Propulsion Laboratory authors of the Science Activity Planning (SAP) of the original MER ground

support had begun extending it for MSL. They had moved it onto the Eclipse3 plug-in development environment,
renaming it Maestro6. It provides data review and targeting functions the scientists use to propose the next plan’s
activities.
2. SPIF-e prototype – improved HCI; integration

NASA Ames’ Human Computer Interface Group analyzed the user interface of the previous components and
MER work flow. The report suggested new graphical user interfaces and workflow that were prototyped as a
browser application called SPIF-e. User tests with the prototype verified the improvements and suggested further
development. The integration of the applications into a consistent framework was identified as a key improvement.

The SPIF-e project moved its development onto Eclipse and the resulting integration formed the foundation for
Ensemble7, an Eclipse-based Java integrated framework.

A key element of Ensemble is its RDBMS execution time database accessed via the Hibernate Object Relation
Mapping system8. This database stores the activity dictionary read from ADML files and plans read from RML files.
A plan can have new activities added or existing activities may be modified via the user interface and output as
RML. However, external tools as the Europa mixed initiative planner/advisor and the APcore resource estimator
have been integrated via inter-process communication without the use of files.
3. XML-based files – improve file parsing

The RML and its associated activity defining format, Activity Dictionary Markup Language (ADML), have been
refined and made consistent. Although use on MER requires compatibility with the formats that were previously
used, the upcoming MSL will allow for a consistent schema to be developed.

D. Data management architecture analysis
The evolution of mission planning and ground support has progressed from completely independent tasks

reconciled at meetings to loosely coupled applications communicating via data files of various formats to integrated
applications communicating via a central database.

Ensemble has mimicked the previous workflow and external file formats to enable it to subsume the existing
software on the extended MER missions. RML files are read in and manipulated on the database and then written
out as revised RML files. These RML files remain the repository and defining data for the daily plans. This
approach makes introducing the new software easier as it requires little or no modification to non-integrated
applications. It does raise issues of access or ownership for independent groups, however.

This is, therefore, a partial solution. Modern database technology has many benefits to offer for use on new
missions. The role of the database can be expanded from a “run-time” or “execution” database used to hold the data
during modification into that of the central data repository. The Chandra Data Archive4 and the Columbia5 mission
seem to have taken this approach and made a central database the keystone of their architectures.

II. A Space Mission Operations DBMS (SMOD)

A. Multiple views of a mission
1. Plan or activity-centric repository
The Ensemble system retains the data structure that organizes plans as daily sets of activities and their associated

data such as constraints that was used in the MER mission workflow. In fact, the Plan RML file contains sets of
Observations that contain sets of Activities. Other sections contain constraint, sequencing and resource information,

American Institute of Aeronautics and Astronautics

5

each provided by different groups. One person, the Keeper of the Plan (KOP), is responsible maintaining the
integrity of this file that will ultimately contain the uploaded activity plan. Its filename usually identifies it with the
sol and status, e.g., sol_052_activity_plan_final.rml for the result of combining the sol_050_sowg_science_plan-
merged.rml and sol_052_activity_plan_final.apf. Reports such as sol_052_activity_start_and_end_times.txt are
derived from the final combination.

This plan-centric organization has limitations. As the MER mission has far exceeded its original life of 90 days,
longer duration plans have been developed. If a daily plan for sol X has activities that extend into the next sol, which
file should it be stored in? If it’s both sol x and sol X+1, how do you maintain consistency when it’s modified in one
or the other or prevent it from being sent to the spacecraft multiple times?

Multi-sol planning is also a requirement for the upcoming MSL and Phoenix Mars missions. Orbital missions, of
course, have timing cycles related to their orbits and their orbited bodies’ cycles. However, orbital missions often
use the concept of a daily plan as well. Those missions will have fewer issues of duplication but the boundaries
cause issues of splitting activities that extend through them.
2. Mission as continuum of activities

Rather then organizing the mission as a set of plans containing activities, a mission can be viewed as a
continuous set of activities. Each activity has a life cycle of state changes as they are proposed, selected, scheduled,
executed and analyzed, or not. This approach focuses attention upon the activities rather than their grouping into
plans. Plans become a collection of activities that may span arbitrary durations and contain activities that are
selected based on various criteria.

