
Designing the Program

From DFD to SC

- Transaction Analysis

- Transform Analysis

System Design

• What we have till now
– System Requirements

• Statement of Purpose
• Event List
• ERD (Data)
• DFD (Process)
• Mini Specifications (Process Logic)

– “WHAT” the system should do, is determined
– Architectural Overview
– Bird’s eye view of whole system

Creating Blueprints for Actual Construction

• Construction blue print is the next step, which
includes “HOW”

• Data Perspective
– Conceptual (specified in requirements) to Logical

Model
– Logical Model into Physical Data Structure

• Process Perspective
– DFD into Structure Chart (program specification)
– Module specification
– Forms & Report
– User Interface

Process-oriented Design Activities

• Conduct Transformational and/or
Transactional Analysis
– identify all transactions and see if there is common

processing
– do while also doing transformational analysis

• Develop Structure Charts

• Package Program Units

• Write Program Specifications

Structured Design

• Notation
– Structure Charts
– Pseudo Code

• Heuristics
– Mapping procedures
– Design evaluation guidelines

Overview Data Flow Diagram

Library
System

0

1

2

3

Borrowers List

Book Catalog

Structure Chart

Q: Where do the modules come from?

Open FIle

Module 1
e.g. Read

Module 2..
e.g. Update

Module n
e.g. Write

Executive Module
'Update File'

Top because it calls all others
none call it at this level

Structure Chart Example
Q: Where do the modules come from?

Open FIle

Module 1
e.g. Read

Module 2..
e.g. Update

Module n
e.g. Write

Executive Module
'Update File'

Top because it calls all others
none call it at this level

1

2

3

DFD to Structure Charts?

Library
System

0

1

2

3

Borrowers List

Book Catalog
?

Open FIle

Module 1
e.g. Read

Module 2..
e.g. Update

Module n
e.g. Write

Executive Module
'Update File'

Top because it calls all others
none call it at this level

Converting Data Flow Diagrams
to Structure Charts

• Processes or groups of processes become
Modules

• Basic Issues:
– 1) not all DFDs are converted
– 2) generally the lower level DFDs provide

sufficient detail
• >top level DFDs are too general yet may describe the

control modules

– 3) several levels along the 'explosion path' require
conversion to STCs

Converting DFDs to STCs

General Steps:

• Obtain a first cut STC
1) identify the set of DFDs to convert to STCs
2) identify the 'boss' (control) module
3) perform transform/transactional analysis on DFDs

• Refine the first cut STC
4)insert data flags and /or control flags as needed
5) determine the cohesiveness of the control module
6) perform coupling/decoupling activities on program

modules
7) evaluate the span of control for program modules

Identifying the 'Boss' Module

• Select the DFD with the most I/O occurrences
(the largest number of flows in and out)

• if no single process with the largest number
exists, choose the area where two or more
processes with the largest number of flows.
Then either:

• select one of the flows as the 'boss', or
– create a new artificial 'boss' and connect it to the

process with the most flows

Identifying the 'Boss' Module

• The 'boss' module is the functional equivalent
of the control routine in a structured program

• The only purpose of the 'boss' module is to
control calls to the remainder of the STCs.

• Therefore, it should not be a module that
itself decomposes/explodes as a peer of
other modules at the same level

• may need to choose from the parent DFD

• Summary: The 'boss' may be a process from
an upper (parent) level from which explosion
occurs

Partitioning the Data Flow Diagram

• Transformation-centered Application
– relates to linear/sequential tasks
– transforming afferent flows into efferent flows
– transformation of data is central

• Transaction-centered Application
– multiple transaction types
– logical OR (selection) situation where values

returned by data or control flags triggers the
selection

– case structure analysis with multiple procedures
which do not always get called

– transaction is central

Rules of Transform Analysis

• Basically...
– identify central transform, afferent and efferent

flows
– create a first-cut structure chart
– refine the high-level structure chart
– decompose processes into functions
– refine the STCs iteratively

Steps in Transform Analysis (1)

1) identify central transform, afferent and efferent flows
2) draw the boss process at the top, to which afferent

flows, central transforms and efferent flows are
dangling

3) convert data stores and external entities into STC
input or output (I/O) modules

