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Data Flow Diagrams

• DFDs model the
– Sources and destinations of data

(external entities)
– Data inputs and outputs

(data flows)
– Actions that transform inputs into outputs

(processes)
– Data maintained by an information system

(data stores)

Logical vs. Physical DFDs

• Logical DFDs model processes and data
stores at logical level
– Does not specify who and how

• Physical DFDs provide details about physical
implementation
– Who performs what processes
– How processes are performed
– Where data are stored



Logical and Physical DFDs

• Traditionally, we modeled the existing
physical system, then converted it to a logical
model of the existing system

• Changes were made to logical model to
reflect requirements of new system, then new
physical model was developed
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Rules for Constructing DFDs

• Sequence processes from left to right, top to
bottom

• External entities and data stores may be
repeated to avoid intersecting lines

• Every data flow must begin or end at a
process

• Avoid black holes and magic processes

Functional Decomposition

• DFDs support top-down analysis and
functional decomposition

• Leveled DFDs show successive levels of
decomposition

• Successive levels show children of the parent
process
– All data flows in parent process must also appear

in child diagrams (vertical balancing)



Turning Text Into DFD

• Read text and identify candidate processes

• Reread text to identify input and output data
flows

• Reread text to identify external entities and
data stores

• Finally, put the pieces together

Design Definition

• Design
– an outline, sketch, or plan of the form or structure

of work

• Computer System Design
– the activity of transforming a statement of what is

required to be accomplished into a plan for
implementing that requirement on an electronic
automaton.



Structured Design

Structured Design

• Uses problem definition to guide solution
– Transform the problem description (DFD) into a

solution description (SC) via design strategies.

• Manages complexity with “black boxes”
– Modules which can be reasoned about solely on

their input and output.

• Uses graphic tools (structure chart)

• Offers strategies for deriving solutions
– Transform and transaction analysis

• Offers design quality criteria



Problem Definition Guides Solution

• If your only tool is a hammer, everything looks
like a nail
– Often, solutions are predetermined, not by the

problem definition but by the designs
preconceived notions how systems should be

– “All systems should ...”
• Be event processing
• Be batch driven
• Have one input and one output module

• Structure Design attempts to eliminate such
predetermined design
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Output

Boss

Simplifying a System

• Structure design seeks to manage the
complexity of large systems in two ways:
– partitioning

• divide a large system into a collection of smaller,
interrelated modules

– hierarchical organization
• arrange the modules into subgroups which “report” to

(fewer) high-level modules



Partitioned “Black Boxes”

• Easily constructed
– Compose modules based only on I/O

• Easily tested
– Narrow search for faults based on test of I/O only

• Easily corrected
– Repair modules in isolation to give correct I/O

• Easily understood
– Lesser need to understand details of other

modules

• Easily modified
– Add to system functionality by adding modules

Hierarchical Organization

• Consider hierarchical business organization
as analogy to design
– A manager should have <= 7 subordinates
– Work and management should be separated
– Every department should have a well defined

function
– Every job should be allocated to the proper

department
– Reports to upper management should be

meaningful
– A manager should give only as much information

to a subordinate as that person needs in order to
get the job done (more meaningful for design)



Structured Design Tools

• Structure Chart Shows
– Partitioning

• each box is a module

– Hierarchy
• Managing modules are shown above with arrow pointing

downward

– Communication
• Small “flags” indicate control, data, and descriptive

information as it is passed from one module to another

• Structure Charts Provides
– A semi-formal view of system or program structure
– Documentation and blue-prints for programmers

and maintainers
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Structured Design Tools (cont.)

• Module Specification
– a.k.a. Pseudocode, Structured English
– Informal flexible design description

• Example
– module prod customer for unpaid bills

– open unpaid bill file, customer detail file

– get today’s date

– repeat

» call get next unpaid bill, getting unpaid bill and EOF

– until EOF

– set days overdue to today’s date - bill date

– case days overdue

» > 90: call generate legal threat using unpaid bill

– ...
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Design Goals

• To Create Programs which are:
– High Quality
– Error-free
– Maintainable, extensible

Design Guidelines

• Cohesion
– the degree modules are sufficient to carry out one,

single, well-defined function

• Coupling
– Module independence preferred to tight

interdependence

• Module Size (reasonable size)

• Span of Control (known and limited)

• Scope of Effect/Control (clear path of
relationships in the hierarchy)
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