Beyond Design

Documentation
Installation
Support

Big Picture
Requirements Gathering
Structured Interviews
Reengineering, JAD
Analysis \
Process Modeling —— Hardware — Data Modeling
Decomp
Context \ ERDs
DFDs DDs
Process Specs Feasibility Analysis
Architectural Selection
RFP/RFQ
DeSign i Interface Desi i i
Program Design —— 9N ____ File & Database Design
Structure Charts Prototyping
| Security and Control Design
. Programming | Data Conversion
Implementation Testing Network Installation Testing
Installation Testing Installation

Support \ Training, Documentation

\ Acceptance Testing
AN Support

Wrap-up Documentation

« for client/users
— reference manual
— task guide
— training guide
 for operations staff
— operations manual
« for technical staff
— technical manual
— program manual

Client/user Documentation

reference manual

— organized by system function or command

— for experienced users

task guide

— “how to” orientation

— organized by business function

training guide

— overview, tutorial

build into application as much as possible

Operations Documentation

» operations manual
— startup/shutdown
— backup procedures
— focus on restart and recovery

Technical Documentation

* technical manual
— general design spec
— system architecture
— interface specs (with other systems)

* program documentation
— design specs
— source code
— test data
— change log

System Installation

Involves “cutting over” to new application
Some people call this “implementation”
Must be extremely well prepared

Can make or break a project

Installation (cutover) Approaches

Parallel
| Old System
New System |
Plunge
| Old System |
Phased
| Old System
New System
Pilot
| Old System
New System

System Installation (4Ps)

Risk Cost Duration
Plunge High Low* Short*
Parallel Low High Long
Pilot Med Med Variable
Phased Med Med Variable

Notes: “*' assumes installation is successful :-)
always consider combining approaches

Preparing Users for Change

» Behavioral issues will always be important
— system should be owned by user
— establish need for change
— establish need for system
» Structured analysis and design tends to
increase user participation in SDLC
— structured interviews
- JAD
— prototyping

User Involvement During Implementation
Phase

designing and procuring forms

preparing test data

planning for physical equipment in user areas

conducting user training

converting files and databases

conducting systems and acceptance tests

Innovation Diffusion Theory

Innovation Attributes Individual Adoption
Relative Advantage Decision Implementation
c lexit Rate of | Decision |
omplexi -
plexity Adoption | Persuasion |
Compatibility Knowledge

S-Shaped Adopter
Distribution

Pioneer Early Majority Late
Adopter Adopter

Support Phase

“Systems support is the ongoing
maintenance and upkeep of a system after
it is placed into day-to-day operation.”

Support Phase Terminology

* maintenance vs. enhancement (textbook)
 corrective vs. perfective (research)
* bugs vs. features (practice)

Support Phase:

Maintain System
Define & Validate Problems
Benchmark Problem Components
Understand Problem Components
Edit & Test Problem Components
Update Documentation

The Problem

“Most mature IS organizations devote
approximately 3/4 of their analyst and
programmer resources to support.”

support cost = 2x to 5x development cost

don’t shortcut SDLC to save development
cost

Software Maintenance

* There is no such thing as a “free” change to a
software application

— all changes must be done with extreme care and
regard for good software engineering practice

— all changes to software must lead to review of
overall structure of resulting system

— all changes must be fully documented at ALL
relevant levels of documentation

» Macro, 1990

Current Problem

e 70 billion lines of COBOL code in use in US

» This code is depreciating because of new and
changing business conditions

» Hardware is constantly improving, but this
makes software maintenance more difficult

Why Maintenance Costs are High

Obsolete programming techniques were used
Documentation is obsolete or absent

Many programmers made modifications

Old versions of languages were used

Why Maintenance Costs are High (cont'd)

Languages were mixed within the program
Unskilled programmers made enhancements
Architecture changes are required
Maintenance is cummulative

Change or Rewrite?

* “Even a strong original program structure
slides progressively into a spaghetti affair
unless definite effort is expended.”

» substantive changes (to modify function)

» consequential changes (to preserve
structure)

e rewrite as s + c tends toward 100%

Support Phase:
Recover System

» determine cause of problem

* some options include
— simple reboot of PC
— cancel/reinitialize online session by sysops
— recover database by data administration
— recover network by network administration
— repair/replace hardware by vendor service staff

Support Phase:
Assist Client/User

» Level of support depends on nature of app

* Some options include
— help line (phone in)
— help desk (drop in)
— bug busters (on site)
— 7X24 service

Support Phase:
Enhance & Re-engineer

Analyze change request
— route to analysis, design, or implementation phase

Write simple, new programs
— e.g. user developed reports

Restructure files & databases
Analyze program support costs
Reengineer & test programs

Re-engineer and Test Programs

code reorganization
— group or separate to improve coupling & cohesion
code conversion

— convert language from one version/dialect to
another

code slicing
— factor out reusable code into library modules

all to do what should have been done 1st
time!

Versions, Releases, and Fixes

e versions
— involve major functional or technical changes
— must test as initial implementation (ver 2.0)

* releases
— involve minor modifications at regular intervals
— test with original test data sets (ver 2.1)

» fixes
— involve bugs which cannot wait for next release
— test system affected components (ver 2.1a)

Reverse Engineering

* Moving backwards through SDLC

Old Program Code: Design Models:
Reverse
COBOL, C, etc. Engineer DFDs, structure charts, etc.
Old DB schema: Design Models:
Reverse
IMS, VSAM, etc. Engineer ERDs, DB2 or Oracle schema

@ Compare with “forward engineering”

Model of Organizational Change

Organizational
Structure
and the

Corporate Culture

Technology

Individuals
and
Roles

Management
Processes