This concept is not unique, the Chandra Data Archive’s architecture is similar.
3. Collections

Activities are relatively small units of work. Large tasks are combinations of activities in specific order, often
with timing constraints between the constituents. On MER, these spanning collections are called observations. In
most cases, the observation comprises activities that are to be treated as a unit where all or none are scheduled and
executed., although that isn’t an absolute requirement.

Other missions have discontinuous collections, for example, an atmospheric reading at regular intervals. On the
Phoenix mission these are called campaigns.

Activities also have derivations. An activity may expand into a set of smaller activities. This is useful for
planning at different levels of details. Sequences, the spacecraft commands, are the final product of the planning
process.

One advantage of an RDBMS is its ability to create multiple views of data. A view can be a query or a joining of
related tables of data.
4. Activity lifecycle

Activities have a natural, albeit variable, event-driven lifecycle with the following phases:
Proposed
Eligible for scheduling
Scheduled
Sequenced
Uploaded
Executed

Of course, a proposed
activity is not always accepted
for the mission. If accepted, an
activity might not be scheduled
and sent to the spacecraft. Even
if uploaded, an activity may not
execute because of local
conditions or a last minute
change. Moreover, if run, an
activity might fail to create the
data expected as shown in
Figure 4.

B. Object model
A flexible data

management structure is

Activity
Proposed

Activity
rejected

Scheduling
window passed

Scheduled
Activity

eligible for
scheduling

Activity
accepted

Activity
Inactive

Activity
Completed

Activity
Uploaded

Results
downloaded

Sent to
spacecraft

 Activity
Executed

Executed

Not
executed

Activity
Sequenced

Sequencing
done

 Activity
Scheduled

Figure 4 Simplified activity state diagram for MER missions

American Institute of Aeronautics and Astronautics

6

required to support the diverse data relationships mentioned above. Figure 5 shows an object model of such a
structure.

Each node contains a set of sub-classed fields to contain its local data and a possibly empty set of child nodes.

To implement a MER-
like structure, the 0th
(top) level node would
be the plan, level 1 the
observations, and level
2 the activities. To map
the MER architecture,
activities may
decompose into
activities or sequences.
The nodal architecture
allows for any number
of children nodes easily
supports this. Two level
3 children — sub-
activity and sequence
— are defined. Either
or both may be empty
or populated. The
semantics of this
arrangement would be
“use the fields and
sequences at level 2 for
high level planning and
the sub-activities’ fields
and sequences for detail
planning”.

This structure is defined via auxiliary tables commonly called the Activity Dictionary. In addition to defining the
levels, the dictionary would define the specific activity types and their associated data fields.

Implementing this structure in an RDBMS can be complex, requiring multiple joins to support the inheritance
and collections defined. Using object relation mapping (ORM) software such as Hibernate relieves the developer
from dealing with most of this complexity.

C. Benefits and aids to user acceptance
Introducing a database repository as the primary definition of the mission’s planning and operations data

elements provides the following key benefits:
1. Single definition of an activity
The overarching benefit is the single definition of each activity throughout its lifecycle. This activity may appear

in many different views or be accessed and modified by many persons but it will always be the same, single
representation of that activity. This greatly improves the integrity of the data and removes the need to merge files.

