Evaluating Program Design

Evaluation Criteria: Modularity
- Coupling
- Cohesion
- Other Guidelines

Program Design

“Goal is to establish the internal structure of
system in a way that minimizes cost of
system over full life cycle.”

* modularity is the key

* program modules must:
— perform a single function
— be correctable individually
— be small in size

Program Modules

A named package of program instructions
with single entry and single exit.

» examples
— COBOL: program, section, paragraph
— C: program, function
— Pascal: procedure, function
— FORTRAN: subroutine, function
— ACCESS: query, form, report, macro, module

Program Design:
Structure Chart Notation

Module Data O/

Control /

O
\ Invocation Process
Transaction

Get Valid Update Generate
Input Database Confirmation
@) o
(3// O\\o :// \\:
Get Next Validate Produce Produce

Input Input Confirm A Confirm B

Two Poorly Designed Cities

Mousetrap Employees
Better O o O o
Mousetraps heavy traffic O o O o
highway
Soda Plant Bottle
Plant

Two Well Designed Cities

Mousetrap Employees
Bottle O o O o
Pant no traffic © o O o
highway
Soda Plant Better
Mousetraps

Balancing number and size of modules

Minimum

Cost of Cost Cost of
internal
complexity

interface
complexity

Cost of Support —>

Number of Program Modules —>

Program Design

Coupling measures the strength of connection
between modules

intertwined
spaghetti
content (worst) A
common
control o—>
stamp o
data (best) °— v
well-defined

connections

Goal: Low/Loose Coupling

simple connectivity among modules lead to
easy to understand and less prone to ripple
effects

eliminates unnecessary connection
reduce the number of necessary connection
reduce dependence of necessary connection

Principles of Connections among Modules :
Coupling
Narrow, not wide (reduce number of couple
and flags)

Direct, not indirect (no tramping, no bundling -
more understandable to maintenance people)

Local, not remote (no global variable)

Obvious, not obscure (no implicit change in
other modules, expect what they expect)

Flexible, not rigid (reusable with minimum
modification)

Normal Coupling

(considered good or OK)

module A calls module B
A tosses a piece of data as a parameter
B returns to A when finished processing
all info passed via parameters (X,y)

data, stamp, control coupling

A

)A(/Oo/" \
Yy

Data Coupling

necessary operands and results
flow up or down hierarchy
necessary data communication
keep it to minimum

. Prepare
Beware of tramping .cueaa | Customer
“5 Bill

New Charges !
Current Balance “ O/ \
ance

/y New Bal
Calculate | O

New Status
Balance

*Generate
Customer

Stamp Coup]ing Rental Bill

«Customer
Rental
Record

o

|

Passing composite piece of data --
data with meaningful internal
structure /

«Customer

Bit of indirectness involved - Custo
maintainer need to look into the "
data structure

*Gas
N Charge
o

Good designers use stamp “Calculate

coupling well ponute ||| Caoe
1 Charge

Warning

— Beware of ‘bundling’ for nothing

e S
. /o
Control Coupling
» Passing a piece of information
intended to control the internal logic

of the other --decisions and
instructions

* Indirect and obscure compared to
data couple in which decisions are
made within the module based on
data passed

Control Coupling

[tisOK asitis, butin

general bad things follow

Prepare
Customer Bill

- beware when they flow

Write “amount is 30 days

\ past due” down hierar Chy
- beware when they flow
long distances
Calculate
Amount Due
Parameters

Data couple :to inform: noun
Descriptive flag: describing a piece of data
. adjective
: EOF, invalid
Control flag : imperative: read next record
. possible design problem,
— such as decision split, inversion of authority
Warning

— Beware of hybrid coupling, such as coding control
information into data couple

Unnormal Coupling (bad)

 Common (global) coupling
— all operands and results stored in common area
— all are accessible to every module

critical problem for maintenance

any module can alter data in global area

global data referred to by name

introduces time remoteness

Another Bad One

» Content coupling

— one module refers to data or statement contained
inside another module

— EX: goto statement
— critical problem for maintenance

Coupling through database?

* Is this common coupling?

