Structured Process Modeling

Structure Charts | Prototyping
| : Security and Control Design |
Programming [
Testing / Network Installation
. Installation Testing

/

Big Picture
Requirements Gathering
Structured Interviews
Reengineering, JAD
Analysis |
Process Modeling —— Hardware — Data Modeling
/,Decomp
S Context\\ \ ERDs
/' DFDs \ DDs
,// Process Specs ‘\ Feasibility Analysis
! \ Architectural Selection
/ \ RFP/RFQ
DeSign ! i ‘i Interface Desi i i
i Program Design +—— 9N ____ File & Database Design

Data Conversion
Testing
Installation

Implementation’,

Support Training, Documentation /

Acceptance Testing
Support

Concept Map of Analysis

Project Initiation Essential Analysis

- Statement of Purpose

Feasibility Study - Event List
- - Context Diagram
Analysis Functional Model

Design - Data Flow Diagram

- Decomposition Diagram

Implementation - Process Specifications

- Data Dictionary
Maintenance

Concept Map of Design

Deriving SC from DFD

- Transaction/Transform

Project Initiation

Feasibility Study Good Structure Chart

/ - Coupling/Cohesion

Design * Interface Design

Analysis - Other Guidelines
4 * Structure Chart

Implementation \

Interface Design Guidelines

Maintenance

Packaging, Conversion, Testing

Data Flow Diagrams

« DFDs model the

— Sources and destinations of data
(external entities)

— Data inputs and outputs
(data flows)

— Actions that transform inputs into outputs
(processes)

— Data maintained by an information system
(data stores)

Logical vs. Physical DFDs

* Logical DFDs model processes and data
stores at logical level
— Does not specify who and how

» Physical DFDs provide details about physical
implementation
— Who performs what processes
— How processes are performed
— Where data are stored

Logical and Physical DFDs

» Traditionally, we modeled the existing
physical system, then converted it to a logical
model of the existing system

» Changes were made to logical model to
reflect requirements of new system, then new
physical model was developed

DFD Symbols
1.1
Customer Enter
Customer
Data
External entity -~

System process

F3 | Customers

Customer name

Data store Data flow (message)

Rules for Constructing DFDs

Sequence processes from left to right, top to
bottom

External entities and data stores may be
repeated to avoid intersecting lines
Every data flow must begin or end at a
process

Avoid black holes and magic processes

Functional Decomposition

DFDs support top-down analysis and
functional decomposition

Leveled DFDs show successive levels of
decomposition

Successive levels show children of the parent
process

— All data flows in parent process must also appear
in child diagrams (vertical balancing)

Turning Text Into DFD

Read text and identify candidate processes

Reread text to identify input and output data
flows

Reread text to identify external entities and
data stores

Finally, put the pieces together

Design Definition

» Design
— an outline, sketch, or plan of the form or structure
of work

» Computer System Design

— the activity of transforming a statement of what is
required to be accomplished into a plan for
implementing that requirement on an electronic
automaton.

Structured Design

Structured Design

Uses problem definition to guide solution

— Transform the problem description (DFD) into a
solution description (SC) via design strategies.

Manages complexity with “black boxes”

— Modules which can be reasoned about solely on
their input and output.

Uses graphic tools (structure chart)

Offers strategies for deriving solutions
— Transform and transaction analysis

Offers design quality criteria

Problem Definition Guides Solution

* If your only tool is a hammer, everything looks
like a nalil

— Often, solutions are predetermined, not by the
problem definition but by the designs
preconceived notions how systems should be

— “All systems should ...”
* Be event processing
* Be batch driven
» Have one input and one output module

» Structure Design attempts to eliminate such
predetermined design

Simplifying a System

» Structure design seeks to manage the
complexity of large systems in two ways:
— partitioning Boss

« divide a large system into a collection of smallgr,
interrelated modules | |

— hierarchical organization

 arrange the modules into subgroJBQWhicr PJQBS% tq OUtpUt

(fewer) high-level modules

Read Write

Partitioned “Black Boxes”