4) make calls
5) rename modules to indicate how they occur
6) add data flag symbols to indicate data objects being

passes along the call path
7) Add control flags as needed

Rules for Transaction Analysis

• define transaction types and processing

• develop a structure chart with transaction
center as a boss module

• further define structure chart details

• transaction branches may contain transform

Check
customer

get good
entries

Check
order invalid

order

valid
order

order
Very appropriate for menu-driven
 or event-driven applications

Transaction Analysis

• detect places in a DFD where the data flow
leaving or going to a process do not all occur
– situation where a process depends upon a

condition being met

Library of
Congress

BORROWERS

PUBLIC
RELATIONS

STAFF

PUBLISHERS

P1.7

CONDUCT
INVENTORY P1.6

ACQUIRE
NEW BOOKS

P1.5

CREATE
BORROWER
MAILINGS

P1.4

CHECK IN
BOOKS

P1.3

CHECK OUT
BOOKS

P1.2

UPDATE ISBN
MASTER LIST

P1.1

MAINTAIN
FORM

LETTERS

D13 ISBN MASTER
LIST

D12 ISBN MASTER
LIST

D11 FORM LETTER

D10 BOOK LOCATION

D9 BOOK LOCATION

D8 BOOK LOCATION

D7 BOOK LOCATION

D6 BORROWER

D5 STACKS

D4 INVENTORY

D3 INVENTORY

D2 STACKS

D1 INVENTORY

New Books

New Offerings

New Book Orders

Mailings

Books Checked Out

Books From Stacks

Inventory Adjust

Locator Adjust

Books Checked In

Inventory Adjust

Locator Adjust

Books To Stacks

Newly Acquired
Books

Locator Adjust

Inventory Adjust

Borrower Name & Address

Overdue
Books

Inventory Data

Location Data

ISBN Data
Form Letters

New Books

Form Letter
Changes

Published
Book Information

New ISBN Numbers

Form Letter
Changes

New Borrower Data

Reserve Request

Borrower
Check Out

Data

Borrower Caution Data

Library
Overview DFD

P1.5

CREATE
BORROWER
MAILINGS

D12 ISBN MASTER
LIST

D11 FORM LETTER
D8 BOOK LOCATION

D6 BORROWER

Mailings

Borrower Name & Address

Overdue
Books

ISBN Data
Form Letters

A Process in Overview DFD:
Create Borrower Mailing

Structure
Chart for

“Create
Borrower

Mailing”

CREATE BORROWER
MAILINGS

Mail-Merge Data

Letter-ID

ISBN

ISBN

Borrower-Id

Finished LetterREAD
LOCATOR FILE

BY BORROWER

READ
BORROWER

FILE

Skeleton
Letter

ISBN Data
READ FORM
LETTER FILE

READ ISBN
MASTER LIST

Author
and
Title

Borrowed Books

Borrower Data

PRINT
LETTER

FORMAT
LETTER

OBTAIN
AUTHOR

AND TITLE

Furniture Company Purchasing Process

Suppliers

Suppliers

Engineering

Production
Schedulers

P6
Order

Materials

P5
Produce

Bill of
materials

P4
Select

Preferred
Supplier

P3
Develop

Purchased
Goods Specs

P2
Plan

Purchase
Agreements

P1
Forecast
Material
Needs

Supplier
Material

Evaluations

Production
Schedule

Order

Bioo of Materials
Material Specifications

Product Design

Preferred
Supplier

Criteria

Supplier
Description

Price & Term
Quotes

Material
ForecastsProduction

Capacities

Identifying Central Transform

• Process 1: single input and a single output
• Process 6: using just existing data
• Process 4: selection rather than transform
• Process 5: takes product designs and converts into

bills of material: but one input and one output
• Working inward by process of elimination
• Central transform: 2 and 3
• Why both? 2 and 3 are independent of each other,

both serve as starting points for streams of
transformed data to the assembly point: process 6

First Cut Structure Chart (Dangling from CT)

Get
Production
Schedule

Put Order
Get

Production
Capacities

Order
materials

Produce Bill
of materials

Select
Preferred
Supplier

Get Material
Specs

Get Material
Evaluations

Get Price &
Terms

Forecast
Material
Needs

Develop
Purchased

Goods Specs

Plan
Purchase

Agreements

Purchasing
System

Refined
Structure

Chart

Develop
Purchased

Goods Specs

Put Orders

Calculate
Material
Forecasts

Get Material
Data

Get Supplier
Data

Purchasing
System

Plan
Purchase

Agreements

Get Material
Forecast

Get Price &
Terms

Get Material
Evaluations

Get Material
Specs

Select
Preferred
Supplier

Produce Bill
of materials

Generate
Materials

Orders

Get
Production
Capacities

Place Orders

Get
Production
Schedule

General Mapping Approach

• Bound “group” processes
– Isolate incoming and outgoing flow boundaries
– for transaction flows, isolate the transaction center