* What are the difference?
— Non-volatile
— Well defined and, application-oriented objects with
integrity rules
— Validation schemes
— Narrowness of database coupling
— Documented

What Type of Coupling?

» Call PrintLabel Using Name, Street, City
» Call PrintLabel Using CustomerAddress
» Call PrintLabels

Program Design

Cohesion measures strength of association
within a module

single-minded

3

functional (best)
sequential
communicational
procedural
temporal

logical

coincidental (worst) :
scatter-brained

Types of Cohesion

Functional
Sequential
Communicational
Procedural
Temporal

Logical
Coincidental

Functional Cohesion (Best)

» All module elements (data and code)
contribute to the execution of one and only
one problem-related task
— Examples

» compute_cosine_of_angle, read_transaction_record
— No time orientation

« first, next, initialize
— No extraneous access

» only has access/calls to necessary data/functions

— Often functional modules can be used in other
designs without any modification

— Easiest (and cheapest) to maintain

Sequential Cohesion

* A module whose activities are arranged such
that the output of one serves as the input to
the next

— Example of “PREP_CAR_REPAINT” module
« CLEAN CAR
* FILL IN HOLES IN CAR
+ SAND CAR BODY
+ APPLY PRIMER

— How are the steps related?

— Serving one function? (what happens if PAINT
CAR added at the end?)

— Why worse than functional cohesion?
— OK coupling but may not be reusable?

Communicational Cohesion

» All elements within a module use the same
input or output data (nothing to do with
seqguence)

— Example

module CUSTOMER_INFO uses customer_no
find customer_name
find customer_balance
find customer_favorite_color

return customer_x...

— OK Coupling but Reuse maybe problematic

* Modules which don’t want to know all of “customer_x..”
will have to call CUSTOMER_INFO and throw away data

Procedural Cohesion

* A module whose elements are involved in
different and possibly unrelated activities in
which control flows from one activity to the
next

* Example of “DOALL_GUEST_PREP” module
« CLEAN DISHES
- PREPARE DINNER
« MAKE PHONE CALL
« TAKE SHOWER
« SET TABLE

— Related by execution order without explicit
purpose

Temporal Cohesion

* A module whose elements are involved in
activities related by time
 Similar to procedural

— collection of partial functions: hard to name
— poor coupling: content or common

« difference: order is more important in procedural
— Example of “Finalize Evening” module

« PUT OUT CAT

* TURN OFF TV

* BRUSH TEETH

— Other examples
« initialize, finalize

Logical Cohesion

* A module whose elements contribute to
activities of the same general category;
however, the specific activities are selected
from outside the module via a control flag

» Example TRAVEL module

* go by car
* go by train
* go by plane
— Often, a programmer will attempt to optimize by

combining loops and other code: Creates a
maintenance problem

Coincidental Cohesion

* A module whose elements contribute have no
meaningful relationship to one another

— Example
« FIXCAR
BAKE CAKE
WALK DOG
GET OUT OF BED
GO TO MOVIES
— After recognizes the usefulness of modules, a 20,000
line FORTRAN program was re-engineered to use
modules
— Every 75 lines of code was put into a subroutine

— Similar to logical, but without even a broad category

Determining Cohesion by Name

* Functional:
— verb-object: DEDUCT FEDERAL_TAXES
» Sequential:
— assembly line: VALIDATE AND THEN UPDATE
« Communicational:
— non-sequential : AVG & MAX SALARY
* Procedural:
— flow chart names: DO ALL EDIT PREPARING
* Temporal:
— time related: module for initialization of fields
» Logical:
— general purpose: WASH ANY CAR
» Coincidental:
— unknown meaning: MODULE-XX

Recapping Cohesion

» Sequential: toss data from the start till the end

» Communicational: share input but produce
different output or vice versa

* Procedural: tossing control from proc to proc
» Temporal: end-of-day routine

» Logical: logical category, procs may nave
similarities as well as differences

* Coincidental: collection of unrelated functions

Better
Can the
module be Yes
considered to » Functional Cohesion
be doing one
problem-
related))
function? Sequential Cohesion
Yes
No o
Communicational
Is sequence of Cohesion
Data activities No
important
What rgl_a_ted Procedural Cohesion
the activities Yes
within the Control
module
Is sequence of .
activities Temporal Cohesion
important No
Neither
Logical Cohesion

same general
category

Yes
Are the
activities in the
I

Coincidental Cohesion

*Decision Tree for Cohesion Evaluation Worse

What Type of Cohesion?