 Easily constructed
— Compose modules based only on I/O

» Easily tested
— Narrow search for faults based on test of 1/0O only

» Easily corrected
— Repair modules in isolation to give correct 1/0O

» Easily understood
— Lesser need to understand details of other
modules
» Easily modified
— Add to system functionality by adding modules

Hierarchical Organization

» Consider hierarchical business organization
as analogy to design
— A manager should have <= 7 subordinates
— Work and management should be separated

— Every department should have a well defined
function

— Every job should be allocated to the proper
department

— Reports to upper management should be
meaningful

— A manager should give only as much information
to a subordinate as that person needs in order to
get the job done (more meaningful for design)

Structured Design Tools

Structure Chart Shows
— Partitioning

» each box is a module
— Hierarchy

* Managing modules are shown above with arrow pointing
downward

— Communication

» Small “flags” indicate control, data, and descriptive
information as it is passed from one module to another

Structure Charts Provides
— A semi-formal view of system or program structure

— Documentation and blue-prints for programmers
and maintainers

Prod Customers For
Unpaid Bills

a4

?{npald bill 7} T O\Qaid bil O\Q id bil
f/OF unpaid bills [

today's (d?tv

Get Date Get Next Unpaid Generate Gentle Hint Generate Stern Generate Legal
Bill Warning Threat

i ster rning i
gentle hint

v

legal threat

4

customer detglils
customer ID
4

Get Customer
Details

Write Letter

Structured Design Tools (cont.)

Module Specification
— a.k.a. Pseudocode, Structured English
— Informal flexible design description

Example
— module prod customer for unpaid bills

open unpaid bill file, customer detail file
get today’s date
repeat

» call get next unpaid bill, getting unpaid bill and EOF
until EOF
set days overdue to today’s date - bill date
case days overdue

» > 90: call generate legal threat using unpaid bill

First Level Data Flow Diagram

Library | ™~~e T
System

\ ~
\ SN
\
\\ \\\
\ \\\
\ AN 1 ‘ Book Catalog
\
\\ \\\ / 3
\ SN
\\ \\\
\ AN
\\ 2\\
\ ~N
\ \\\
~
\ ANy
\\ SN
\\ \\\
\ \\\
\\ N
\ ‘ Borrowers List NG
\\ - \\

Functional Decomposition

0
Library
System
_—
1 2 3
2.1 2.2

Structure Chart

Logical Design

Executive Module
'‘Update File'
Top because it calls all others
none call it at this level

Module 1 Module 2.. Module n
e.g. Read e.g. Update e.g. Write

Open Flle

Structure Chart

Physical Design 2
Executive Module
‘Update File'
1 Top because it calls all others
— none call it at this level 3
[fant
[| |
Module 1 Module 2.. Module n
e.g. Read e.g. Update e.g. Write
[| | ‘
| OpenFlle
N

DFD to Structure Charts?

ﬁ Structure Chart Example
Q: Where do the modules come from?

Executive Module
‘Update File'
Top because it calls all others
none call it at this level
I

1
Module n
e.g. Write

\\ ‘ Open Flle ‘ ‘ ‘ ‘ ‘ ‘ ‘

[
Module 2..
e.g. Update

[
Module 1
e.g. Read

\
Borrowers List

Design Goals

* To Create Programs which are:
— High Quality
— Error-free
— Maintainable, extensible

Design Guidelines

Cohesion

— the degree modules are sufficient to carry out one,
single, well-defined function

Coupling

— Module independence preferred to tight
interdependence

Module Size (reasonable size)
Span of Control (known and limited)

Scope of Effect/Control (clear path of
relationships in the hierarchy)

| Systems Design |
[

| Data Modeling | | Process Modeling |
|Physical Database Design| | Structure Chart |
Normalization |——| Logical to Physical | | Derivation |——| Evaluation |
Principle | What's different | Transform Analysis | Cohesion |
Practice | Examples in Sys Archl Transaction Analysis | Coupling |

|
| Prototyping |
I

| GUI Design |

