Implementation

Overview
Packaging
Programming
Conversion
Testing

Big Picture

Analysis

Design

Implementation

1
'
v
\
\

Support

Requirements Gathering
Structured Interviews
Reengineering, JAD

Process Modeling Hardware Data Modeling

Decomp
Context \ ERDs

DFDs DDs

Process Specs Feasibility Analysis
Architectural Selection
RFP/RFQ
Program Design Interface Design ____ File & Database Design

Structure Charts Prototyping

BT RRR N Security and Control Design
" Programming "\,
Testing N Network Installation
Installation ! Testing

Training, Documentation
Acceptance Testing
Support

Data Conversion
Testing
Installation

/

Implementation Activities

Program Construction
Validation and Testing

— Programs, Systems
Conversion, Installation
— Data, Hardware, Software
Training

Documentation

Consider balancing number and size of modules
before program construction

§ Minimum

Q.

(/3) Cost of Cost Cost of
G internal interface
g complexity S complexity

Number of Program Modules —>

Refining your Program Design

» eliminate excessively small modules
— unless they perform a common function

 factor out reusable modules
— look for common code
* beware of RAM constraints
— benchmark on typical and “minimum” systems

Finalizing your Design

At this point, the analysis and design models
are repackaged into two reports

 functional specifications
* technical specifications

* make sure they are “current”

Contents of Functional Specifications

general design

processing functions

forms, screens, reports

manual & automated procedures
conversion and installation plan
high level technical requirements

Contents of Technical Specifications

network design

file/database design

program/module design

testing and conversion procedures
detailed hardware & software requirements

Implementation Phase

» Entering the implementation phase, the
models finally give way to the real thing.

Users Databases Programs

Networks

0-0
o0-o&~

Implementation

Implementation Phase

» Build/Test Networks
» Build/Test Databases
* Build/Test Programs
 Install/Test System

* Deliver System

Build/Test Networks

Infrastructure may already be in place
Often done by specialists

Network skills becoming critical in 1990s
TCP/IP is current standard

Build/Test Databases

May be part of infrastructure (often not)
Analyst/designer always involved
Analyst/designer sometimes leads effort
Relational DBMS are current standard

Build/Test Programs

Analyst/designer always involved

Check for reusable software components
For each module:

— algorithm design

— coding

— testing

Cobol, C, VB, C++, Smalltalk

Install/Test System

Install software packages
Test packages

Conduct system test
Prepare conversion plan

Deliver System

Load files and databases

Train client/users

Wrap-up documentation

Install (or convert to) new system
Evaluate project and system

Key Deliverables from Implementation

operational network

loaded files and databases

tested programs and OS commands
trained users

documented system

project evaluation

Packaging

» Every module should become a separate
program (?): what is the problem with this
approach?

* So, packaging into program units

* (In visual programming) program units may
correspond to user interfaces or controls

Packaging

A

. AN
/N N AN A

oy

Planning the Programming Effort

Review design specification
Organize programming team
Develop detailed programming plan
Beware of our eternal optimism

— Brook’s law

— mythical man month

— 80/20 and 90/10 rules
— inch pebbles vs. milestones

Organizing the
Programming Effort
 chief programmer approach
— organize around "superprogrammer"
» “pool” approach
— specifications assigned to programming "pool”
* team approach

— programmers assigned to project team
— can be enhanced with "development center"

Programming Specifications

* In general, the more experienced the
programmer, the less detailed the spec
— program context and functions
— unit test plan
— file/database i/o
— parameter i/o
— program design
— unit test data
— psuedo code

Programming Approaches

* Monolithic
— delays discovery of serious problems
— multiplies need for resources late in project
— pushes problems into operation/support
* Incremental
— allows testing to start earlier
— makes partial version available earlier
— distributes work load more evenly

Big Program (Monolithic) Approach

Code
Code
Code
Code
Code Produce
Test
Fix Payroll
Test
Fix

Test
Fix

Test
Fix

Test
Fix

Incremental Approaches

* bottom-up

— a "concatenation" process

— requires "drivers"

— facilitates generation test data

— facilitates broader delegation of programming
 top-down (versioned or phased)

