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Data Flow Diagrams

« DFDs model the

— Sources and destinations of data
(external entities)

— Data inputs and outputs
(data flows)

— Actions that transform inputs into outputs
(processes)

— Data maintained by an information system
(data stores)

Logical vs. Physical DFDs

* Logical DFDs model processes and data
stores at logical level
— Does not specify who and how

» Physical DFDs provide details about physical
implementation
— Who performs what processes
— How processes are performed
— Where data are stored



Logical and Physical DFDs

» Traditionally, we modeled the existing
physical system, then converted it to a logical
model of the existing system

» Changes were made to logical model to
reflect requirements of new system, then new
physical model was developed

DFD Symbols
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Rules for Constructing DFDs

Sequence processes from left to right, top to
bottom

External entities and data stores may be
repeated to avoid intersecting lines
Every data flow must begin or end at a
process

Avoid black holes and magic processes

Functional Decomposition

DFDs support top-down analysis and
functional decomposition

Leveled DFDs show successive levels of
decomposition

Successive levels show children of the parent
process

— All data flows in parent process must also appear
in child diagrams (vertical balancing)



Turning Text Into DFD

Read text and identify candidate processes

Reread text to identify input and output data
flows

Reread text to identify external entities and
data stores

Finally, put the pieces together

Design Definition

» Design
— an outline, sketch, or plan of the form or structure
of work

» Computer System Design

— the activity of transforming a statement of what is
required to be accomplished into a plan for
implementing that requirement on an electronic
automaton.



Structured Design

Structured Design

Uses problem definition to guide solution

— Transform the problem description (DFD) into a
solution description (SC) via design strategies.

Manages complexity with “black boxes”

— Modules which can be reasoned about solely on
their input and output.

Uses graphic tools (structure chart)

Offers strategies for deriving solutions
— Transform and transaction analysis

Offers design quality criteria



Problem Definition Guides Solution

* If your only tool is a hammer, everything looks
like a nalil

— Often, solutions are predetermined, not by the
problem definition but by the designs
preconceived notions how systems should be

— “All systems should ...”
* Be event processing
* Be batch driven
» Have one input and one output module

» Structure Design attempts to eliminate such
predetermined design

Simplifying a System

» Structure design seeks to manage the
complexity of large systems in two ways:
— partitioning Boss

« divide a large system into a collection of smallgr,
interrelated modules | |

— hierarchical organization

 arrange the modules into subgroJBQWhicr PJQBS% tq OUtpUt

(fewer) high-level modules

Read Write




Partitioned “Black Boxes”

 Easily constructed
— Compose modules based only on I/O

» Easily tested
— Narrow search for faults based on test of 1/0O only

» Easily corrected
— Repair modules in isolation to give correct 1/0O

» Easily understood
— Lesser need to understand details of other
modules
» Easily modified
— Add to system functionality by adding modules

Hierarchical Organization

» Consider hierarchical business organization
as analogy to design
— A manager should have <= 7 subordinates
— Work and management should be separated

— Every department should have a well defined
function

— Every job should be allocated to the proper
department

— Reports to upper management should be
meaningful

— A manager should give only as much information
to a subordinate as that person needs in order to
get the job done (more meaningful for design)



Structured Design Tools

Structure Chart Shows
— Partitioning

» each box is a module
— Hierarchy

* Managing modules are shown above with arrow pointing
downward

— Communication

» Small “flags” indicate control, data, and descriptive
information as it is passed from one module to another

Structure Charts Provides
— A semi-formal view of system or program structure

— Documentation and blue-prints for programmers
and maintainers
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Structured Design Tools (cont.)

Module Specification
— a.k.a. Pseudocode, Structured English
— Informal flexible design description

Example
— module prod customer for unpaid bills

open unpaid bill file, customer detail file
get today’s date
repeat

» call get next unpaid bill, getting unpaid bill and EOF
until EOF
set days overdue to today’s date - bill date
case days overdue

» > 90: call generate legal threat using unpaid bill
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Functional Decomposition
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Structure Chart
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Structure Chart
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Design Goals

* To Create Programs which are:
— High Quality
— Error-free
— Maintainable, extensible

Design Guidelines

Cohesion

— the degree modules are sufficient to carry out one,
single, well-defined function

Coupling

— Module independence preferred to tight
interdependence

Module Size (reasonable size)
Span of Control (known and limited)

Scope of Effect/Control (clear path of
relationships in the hierarchy)
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