
Beyond Design

Documentation

Installation

Support

Requirements Gathering
Structured Interviews

Reengineering, JAD

Hardware

Feasibility Analysis
Architectural Selection

RFP/RFQ

Interface Design
Prototyping

Security and Control Design

Network Installation

Testing

Training, Documentation

Acceptance Testing

Support

Data Modeling

ERDs

DDs

File & Database Design

Data Conversion

Testing

Installation

Process Modeling
Decomp

Context

DFDs

Process Specs

Program Design
Structure Charts

Programming

Testing

Installation

Analysis

Design

Implementation

Support

Big Picture



Wrap-up Documentation

• for client/users
– reference manual
– task guide
– training guide

• for operations staff
– operations manual

• for technical staff
– technical manual
– program manual

Client/user Documentation

• reference manual
– organized by system function or command
– for experienced users

• task guide
– “how to” orientation
– organized by business function

• training guide
– overview, tutorial

• build into application as much as possible



Operations Documentation

• operations manual
– startup/shutdown
– backup procedures
– focus on restart and recovery

Technical Documentation

• technical manual
– general design spec
– system architecture
– interface specs (with other systems)

• program documentation
– design specs
– source code
– test data
– change log



System Installation

• Involves “cutting over” to new application

• Some people call this “implementation”

• Must be extremely well prepared

• Can make or break a project

Installation (cutover) Approaches

Old System

New System

Parallel

Old System
New System

Old System
New System

Plunge

Phased

Pilot

Old System
New System



System Installation (4Ps)

Risk Cost Duration

Plunge High Low* Short*

Parallel Low High Long

Pilot Med Med Variable

Phased Med Med Variable

Notes: ‘*’ assumes installation is successful :-)
always consider combining approaches

Preparing Users for Change

• Behavioral issues will always be important
– system should be owned by user
– establish need for change
– establish need for system

• Structured analysis and design tends to
increase user participation in SDLC
– structured interviews
– JAD
– prototyping



User Involvement During Implementation
Phase

• designing and procuring forms

• preparing test data

• planning for physical equipment in user areas

• conducting user training

• converting files and databases

• conducting systems and acceptance tests

Innovation Diffusion Theory

Rate of
Adoption

Relative Advantage

Complexity

Compatibility

Innovation Attributes

Knowledge

Persuasion

Decision

Implementation

Individual Adoption
Decision

Pioneer Early Majority Late
Adopter Adopter

S-Shaped Adopter
Distribution



Support Phase

“Systems support is the ongoing
maintenance and upkeep of a system after
it is placed into day-to-day operation.”

Support Phase Terminology

• maintenance vs. enhancement (textbook)

• corrective vs. perfective (research)

• bugs vs. features (practice)



Support Phase:
Maintain System

• Define & Validate Problems

• Benchmark Problem Components

• Understand Problem Components

• Edit & Test Problem Components

• Update Documentation

The Problem

• “Most mature IS organizations devote
approximately 3/4 of their analyst and
programmer resources to support.”

• support cost = 2x to 5x development cost

• don’t shortcut SDLC to save development
cost



Software Maintenance

• There is no such thing as a “free” change to a
software application
– all changes must be done with extreme care and

regard for good software engineering practice
– all changes to software must lead to review of

overall structure of resulting system
– all changes must be fully documented at ALL

relevant levels of documentation

» Macro, 1990

Current Problem

• 70 billion lines of COBOL code in use in US

• This code is depreciating because of new and
changing business conditions

• Hardware is constantly improving, but this
makes software maintenance more difficult



Why Maintenance Costs are High

• Obsolete programming techniques were used

• Documentation is obsolete or absent

• Many programmers made modifications

• Old versions of languages were used

Why Maintenance Costs are High (cont'd)

• Languages were mixed within the program

• Unskilled programmers made enhancements

• Architecture changes are required

• Maintenance is cummulative



Change or Rewrite?

• “Even a strong original program structure
slides progressively into a spaghetti affair
unless definite effort is expended.”

• substantive changes (to modify function)

• consequential changes (to preserve
structure)

• rewrite as s + c tends toward 100%

Support Phase:
 Recover System

• determine cause of problem

• some options include
– simple reboot of PC
– cancel/reinitialize online session by sysops
– recover database by data administration
– recover network by network administration
– repair/replace hardware by vendor service staff



Support Phase:
Assist Client/User

• Level of support depends on nature of app

• Some options include
– help line (phone in)
– help desk (drop in)
– bug busters (on site)
– 7x24 service

Support Phase:
Enhance & Re-engineer

• Analyze change request
– route to analysis, design, or implementation phase

• Write simple, new programs
– e.g. user developed reports

• Restructure files & databases

• Analyze program support costs

• Reengineer & test programs



Re-engineer and Test Programs

• code reorganization
– group or separate to improve coupling & cohesion

• code conversion
– convert language from one version/dialect to

another

• code slicing
– factor out reusable code into library modules

• all to do what should have been done 1st
time!

Versions, Releases, and Fixes

• versions
– involve major functional or technical changes
– must test as initial implementation (ver 2.0)

• releases
– involve minor modifications at regular intervals
– test with original test data sets (ver 2.1)

• fixes
– involve bugs which cannot wait for next release
– test system affected components (ver 2.1a)



Reverse
Engineer

Old Program Code:

COBOL, C, etc.

Design Models:

DFDs, structure charts, etc.

Reverse
Engineer

Old DB schema:

IMS, VSAM, etc.

Design Models:

ERDs, DB2 or Oracle schema

l Compare with “forward engineering”

Reverse Engineering

• Moving backwards through SDLC

Model of Organizational Change
Organizational

Structure
and the

Corporate Culture

Task Technology

Management
Processes

Individuals
and

Roles