— a "refinement” process

— requires use of "stubs"

— tests most critical modules early

Structured Programming

* Objective
— saves money over the long-run
« definition (more than avoiding GOTO)
— basic constructs
— hierarchical structure
— style conventions
— internal documentation

Structured Programming Constructs

e seguence

— any code block with single entry, single exit
 condition

— if ... then ... else ... endif

— if ... then ... elselif ... elseif ... endif

— case ... endcase
* repetition

— do while ... enddo (with test before)

— do until ... enddo (with test after)

Effective Programming Style

» write one instruction per line
* use meaningful names

» use common prefixes for related elements
» avoid unnecessary labels
» use indentation and spatial alignment
» use parentheses to show precedence
» avoid programming tricks

* use comments

» follow a standard

Top-Down Implementation

Code

Test

Fix

Code (1) Produce

Test Payroll

Fix

Code

Test -

Fi (2) Get Valid (3) Compute] (4) Produce (5) Produce
X TimeSheet PayAmount PayCheck AuditReport

(6) Get (7) Get (8) Put (11) Put (12) Put
TimeSheet Employee Error PayCheck AuditReport

(9) Get
Taxes

(10) Get
Deductions

Bottom-up Implementation

(12) Produce
Payroll
(8) Get Valid (9) Compute| 10) Produce 11) Produce]
TimeSheet PayAmount PayCheck AuditReport
(1) Get Next (2) Get (3) Put (6) Put (7) Put
TimeSheet Employee Error PayCheck AuditReport
(4) Get (5) Get
Taxes Deductions

Top-Down vs. Bottom-Up

 should we build from top-down or bottom-up?
— both attempt to order the programming
— both encourage modular programming
» combination approach is often best
— bottom-up on input-side
— top-down on output-side

2\ L

Combination Approach

(5) Produce
Payroll
(4) Get Valid (6) Compute (9) Produce 11) Produce
TimeSheet PayAmount PayCheck AuditReport

(1) Get Next
TimeSheet

(2) Get (3) Put (10) Put (12) Put
Employee Error PayCheck AuditReport

(7) Get (8) Get
Taxes Deductions

Testing

Definitions

Debugging

Testing is the process of exercising a program

with the intent of finding errors
Debugging .NE. Testing

Debugging is diagnosing and correcting known
errors; testing, therefore, is the process of

locating and correcting presently unknown

errors

Levels of Testing

Module testing -- testing a single module out
of context, with no interfaces to other
modules

Integration testing -- verifying the interfaces
among modules

Function testing -- verifying that the system
meets specs

System testing -- verifying that the system
meets user objectives

Psychology of Testing

Testing is the process of executing a program
with the intent of finding errors

A successful test finds errors

Remember that programmers have ego
involvement (they don’t want to find errors in
their own code, and don’t want others to find
them either)

Economics of Testing

* The earlier you can
catch the error, the

better 120 5
100 —ﬁ
80 -
— Relative
60 - Cost to
Fix
40 - Error
20 +
0 o r 1 T 1

* The programming team should not examine its
own programs

* A program should be examined to ensure that
they:
— do what they are supposed to do
— do only what they are supposed to do

Testing Ideals:
Programmers & End Users

* End user involvement is critical
» Programmers are blind to their errors

» End users are (unintentionally) a hostile
environment for programmers: possibly on
different paradigm

Testing ldeals:
Test Cases

O

v Test case design begins with a definition of the
possible and/or expected outputs or results

v Nevertheless, test cases should be planned for
unexpected and invalid inputs/user actions as well
as valid and expected conditions

v Test cases should not be designed or created
expecting that no errors will be found

Testing Principles

* The probability that there are more errors in a
section is proportional to the number of errors
already found in that section (errors are not
evenly distributed)

