Designing the Program

From DFD to SC
- Transaction Analysis
- Transform Analysis

System Design

 What we have till now

— System Requirements

» Statement of Purpose

» Event List

* ERD (Data)

» DFD (Process)

» Mini Specifications (Process Logic)
— “WHAT” the system should do, is determined
— Architectural Overview

— Bird’s eye view of whole system

Creating Blueprints for Actual Construction

» Construction blue print is the next step, which
includes “HOW”
» Data Perspective

— Conceptual (specified in requirements) to Logical
Model

— Logical Model into Physical Data Structure

* Process Perspective
— DFD into Structure Chart (program specification)
— Module specification
— Forms & Report
— User Interface

Process-oriented Design Activities

Conduct Transformational and/or
Transactional Analysis

— identify all transactions and see if there is common
processing

— do while also doing transformational analysis
Develop Structure Charts

Package Program Units

Write Program Specifications

Structured Design

Notation

— Structure Charts

— Pseudo Code
Heuristics

— Mapping procedures

— Design evaluation guidelines

Overview Data Flow Diagram
I

N
System

~
\

\\\ 1 ‘ Book Catalog [
\
\\ \\\\ {//’ 3
\ ~
\
\
\
\
\

~
~
~
~
~
~

‘ Borrowers List
\
\

Structure Chart

Q: Where do the modules come from?

Executive Module
'Update File'
Top because it calls all others
none call it at this level

Module 1 Module 2.. Module n
e.g. Read e.g. Update e.g. Write
I |

Open Flle
Structure Chart Example
Q: Where do the modules come from?
2
/
Executive Module
'Update File'
1 Top because it calls all others
—_— none call it at this level 3
I fa
I I |
Module 1 Module 2.. Module n
e.g. Read e.g. Update e.g. Write

Open Flle

DFD to Structure Charts?

Executive Module
‘Update File'
Top because it calls all others
none call it at this level
I

1
Module n
e.g. Write

1
Module 2..
e.g. Update

[
Module 1
e.g. Read

| Open Flle | | | | | |

TN
| Borrowers List

N\

Converting Data Flow Diagrams
to Structure Charts

» Processes or groups of processes become
Modules

» Basic Issues:
— 1) not all DFDs are converted
— 2) generally the lower level DFDs provide
sufficient detail

» >top level DFDs are too general yet may describe the
control modules

— 3) several levels along the 'explosion path' require
conversion to STCs

Converting DFDs to STCs

General Steps:

* Obtain a first cut STC
1) identify the set of DFDs to convert to STCs
2) identify the 'boss' (control) module
3) perform transform/transactional analysis on DFDs

» Refine the first cut STC
4)insert data flags and /or control flags as needed
5) determine the cohesiveness of the control module

6) perform coupling/decoupling activities on program
modules

7) evaluate the span of control for program modules

ldentifying the 'Boss' Module

» Select the DFD with the most I/O occurrences
(the largest number of flows in and out)

* if no single process with the largest number
exists, choose the area where two or more
processes with the largest number of flows.
Then either:

* select one of the flows as the 'boss’, or

— create a new artificial 'boss' and connect it to the
process with the most flows

ldentifying the 'Boss' Module

The 'boss' module is the functional equivalent
of the control routine in a structured program

The only purpose of the 'boss' module is to
control calls to the remainder of the STCs.

Therefore, it should not be a module that
itself decomposes/explodes as a peer of
other modules at the same level

may need to choose from the parent DFD

Summary: The 'boss' may be a process from
an upper (parent) level from which explosion
occurs

Partitioning the Data Flow Diagram

Transformation-centered Application

— relates to linear/sequential tasks

— transforming afferent flows into efferent flows
— transformation of data is central

Transaction-centered Application
— multiple transaction types

— logical OR (selection) situation where values
returned by data or control flags triggers the
selection

— case structure analysis with multiple procedures
which do not always get called

— transaction is central

Rules of Transform Analysis

» Basically...

— identify central transform, afferent and efferent
flows

— create a first-cut structure chart

— refine the high-level structure chart
— decompose processes into functions
— refine the STCs iteratively

Steps in Transform Analysis (1)

1) identify central transform, afferent and efferent flows

2) draw the boss process at the top, to which afferent
flows, central transforms and efferent flows are
dangling

3) convert data stores and external entities into STC
input or output (I/0O) modules

4) make calls

5) rename modules to indicate how they occur

6) add data flag symbols to indicate data objects being
passes along the call path

7) Add control flags as needed

Rules for Transaction Analysis

define transaction types and processing

develop a structure chart with transaction
center as a boss module

further define structure chart details
transaction branches may contain transform

Transaction Analysis

» detect places in a DFD where the data flow
leaving or going to a process do not all occur

— situation where a process depends upon a
condition being met

Very appropriate for menu-driven
\%: or event-driven applications

Check
order invalid

\Q%}
vali get good

order entries

Check
customer

(\D\&

Form Letters

FORM LETTER

TForm Letter
Changes,

MAINTAIN
FORM

LETTERS

Form Letter
Changes

PUBLIC
RELATIONS
STAFF

Library
Overview DFD

Borrower Name & Address

1SBN MASTER
CREATE LIsT
BORROWER
MAILINGS

1SBN Data
EOOK LOCATION
Overdue .

