Basic Approach to Acid-Base Disorders ______________________________________ (I) Basic Formulae and Units used: HCO3- + H+ <===> H2O + CO2 pKa=6.1; pH= -log{[H+]} [H+] in mole/l Henderson-Hasselbach Equation: pH= 6.1+log{[HCO3-]/(0.03*pCO2)} pCO2 (arterial) in mm Hg, [HCO3-] in mEq/l Following directly from H-H eqn.: [H+]= 24*(pCO2/[HCO3-]) [H+] in units of nM [HCO3-]+15 ~ last 2 digits of pH Anion gap (AG)= [Na+]-[Cl-]-[HCO3-] - AG and electrolytes in mEq/l - AG decreases 2 mEq/l for every decrease of 1 g/dl of albumin ___________________ (II) Determine if patient is acidemic: pH < 7.38 or alkalemic: pH > 7.42 Assess accuracy of ABG by comparing calculated [HCO3-] to measured [HCO3-] (clinical laboratory calculates bicarbonate from measured pH and pCO2). (III) Acidemia: (1) Assess primary cause: Respiratory: pCO2 > 40 Metabolic: [HCO3-] < 24 (2) Respiratory acidosis: • In 1° respiratory acidosis: pCO2 increases pH decreases [HCO3-] increases • often abnormal A-a gradient • Expected renal compensation: acute changes in pH & [HCO3-]: pH decrease ~0.008(pCO2-40) [HCO3-] increase ~0.09(pCO2-40) chronic changes in pH & [HCO3-]: pH decrease ~0.003(pCO2-40) [HCO3-] increase ~0.4(pCO2-40) • pH > pH(expected) and/or [HCO3-] > [HCO3-](expected): suggests 2° metabolic alkalosis • pH < pH(expected) and/or [HCO3-] < [HCO3-](expected): suggests 2° metabolic acidosis (3) Metabolic acidosis: • In 1° metabolic acidosis: [HCO3-] decreases pH decreases pCO2 decreases • expected respiratory compensation: pCO2= [HCO3-]*1.54 + 8.36 • pCO2 < pCO2(expected): 2° respiratory alkalosis • pCO2 > pCO2(expected): 2° respiratory acidosis • Assess anion gap (AG) AG= [Na+]-[Cl-]-[HCO3-] • In AG acidosis, AG >12 • In normal-AG or non-AG acidosis, AG<12: hyperchloremic acidosis • With AG acidosis, assess other concurrent factors using one of the two approaches below: (i) (AG-12)+[HCO3-]= corrected [HCO3-] 22 < corrected [HCO3-] < 26 -->1° AG metabolic acidosis (no appreciable 2° factors) corrected [HCO3-] > 26 --> 2° metabolic alkalosis and/or 2° respiratory acidosis corrected [HCO3-] < 22 --> 2° nonAG acidosis and/or 2° respiratory alkalosis (ii) DD= {AG-12}/{24-[HCO3-]} 1 < DD < 2 ---> 1° AG metabolic acidosis (no appreciable 2° factors) DD < 1 --> 2° nonAG acidosis and/or 2° respiratory alkalosis DD > 2 --> 2° metabolic alkalosis and/or 2° respiratory acidosis (III) Alkalemia: (1) Assess primary cause: Respiratory: pCO2 < 35 Metabolic: [HCO3-] > 26 (2) Respiratory alkalosis: • In 1° respiratory alkalosis: pCO2 decreases pH increases [HCO3-] decreases • HCO3- should never be < 10 • Expected renal compensation: acute changes in pH & [HCO3-]: pH increase ~0.008(pCO2-40) [HCO3-] decrease ~0.25(pCO2-40) chronic changes in pH & [HCO3-]: pH increase ~0.003(pCO2-40) [HCO3-] decrease ~0.5(pCO2-40) • pH > pH(expected) and/or [HCO3-] > [HCO3-](expected): suggests 2° metabolic alkalosis • pH < pH(expected) and/or [HCO3-] < [HCO3-](expected): suggests 2° metabolic acidosis (3) Metabolic alkalosis: • In 1° metabolic alkalosis: [HCO3-] increases pH increases pCO2 increases • expected respiratory compensation: pCO2= [HCO3-]*0.9 + 9 • pCO2 < pCO2(expected): 2° respiratory alkalosis • pCO2 > pCO2(expected): 2° respiratory acidosis • pCO2 > 50: 2° respiratory acidosis • pCO2 < 40: 2° respiratory alkalosis ______________________________________ Abbreviations: 1° = primary 2° = secondary (i.e. underlying) AG = anion gap DD = delta-delta [chemical]= concentration of chemical ______________________________________ Brief comment about [HCO3-]/CO2 equilibrium: To understand how changes in pCO2 or [HCO3-] affect the other reagents in the chemical equation: HCO3- + H+ <===> H2O + CO2 remember LeChβtelier's principle. A chemical equilibrium that is disturbed (by adding or removing a reagent) will cause a shift so as to counteract the effect of this initial change, and thereby restore equilibrium. For example, adding CO2 (increasing pCO2) will promote a shift of the chemical equation towards the left (as written above), conseqently increasing [HCO3-] and [H+] (which is more properly written in its hydrated state, [H3O+]). Likewise, decreasing pCO2 will act to decrease [HCO3-] and [H+] (increasing pH) by causing a shift towards the right. (Physiological changes in the 'concentration' of water are negligible.) LeChβtelier's principle dictates the immediate (primary) response to a change. Compensatory physiologic responses (i.e. respiratory and renal compensation) as well as other physiological buffers also influence pH and the concentrations of carbon dioxide and bicarbonate. LeChβtelier's principle "responds" to all of these changes, maintaining a chemical equilibrium; so the effect of compensatory mechanisms on the chemical equation can also be understood and appreciated. ______________________________________ Differential Diagnosis: (I) Respiratory acidosis: • Respiratory system - pneumonia - atelectasis - pulmonary edema - broncospasm/laryngospasm - COPD - obstruction - pleaural effusions - pneumothorax - shunts • Mechanical dysfunction - neurologic spinal cord injury phrenic nerve palsy Guillain-Barre myasthenia gravis paralytic agents botulism - muscular myositis, myopathy muscular dystrophy fatigue (hypoK+, hypoPO4-, COPD) - restrictive lunq disease kyphoscoliosis flail chest • Central nervous system - sedation (i.e. anesthesia, opiates) - respiratory center dysfunct. - hypothyroidism (II) Non anion gap metabolic acidosis: • Hypokalemic - GI loss diarrhea pancreatic fistula ureteral fistula - ileal loop - acetazolamide - hyperparathyroidism - RTAs I, II (urine AG +) type I (distal, classic) urine pH>5.3 type II (proximal) urine pH<5.3 • Normokalemic - post hypocapnea - hyperalimentation - hypoaldosterone - mineral acid injestion • Hyperkalemic - RTA IV (urine AG +) type VI (Hypoaldo, hyporenin) urine pH<5.3 (III) Anion gap metabolic acidosis: • methanol • uremia (BUN >=40, AG~15-25) • DKA (also alcoholic ketosis, starvation ketosis) • paraldehyde, toluene • ischemia • lactic • ethanol • salicylates • MUDPILES (IV) Respiratory alkalosis: • Respiratory system - hypoxemia hypoventilation R-L Shunt V/Q mismatch diffusion impairment low FiO2 - altitude - restrictive lung diseases - pulmonary embolism - CHF • Systemic disease - sepsis, fever - salicylates - hyperthyroidism - liver failure • Central nervous system - anxiety - subarachnoid hemorrhage - ischemia or infart - tumor - infection - stimulatinq drugs - progesterone excess (V) Metabolic alkalosis: • Urine Cl < 10 mEq/L (saline responsive; alkaline urine) - emesis/NG suction - diuretics - post-hypercapnea • Urine Cl > 10 mEq/L (saline resistant) - Elevated BP: 1° aldosteronism (Conn's) Cushing's syndrome renal artery stenosis Liddle's syndrome - Normal BP: hypomagnesium hypokalemia Bartter's syndrome alkali (HCO3-) intake HCO3- precursors (lactate, citrate, acetate) licorice ______________________________________ by Michael T. Milano, MD PhD MTMilano@yahoo.com www.geocities.com/MTMilano/palm/