
Beyond Design

Documentation

Installation

Support

Requirements Gathering
Structured Interviews

Reengineering, JAD

Hardware

Feasibility Analysis
Architectural Selection

RFP/RFQ

Interface Design
Prototyping

Security and Control Design

Network Installation

Testing

Training, Documentation

Acceptance Testing

Support

Data Modeling

ERDs

DDs

File & Database Design

Data Conversion

Testing

Installation

Process Modeling
Decomp

Context

DFDs

Process Specs

Program Design
Structure Charts

Programming

Testing

Installation

Analysis

Design

Implementation

Support

Big Picture



Wrap-up Documentation

• for client/users
– reference manual
– task guide
– training guide

• for operations staff
– operations manual

• for technical staff
– technical manual
– program manual

Client/user Documentation

• reference manual
– organized by system function or command
– for experienced users

• task guide
– “how to” orientation
– organized by business function

• training guide
– overview, tutorial

• build into application as much as possible



Operations Documentation

• operations manual
– startup/shutdown
– backup procedures
– focus on restart and recovery

Technical Documentation

• technical manual
– general design spec
– system architecture
– interface specs (with other systems)

• program documentation
– design specs
– source code
– test data
– change log



System Installation

• Involves “cutting over” to new application

• Some people call this “implementation”

• Must be extremely well prepared

• Can make or break a project

Installation (cutover) Approaches

Old System
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Old System
New System

Old System
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System Installation (4Ps)

Risk Cost Duration

Plunge High Low* Short*

Parallel Low High Long

Pilot Med Med Variable

Phased Med Med Variable

Notes: ‘*’ assumes installation is successful :-)
always consider combining approaches

Preparing Users for Change

• Behavioral issues will always be important
– system should be owned by user
– establish need for change
– establish need for system

• Structured analysis and design tends to
increase user participation in SDLC
– structured interviews
– JAD
– prototyping



User Involvement During Implementation
Phase

• designing and procuring forms

• preparing test data

• planning for physical equipment in user areas

• conducting user training

• converting files and databases

• conducting systems and acceptance tests
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Support Phase

“Systems support is the ongoing
maintenance and upkeep of a system after
it is placed into day-to-day operation.”

Support Phase Terminology

• maintenance vs. enhancement (textbook)

• corrective vs. perfective (research)

• bugs vs. features (practice)



Support Phase:
Maintain System

• Define & Validate Problems

• Benchmark Problem Components

• Understand Problem Components

• Edit & Test Problem Components

• Update Documentation

The Problem

• “Most mature IS organizations devote
approximately 3/4 of their analyst and
programmer resources to support.”

• support cost = 2x to 5x development cost

• don’t shortcut SDLC to save development
cost



Software Maintenance

• There is no such thing as a “free” change to a
software application
– all changes must be done with extreme care and

regard for good software engineering practice
– all changes to software must lead to review of

overall structure of resulting system
– all changes must be fully documented at ALL

relevant levels of documentation

» Macro, 1990

Current Problem

• 70 billion lines of COBOL code in use in US

• This code is depreciating because of new and
changing business conditions

• Hardware is constantly improving, but this
makes software maintenance more difficult



Why Maintenance Costs are High

• Obsolete programming techniques were used

• Documentation is obsolete or absent

• Many programmers made modifications

• Old versions of languages were used

Why Maintenance Costs are High (cont'd)

• Languages were mixed within the program

• Unskilled programmers made enhancements

• Architecture changes are required

• Maintenance is cummulative



Change or Rewrite?

• “Even a strong original program structure
slides progressively into a spaghetti affair
unless definite effort is expended.”

• substantive changes (to modify function)

• consequential changes (to preserve
structure)

• rewrite as s + c tends toward 100%

Support Phase:
 Recover System

• determine cause of problem

• some options include
– simple reboot of PC
– cancel/reinitialize online session by sysops
– recover database by data administration
– recover network by network administration
– repair/replace hardware by vendor service staff



Support Phase:
Assist Client/User

• Level of support depends on nature of app

• Some options include
– help line (phone in)
– help desk (drop in)
– bug busters (on site)
– 7x24 service

Support Phase:
Enhance & Re-engineer

• Analyze change request
– route to analysis, design, or implementation phase

• Write simple, new programs
– e.g. user developed reports

• Restructure files & databases

• Analyze program support costs

• Reengineer & test programs



Re-engineer and Test Programs

• code reorganization
– group or separate to improve coupling & cohesion

• code conversion
– convert language from one version/dialect to

another

• code slicing
– factor out reusable code into library modules

• all to do what should have been done 1st
time!

Versions, Releases, and Fixes

• versions
– involve major functional or technical changes
– must test as initial implementation (ver 2.0)

• releases
– involve minor modifications at regular intervals
– test with original test data sets (ver 2.1)

• fixes
– involve bugs which cannot wait for next release
– test system affected components (ver 2.1a)



Reverse
Engineer

Old Program Code:

COBOL, C, etc.

Design Models:

DFDs, structure charts, etc.

Reverse
Engineer

Old DB schema:

IMS, VSAM, etc.

Design Models:

ERDs, DB2 or Oracle schema

l Compare with “forward engineering”

Reverse Engineering

• Moving backwards through SDLC
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Management
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