Books

P13
CHECK OUT
BOOKS

New Borrower Rata’

Books From Stack
STACKS

grentory Adjust s . INVENTORY

Reserve Request Locator Adjust . [DI0[BOOK LOCATION
Maijing
PLa
ooks Checked Out} SN Inventory Adjust . INVENTORY
BORROWERS, BOOKS
Books Checked In Locator Adjust D9[BOOK LOCATION
Books To Stacks Locator djust
STACKS,
PL7 N Inventory Adjust
CONDUCT | Inventory Data. INVENTORY Q80—
INVENTORY Newly Acquired PL6
o ACQUIRE New Bool
Location Data_y ['D7[BOOK LOCATION NEW BOOKS
New Books PUBLISHERS

New

1SBN MASTI
LIST

New Offerings

New Book Orders

ER P12 Published Library of
UPDATE IseN| Book Information| Congress
MASTER LIST]

ISBN Numbers

Borrower Name & Address

BORROWER

g

Form Letters

P15 ISBN Data |D12| ISBN MASTER
CREATE LIST
BORROWER
DIl FORMLETTER | MAILINGS D8 [BOOK LOCATION
Overdue
Books

A Process in Overview DFD:

Create Borrower

Mailing

GReATE BoRROWER Structure
Chart for

“Create
Borrower

Mail-Merge Data

O\

Borrower Daao/(A:gor I ”
Mailing
Borrower-1d
FORMAT
LETTER
OBTAIN
READ AUTHOR
BORROWER ANDTITLE
FILE Letter-ID
Borrowed/Books
ISBN| -
READ Skataon Finished Letter
LOCATORFILE
BY BORROWER READ FORM PRINT
ISBN Data
LETTERFILE LETTER
READ ISBN
MASTERLIST
=‘ System Architect - CASYSARCH{SAGLOBALY hil K3
File Edit Yiew Diagram Symbol Definition Set Window Help StructChart
= Baose [Blwl semE] [(Bl]
= 1. Library System - Level 0 v |- =‘ Create Borrower Maili hd
- + +
Library Syste =
Create Borrower Mailings
Borrower Can
Borrower Mame & Address . EORROWER, ———————
CAEATE
Borrover BORROWER
Check Out MAILINGS
y Data
Y -
Form Letters P14 15BN Data [01 | ISBM MASTER
CREATE i MailMerge Dala
EORROVER |& 1o
W FORM LETTER WALNGS H TR C\\
— O;E,.:ue QCATION " BnrmwarDag/f /O ufor
Forr Lettsr E— ook 9—'3,:1 Tk
Changes Mew Barrower Deta = Bonowerld
: FORM
4 Reserve Fieauest i SETA LETT
Maligs FEAD AUTHOR
TANTAIN BORROWER AND TITLE
FORM — FILE LetterdD
LETTERS
2o Bonowed Books
Eiaoks Chiecked Out - s
BORROWERS RERD Komen Firis
Form Letter Boaks Checked In . LEIE?TBDYR il 5N D READ FORN
Changss LETTERFILE
BORAOWER
FUBLIC - v
RELATIONS Create Borower Maings READ 15BN
STAFF Gystem Architect MASTER
SunJan 22,1995 2255 st

Comment
Structure Chart

P15

INWENTORY
Location Data H B
QCATION Newr B

+

READ LOCATOR FILE BY

=140, y=812, ow=1 11, cy=100

Furniture Company Purchasing Process

Production P1 Material P2 Suppliers
Schedulers Production | Forecast Forecasts Plan Price &Term
Capacitie Material Purchase Quotes
Needs Agreements :
Supplier, -
Descriptiori’|... A
Production i
Schedule P6 P4 Supplier ¢ Engineering
preferred i Material
Order referre Select ; Evaluations;
Materials |lg—SuPPlier Preferred |/
Supplier |/
Order 7)\7 A
Cri__t':eria
Suppliers
P5 P3
Produce poduct D Develop
Bill of duct ‘?'g" Purchased |«
Bioo of Material i
ioo of Materials materials Goods Specs Material Specifications

Identifying Central Transform

Process 1: single input and a single output
Process 6: using just existing data
Process 4: selection rather than transform

Process 5: takes product designs and converts into
bills of material: but one input and one output

Working inward by process of elimination
Central transform: 2 and 3

Why both? 2 and 3 are independent of each other,
both serve as starting points for streams of
transformed data to the assembly point: process 6