Probability
of other
errors

of errors aready found

Programming Errors: Where Errors Occur

A

—

L T

e
N

v The probability that there are more errors in certain
program units--objects in a hierarchy, form, page,
group of objects, or a section of code--is
proportional to the number of errors already found
in that unit

i.e., errors are not evenly distributed

v20% of these program units have 80% of the errors

Programming Errors:
Why Errors Occur in this Way

T

A\
TN

v Sloppy programmers tend to make a larger number
of errors than more careful programmers

v Some program units are more frequently used than
others

Testing Methods

vBlack Box (Input-Driven Method) |i'>

v White Box (Logic-Driven Method) D

v Error Guessing

White Box Testing

» Also Known As Logic Coverage Testing

* Consists of

— Statement coverage: execute all statements at
least once

— Decision coverage: do all decisions at least once

— Condition coverage: do all conditions at least once

— Condition-Decision coverage: previous coverage
plus all points of entry are invoked at least once

— Multiple condition coverage -- all possible
combinations of condition outcomes

Logic Coverage Testing

» Disadvantages
— Does not detect specification errors
— Cannot detect absence of necessary paths
— Insensitive to data since it only tests logic

Black Box Testing

» Compares outputs with what is expected

* Does the module do what it is supposed to
do, and nothing else

* Infinite number of inputs which must be tested

> >

Black Box Testing

[[>

 Input Driven

* Types
— Equivalence Partitioning
— Boundary Analysis
— Cause Effect Graph

Equivalence Partitioning

e Both valid and invalid

Classes of Sample
Conditions Requirement valid Invalid
Item in range--test Iltem count can be
1 within range and 1 from 1 to 999 369 0. 1062. -100
on each end T ' '
Multiple values-- test Car can have up to 6 Jones, no owner,
several & 1 on each end owners Smith 9 owners
. Type of vehicle
Limited set of values-- limited to: bus, truck, | g Taxicab
test 1 valid & 1 invalid passengercar, cycle us axica
Required positions-- .
- Customer id must 83
test1thatis begin with a letter B8
and 1 that isn't
Boundary Analysis
» A variant of equivalence partitioning:
Equivalence partitioning at the boundary
Classes of S |
Conditions amp'e valid Invalid
Requirement
Item in range-- | b
ithi tem count can be
1 within range & from 1 to 999 1, 999 0, 1000
1 on each end
Multiple values-- test Car can have up to 6 Jones no owner,
several & 1 on each end owners 7 owners
. » Type of vehicle
Limited set of v_alues_ limited to: bus, truck,
test 1 valid & 1 invalid passengercar, cycle
Required positions--test ~ Customer id must Ai’ZAl’ 0A, 9Z
1that is & 1 that isn't begin with a letter

Cause-Effect Graph

» Test all combinations of causes as inputs
against the valid effects

Causes A B C D E F G H
In-State Student Y| Y| Y|Y|N|N|N N
Graduate Student Y| Y| N|N]|]Y|Y]|N N
Professional Student Y| N|Y|NJ|]Y|N|Y]|N

Effects
Low Tuition X | X | X | X
Moderate Tuition X
High Tuition X | X
Outrageous Tuition X

Error Guessing

* Intuitive, based on experience

* May be incomplete, but useful supplement to
other testing techniques

» May involve language dependent problems: eg.
dBase Ill has a limitation on the number of
memory variables

Conclusively, Heuristics of Testing

*f If combinations of input conditions or
end user actions are a likely problem, |::> |j>
start with cause-effect graphing.

J Always use boundary analysis. |j> |j>
J Use one logic coverage technique. |:> lf>

qf Add some test cases using error
guessing.

System Testing

* Volume testing (normal volume)

» Stress testing (peaks and surges)
» Usability testing (human factors)
» Security testing

» Performance testing

» Storage testing

* Reliability testing (mtbf)

* Recovery testing

Debugging

Brute force (print stmts, dumps)
Induction (hypothesize based on data, test)
Deduction (list possible causes, test each)
Backtracking

Testing

Error analysis (when was error made, who made it,
what was done incorrectly, could it have been
prevented, why wasn't it detected earlier)

Debugging Principles

Think. If you reach an impasse, sleep on it
Describe the problem to someone else
Avoid experimentation

Where there is one bug, there are others
Fix the error, not the symptom

The probability of the fix being correct is not
100%

The probability of the fix being correct drops as
the program gets larger

Error correction may create new errors