2. Multiple access
RDBMS repositories are the foundation of modern online application programming. Used with client-server

Web-based interfaces or Eclipse-based Rich Client Platforms, RDBMS repositories have built-in facilities to control
simultaneous access to data while preventing corruption. With the proper software controls in place, users would
seem to own the activity exclusively even though others have simultaneous access. Many delays waiting for a file to
be passed are removed. Specific features supporting multiple access include the following:

a. Change control and transaction audits

The data commonly handled with IT systems is usually sensitive and must have high integrity. This is
accomplished with restrictions on who may modify data and recording when and by whom. In extreme cases,
changes can be made conditionally and require a double signature.

Node

level
type
parentRef
children

MissionSpecificField
lname
parentRef

TextMSField
string

PersonMSField

RelalionConstraint

MSField
relation
offset

EventMSField

TimeEventField
time

MissionLevelDef
level
type
fieldDef

ExecutedEventField
boolean

OtherEventField
string

......

...

Figure 5 Simplified object model for flexible mission data structures

American Institute of Aeronautics and Astronautics

7

The RDBMS uses a transaction to encapsulate the change operation. Only when all of the required data is
collected and approved is the record committed to permanent storage and visible to others. Incomplete or
interrupted modifications lead to a rollback, restoring the previous values. Both actions can result in an audit
record.

Although text flat files may be maintained in a configuration management repository such as CVS, the
entire file is updated each time any part is modified. Such systems can report the differences of each update;
these tools are used only after the author decides to commit the changes, usually after many individual
changes are made. If the file is not locked, others making changes will not be aware of the concurrent
modifications until they update their changes, many times causing conflicts after merging that require manual
intervention. Locking the file to the one user making changes serializes the access even though many users
may want to make changes in separate, non conflicting sections of the file.

b. User authorization

The data can have associated access rules with users assigned various privilege levels. Using such
privileges ensures that only authorized persons will modify the data. The application usually obtains the
user‘s identity and offers only allowed functions. RDBMS features also prevent accidental or malicious
modifications. This can make users nervous about getting access in critical situations but is mitigated with
having a sufficient number of highly authorized staff available.

c. Tools integration

As noted above, ground data systems employ many tools in the planning and operations lifecycle.
Integrating these tools, usually independently developed by different teams to accomplish a specific role in
the mission, is a major benefit to the mission. Each development team wants to limit its efforts to using the
minimum amount of input required from other groups. They’ll rarely accept data that’s just “passing through”
to a later phase of the mission. Keeping the importer and exporters of such data current requires modifications
to all of the applications in the chain.

While specifications such as XML help to organize the data and isolate applications from changes that do
not interest them, the monolithic nature of such files make simultaneous access impossible. The RDBMS,
while containing all of the various data elements, allows each application to extract only the components it
requires. The effort to couple applications via an RDBMS is mitigated through the following techniques:

1) Application programming interfaces (API)

Programmatic access to RDBMS has become highly standardized through interfaces such as Open
Database Connectivity (ODBC). The API approach provides the fastest and most complete data access.
Many applications only require software modifications to their data reader and writer functions. These
changes are minimized because of the following API features:
• Platform independence
The database server and the client (application) platform need not be the same. Since the introduction

of the client-server architectures in the 1970’s, access to the database has been through network
connections to a program running continuously on a computer that need be known only through its name
and interface port number. The advent of the web-browser has made remote databases available to
authorized persons at almost any computer in the world.
• Language independence
The ODBC specification has been implemented as software libraries and drivers for almost every

programming language and RDBMS vendor. An API such as the Java Database Connectivity (JDBC)
combines with an ODBC driver from a vendor such as IBM, Oracle, Sybase, or the freely distributed
postgres and MySql to enable Java applications to store and query data. Libraries in C and Perl provide
similar interfaces. This language neutrality of the RDBMS is a powerful integration feature.
• Global access control
Mitigating the concern of wide availability is the access authorization available at many levels

including username/password, hardware identification (dongle), or known client computer. Individual
users may be identified with specific privileges or assigned to groups or roles with set access rules. Data
can be controlled for modify or read only under access and program control. For example, authorized
persons may modify an activity only until it has been uploaded to the spacecraft. After upload, the
activity can accept input only from the telemetry system to record the receipt of results.