• Working from boundaries outward, map DFD
transforms into corresponding modules

• Add control modules as necessary

• Refine program structure to account for good
modularity
– i.e., cohesion and coupling

Basic Design Goals

• Fitness for purpose
– the system must work, and work correctly
– it should perform all tasks as specified within the

constraints of the resources

• Robustness
– the design should be stable against changes to

features such as file or data structures

Three Design Principles

• Simplicity
– the design should be simple as possible, but no

simpler

• Separation of Concerns
– the different concepts should be separated out

• Information Hiding
– information about the detailed form of objects

(e.g., data structures) should be kept local and
“visible” to outside modules

Specific Design Guidelines

• Cohesion
– the degree modules are sufficient to carry out one,

single, well-defined function. A measure of internal
strength. Each module is a system unto itself.

– Coupling
– Module independence preferred to tight

interdependence. (e.g. less is better)

• Information Hiding
– only the data needed is made available to each module

• Modularity
– small self-contained units for maintainability; each

module is a system unto itself

Specific Design Guidelines (cont’d)

• Module Size
– reasonable size

• Span of Control
– calling of others: known and limited: generally

seven

• Scope of Effect/Control
– clear path of relationships in the hierarchy

Factoring

• is a process of decomposing a DFD into a
hierarchy of program components which
eventually become modules, functions, and
control structures

• examine each DFD stream and analyze the
IPO structure

• places each unbroken strand of processes in
DFDs into its own control structure and
creates new control processes for split
strands at the point of the split

Deliverables

• Structure Charts
– Fully factored
– Complete descriptions of data couples and control

flags

• Module Specifications
– Input Specifications
– Processing Specifications
– Output Specifications

Module Specification Methods

I/O Spec

Psuedo Code

Module Specification

t Two Common Methods
w I/O Spec
w Pseudo Code
w (also, Structure English, but not preferred)

t Purpose
w Guide programmer without doing writing code
w Document module/program
w Describe what to do

j sometimes move towards how to do it

Example Module

Select
Passenger

Seat

Set
Start Seat

Get Next
Available Seat

Add Non-
Smoking Row

start seat
end of seatsseat

new non-smoking row

add OK

Weighted seat preference

selected seat
Preference available

assigned class

Let’s examine
this module

I/O Specification

Module: Select Passenger Seat
Purpose: To choose for a customer a seat that is valid

for his class and is as close as possible to his
(weighted) seating preference

Uses: weighted seat pref
Returns: selected seat, pref available
Functional Details

Scan the available seats, beginning in the passenger’s assigned class and
working to lower classes.

Note for each set its differences from the customer’s preference

Select the seat with the least difference: this is selected_seat. (Difference =
smoking_diff * smoking_weight + ...)

etc.

Pseudo Code Specification

• Concept: More detailed procedural language
independent way to describe module.
– Similar to code, but not.
– Less programmer margin for error.

Pseudo Code Specification

Module: Select Passenger Seat
Purpose: To choose for a customer a seat that is valid

for his class and is as close as possible to his (weighted)
seating preference

Uses: weighted seat pref
Returns: selected seat, pref available
Begin

For each CLASS downward from passenger’s ASSIGNED_CLASS

Call Get First Seat (CLASS, START_SEAT)

Repeat

 Call Get Next Available Seat(SEAT, END_OF_SEATS)

Until END_OF_SEATS = “Y”

EndFor

etc.......

End

A Preferred Module Specification Format

Module Name: Discombobulate Ringhadffers
Module Purpose: To do whatever...
Uses: the incoming data
Returns: names outgoing data elements or structures
Begin

FOR each module

a complete descriptions of the

appropriate programming logic in

a suitable pseudocode form

show initializations where required

show any unusual or designer preferred algorithms

indicate program calls and the data sent and returned from

 the module invoked

 etc....... END FOR

End Proc