GENREPT

— produce report: either a sales report, a project
status report, or a customer transaction report

STARTIT

— open files, obtain first transaction, print page
headings

SYNCH

— check syntactic correctness of vehicle guidance
parameters

Answers
— logical, temporal, functional

Cohesion in Windows Interface

* Think of one interface as one module

— Functional:

— Sequential:

— Communicational:
— Procedural:

— Temporal:

— Logical:

— Coincidental:

Additional Design Guidelines

Factoring
System Shape
Error Reporting

Fan In/Out

Summary of Guidelines

Cohesion

— Each module should be functional, sequential or
communicational

Coupling
— Module coupling should be data or stamp
Error Reporting

— Have detection and reporting with same module
» Use separate module with error codes and printing

Factoring
— Keep it high (i.e., partition into hierarchy)

Summary of Guidelines (cont.)

Decision splitting
— Keep recognition part of decision close to
execution

Fan In

— Keep it high

Fan Out

— Restrict the number of subordinate to <=7
System Shape

— Make it balanced (not input or output driven)

Summary of Guidelines (cont.)

Data Structure

— Match program modules to incoming and outgoing
data structures

Editing

— Edit in successive levels, with simplest editing
being done at lowest levels

Redundancy

— Avoid it by factoring

State Memory

— Avoid it

Factoring

 ...Is the separation of a function contained in
one module, into a module of its own.

* Why factor?

— Reduce module size

 Stop factoring when well-defined cohesive functions can’t
be found within a module being considered

— Simplify understanding

— Prevent redundancy (by allow sharing, e.g., fan in)

— Separate work (calculate) from management
(deciding)

— Create more useful modules (reusable)

— Simplify implementation

Factor Calculate Net Pay?

Calculate Net
Worker Pay

Emp Pay Record

O/ x Net Sal Pay
Net Hr Pay
C\‘Sal Pay Record

Hr Pay Record

Get Employee Calculate Net Calcuate Net
Pay Record Pay for Hr Pay for Sal
Worker Worker

Emp Pay Record

Calculate Net
Worker Pay

Xe}t Sal Pay

al Pay Record

Get Employee Calculate Net Calcuate Net
Pay Record Pay for Hr Pay for Sal
Worker . Worker
Normal Degluctions
P'ZR)lS Normal ieductions
Tax Detalls p@ézs Sal Pay onuses
Hrs Worked @Zss Hr Pay)
ax Details
Gross Hr Pdy Normal Pay
Calcualte Calcuate Calculate
Gross Pay for Gross Pay Sal
Hr Wrkr Deductions Wrkr
Create Reusable Modules
alpha field alpha field
Get Next Get Next
Alpha Field ::> Alpha Field
field

e

Get Next Field

field

Get Next Field

Validate Alpha
Field

Decision Splitting

» A decision has two parts
— recognition of what action to take
— execution of that action

* Example
— If customer account is not known
— Then reject whole customer record

» Avoid separation (split) of recognition from
execution

Decision Split Example

If X then....

N

Execute since
X...

)

Ask User X...

System Shape

= ————

" {

y

TN Y
G b
(Input)

Input Driven (bad) v/ f
N 1N

Seek a balanced design

System Shape

* Input Driven
— Coupling is usually poor

— Many modules at top are concerned with physical
format of input

— Will not be reusable
* Qutput Driven
— (not as common)

— Many modules at top are concerned with physical
format of input

* Balanced

— Most modules are sheltered from Input and output
formats

Error Reporting

Report from module that
— Detects error

— Knows error message
Separate an Error Module

— Send in error code (can be
enumerated type), output

message error number
— Easier to keep error messages
similar Print Error
Message
Fan In/Out
In
— Good, reusable
modules

— However, ensure
good cohesion

Out

— Keep<=7
subordinate
modules

Errors

7
Subordinate Modules