First Cut Structure Chart (Dangling from CT)

Purchasing
System

Forecast Get Material Develop Produce Bill
Material Evaluations | | Purchase Purchased ;| | of materials
Needs “ | Agreements| |Goods Specs| |,/ Supplier
Get Price & Get Material Order
Terms Specs materials
Get & Y
"_.Production 3 Get Put Order
‘Capacities ‘Production
) Schedule

Refined
Mo Structure
H Chart

v Y \ v y

Get Supplier Get Material Plan Develop Place Orders
Data Data Purchase Purchased
Agreements Goods Specs
Get Price & Get Material Produce Bill Select Generate Put Orders
Terms Evaluations of materials Preferred Materials
Supplier Orders
Get Material Get Material Get
Forecast Specs Production
Schedule

Get Calculate

Production Material

Capacities Forecasts

General Mapping Approach

Bound “group” processes

— Isolate incoming and outgoing flow boundaries

— for transaction flows, isolate the transaction center
Working from boundaries outward, map DFD
transforms into corresponding modules

Add control modules as necessary

Refine program structure to account for good
modularity

— I.e., cohesion and coupling

Basic Design Goals

» Fitness for purpose
— the system must work, and work correctly

— it should perform all tasks as specified within the
constraints of the resources

* Robustness

— the design should be stable against changes to
features such as file or data structures

Three Design Principles

» Simplicity
— the design should be simple as possible, but no
simpler
» Separation of Concerns
— the different concepts should be separated out
* Information Hiding

— information about the detailed form of objects
(e.g., data structures) should be kept local and
“visible” to outside modules

Specific Design Guidelines

* Cohesion

— the degree modules are sufficient to carry out one,
single, well-defined function. A measure of internal
strength. Each module is a system unto itself.

— Coupling

— Module independence preferred to tight
interdependence. (e.g. less is better)

* Information Hiding

— only the data needed is made available to each module

Modularity

— small self-contained units for maintainability; each
module is a system unto itself

Specific Design Guidelines (cont'd)

 Module Size
— reasonable size
» Span of Control

— calling of others: known and limited: generally
seven

» Scope of Effect/Control
— clear path of relationships in the hierarchy

Factoring

* is a process of decomposing a DFD into a
hierarchy of program components which
eventually become modules, functions, and
control structures

» examine each DFD stream and analyze the
IPO structure

» places each unbroken strand of processes in
DFDs into its own control structure and
creates new control processes for split
strands at the point of the split

Deliverables

» Structure Charts
— Fully factored
— Complete descriptions of data couples and control
flags
* Module Specifications
— Input Specifications
— Processing Specifications
— Output Specifications

Module Specification Methods

I/O Spec
Psuedo Code

Module Specification

¢ Two Common Methods
« 1/O Spec
+ Pseudo Code
« (also, Structure English, but not preferred)

¢ Purpose
+ Guide programmer without doing writing code
+ Document module/program

+ Describe what to do
sometimes move towards how to do it

Example Module

Preference available ©

................... 4
T 0 selected seat

o}

‘Let’sexamine .

this moaule Weighted seat preference
i, Select

......':;.',.__‘ P ger
Seat
x new non-smoking row
start seat - Y
seat end of seats add OK
assigned clas:\A
Set Get Next Add Non-

Start Seat Available Seat Smoking Row

I/O Specification

Module: Select Passenger Seat

Purpose: To choose for a customer a seat that is valid
for his class and is as close as possible to his
(weighted) seating preference

Uses: weighted seat pref

Returns: selected seat, pref available

Functional Details

Scan the available seats, beginning in the passenger’s assigned class and
working to lower classes.

Note for each set its differences from the customer’s preference

Select the seat with the least difference: this is selected_seat. (Difference =
smoking_diff * smoking_weight + ...)

etc.

Pseudo Code Specification

» Concept: More detailed procedural language
independent way to describe module.
— Similar to code, but not.
— Less programmer margin for error.

Pseudo Code Specification

Module: Select Passenger Seat

Purpose: To choose for a customer a seat that is valid
for his class and is as close as possible to his (weighted)
seating preference

Uses: weighted seat pref
Returns: selected seat, pref available
Begin

For each CLASS downward from passenger’s ASSIGNED_CLASS
Call Get First Seat (CLASS, START_SEAT)
Repeat
Call Get Next Available Seat(SEAT, END_OF_SEATS)
Until END_OF_SEATS ="Y”
EndFor

A Preferred Module Specification Format

Module Name: Discombobulate Ringhadffers

Module Purpose: To do whatever...

Uses: the incoming data

Returns: names outgoing data elements or structures
Begin

FOR each module

a complete descriptions of the

appropriate programming logic in

a suitable pseudocode form
show initializations where required
show any unusual or designer preferred algorithms
indicate program calls and the data sent and returned from

the module invoked
etc....... END FOR
End Proc