American Institute of Aeronautics and Astronautics

8

2) Importers/exporters to provide legacy interfaces

If the legacy applications cannot be modified, programs that read and import data to the RDBMS from
legacy files and that access the data and write it to flat files of the required format can be developed.
Although not the ideal solution, the repository remains the one true data source. If high integrity is
needed, the RDBMS can “lock” the exported data until it is “returned” to the database, much like a
software Configuration Management (CM) system would.

d. Variable planning horizons

A plan defined by query parameters for start and end times will have no restrictions on the duration. It will
be the purpose of the plan that determines its length. For long term planning, a longer duration may be
selected and passed into an automated planner. The resulting activity schedule may be selected in daily
chunks to make reviews easier or for conversion to upload chunks that fit into communication windows. The
integrated database allows for re-planning to begin at whatever time is required.

e. Flexible collections via queries

The RDBMS query language, SQL, and its corresponding ORM equivalents provide great flexibility for
selecting collections of activities. In addition to using properties such as start date or instrument, associating
tables can be defined that organize discontinuous chunks, i.e., campaigns, which can have any meaning to the
scientists or ground system operators. New tools may have to be developed to make entering this information
efficient. Some of this information, such as the following, is probably already defined for activities:

1) By state, sol-independent; the state of the activity (Proposed, Accepted, etc) would allow a query
that returns all of the activities in a particular state, such as Accepted (but not scheduled).

2) By state, within a plan’s duration; this query could represent a “What’s in, what’s out” report.

III. Conclusion
Modern Relational Database Management Systems allow for new ways of integrating the many software

applications that support space mission operations. By redefining the organization of activities that define the
mission and bringing together all of the stakeholders it is possible to gain the benefits of robust data, reduced
preparation time, traceability, security and easy access.

 Software teams may need training and support from RDBMS software experts. These people are common in the
Information Technology community. Training in RDBMS integration is widely available to enable teams to
participate directly. Ensemble, a NASA JPL and Ames Research Center collaboration is an example of using a
RDBMS to bring together the many mission planning and execution functions in a common framework. This can be
extended with the use of the RDBMS as the master repository of activities that move through a life-cycle rather
mimicking the existing fixed duration plan file formats traditionally used.

The benefits of this architecture make the conversions and procedural changes more than worthwhile.

References
1Ai-Chang, M., et al, “MAPGEN Planner: Mixed-initiative activity planning for the Mars Exploration Rover mission”,
ICAPS03, Trento, Italy June 9-13, 2003
2Reich, L., “Binary Representation of XML Infoset in the Space Domain Position Paper”, URL
http://www.w3.org/2003/08/binary-interchange-workshop/14-ccds-w3cposition-updated.pdf [cited 14 March 2006]
3Eclipse, an open source community whose projects are focused on providing an extensible development platform and
application frameworks for building software. URL http://www.eclipse.org [cited 14 March 2006]
4Rots, A. H., Winkelman, S. L., Paltani, S., and DeLuca, E. E., “Chandra Data Archive Operations”, Observatory Operations
to Optimize Scientific Return III, Edited by P. J. Quinn, Proceedings of SPIE Vol 4844, p 172
5Zoeschinger, G., Wickler, M., Kohler, A., Axmann, R., “A Planning System for Payload and System Planning of the
Columbus Module on ISS”, SpaceOps 2004, Montreal, Canada
6Norris, J., Powell, M., “A Martian Eclipse”, EclipseCon2005, Burlingame, California, 28 Feb – 3 Mar, 2005
7Ensemble Integrated Tools Demonstration, NASA Ames Research Center, Code TI, Contact James Kurien, URL
http://ic.arc.nasa.gov/story.php?id=307&sec= [Cited 14 March 2006]
8Hibernate, a powerful, high performance object/relational persistence and query service. URL http://www.hibernate.org
[cited 14 March 2006]

