
Structured Process Modeling

Requirements Gathering
Structured Interviews

Reengineering, JAD

Hardware

Feasibility Analysis
Architectural Selection

RFP/RFQ

Interface Design
Prototyping

Security and Control Design

Network Installation

Testing

Training, Documentation

Acceptance Testing

Support

Data Modeling

ERDs

DDs

File & Database Design

Data Conversion

Testing

Installation

Process Modeling
Decomp

Context

DFDs

Process Specs

Program Design
Structure Charts

Programming

Testing

Installation

Analysis

Design

Implementation

Support

Big Picture

Concept Map of Analysis

Project Initiation

Feasibility Study

Analysis

Design

Implementation

Maintenance

Essential Analysis
- Statement of Purpose
- Event List
- Context Diagram
Functional Model
- Data Flow Diagram
- Decomposition Diagram
- Process Specifications
- Data Dictionary

Concept Map of Design

Project Initiation

Feasibility Study

Analysis

Design

Implementation

Maintenance

* Structure Chart
* Interface Design

Deriving SC from DFD
- Transaction/Transform

Good Structure Chart
- Coupling/Cohesion
- Other Guidelines

Interface Design Guidelines

Packaging, Conversion, Testing

Data Flow Diagrams

• DFDs model the
– Sources and destinations of data

(external entities)
– Data inputs and outputs

(data flows)
– Actions that transform inputs into outputs

(processes)
– Data maintained by an information system

(data stores)

Logical vs. Physical DFDs

• Logical DFDs model processes and data
stores at logical level
– Does not specify who and how

• Physical DFDs provide details about physical
implementation
– Who performs what processes
– How processes are performed
– Where data are stored

Logical and Physical DFDs

• Traditionally, we modeled the existing
physical system, then converted it to a logical
model of the existing system

• Changes were made to logical model to
reflect requirements of new system, then new
physical model was developed

DFD Symbols

Enter
Customer

Data

1.1

F3 Customers Customer name

External entity

System process

Data store Data flow (message)

Customer

Rules for Constructing DFDs

• Sequence processes from left to right, top to
bottom

• External entities and data stores may be
repeated to avoid intersecting lines

• Every data flow must begin or end at a
process

• Avoid black holes and magic processes

Functional Decomposition

• DFDs support top-down analysis and
functional decomposition

• Leveled DFDs show successive levels of
decomposition

• Successive levels show children of the parent
process
– All data flows in parent process must also appear

in child diagrams (vertical balancing)

Turning Text Into DFD

• Read text and identify candidate processes

• Reread text to identify input and output data
flows

• Reread text to identify external entities and
data stores

• Finally, put the pieces together

Design Definition

• Design
– an outline, sketch, or plan of the form or structure

of work

• Computer System Design
– the activity of transforming a statement of what is

required to be accomplished into a plan for
implementing that requirement on an electronic
automaton.

Structured Design

Structured Design

• Uses problem definition to guide solution
– Transform the problem description (DFD) into a

solution description (SC) via design strategies.

• Manages complexity with “black boxes”
– Modules which can be reasoned about solely on

their input and output.

• Uses graphic tools (structure chart)

• Offers strategies for deriving solutions
– Transform and transaction analysis

• Offers design quality criteria

Problem Definition Guides Solution

• If your only tool is a hammer, everything looks
like a nail
– Often, solutions are predetermined, not by the

problem definition but by the designs
preconceived notions how systems should be

– “All systems should ...”
• Be event processing
• Be batch driven
• Have one input and one output module

• Structure Design attempts to eliminate such
predetermined design

Read

Input Process

Write

Output

Boss

Simplifying a System

• Structure design seeks to manage the
complexity of large systems in two ways:
– partitioning

• divide a large system into a collection of smaller,
interrelated modules

– hierarchical organization
• arrange the modules into subgroups which “report” to

(fewer) high-level modules

Partitioned “Black Boxes”

• Easily constructed
– Compose modules based only on I/O

• Easily tested
– Narrow search for faults based on test of I/O only

• Easily corrected
– Repair modules in isolation to give correct I/O

• Easily understood
– Lesser need to understand details of other

modules

• Easily modified
– Add to system functionality by adding modules

Hierarchical Organization

• Consider hierarchical business organization
as analogy to design
– A manager should have <= 7 subordinates
– Work and management should be separated
– Every department should have a well defined

function
– Every job should be allocated to the proper

department
– Reports to upper management should be

meaningful
– A manager should give only as much information

to a subordinate as that person needs in order to
get the job done (more meaningful for design)

Structured Design Tools

• Structure Chart Shows
– Partitioning

• each box is a module

– Hierarchy
• Managing modules are shown above with arrow pointing

downward

– Communication
• Small “flags” indicate control, data, and descriptive

information as it is passed from one module to another

• Structure Charts Provides
– A semi-formal view of system or program structure
– Documentation and blue-prints for programmers

and maintainers

Write Letter

Get Customer
Details

Get Next Unpaid
Bill

Get Date Generate Legal
Threat

Generate Stern
Warning

Prod Customers For
Unpaid Bills

Generate Gentle Hint

customer details

unpaid bill
unpaid bill unpaid bill

legal threat

stern warning

gentle hint

customer ID

EOF unpaid bills

unpaid bill

today's date

GCD

GCD
GCDGCD

Structured Design Tools (cont.)

• Module Specification
– a.k.a. Pseudocode, Structured English
– Informal flexible design description

• Example
– module prod customer for unpaid bills

– open unpaid bill file, customer detail file

– get today’s date

– repeat

» call get next unpaid bill, getting unpaid bill and EOF

– until EOF

– set days overdue to today’s date - bill date

– case days overdue

» > 90: call generate legal threat using unpaid bill

– ...

Library
System

0

1

2

3

Borrowers List

Book Catalog

First Level Data Flow Diagram

0
Library
System

1

2 3

2.1 2.2

Functional Decomposition

Open FIle

Module 1
e.g. Read

Module 2..
e.g. Update

Module n
e.g. Write

Executive Module
'Update File'

Top because it calls all others
none call it at this level

Logical Design

Structure Chart

Open FIle

Module 1
e.g. Read

Module 2..
e.g. Update

Module n
e.g. Write

Executive Module
'Update File'

Top because it calls all others
none call it at this level

Physical Design

1

2

3

Structure Chart

Library
System

0

1

2

3

Borrowers List

Book Catalog
?

Structure Chart Example
Q: Where do the modules come from?

Open FIle

Module 1
e.g. Read

Module 2..
e.g. Update

Module n
e.g. Write

Executive Module
'Update File'

Top because it calls all others
none call it at this level

DFD to Structure Charts?

Design Goals

• To Create Programs which are:
– High Quality
– Error-free
– Maintainable, extensible

Design Guidelines

• Cohesion
– the degree modules are sufficient to carry out one,

single, well-defined function

• Coupling
– Module independence preferred to tight

interdependence

• Module Size (reasonable size)

• Span of Control (known and limited)

• Scope of Effect/Control (clear path of
relationships in the hierarchy)

Prototyping

GUI Design

Systems Design

Principle

Practice

Normalization

What's different

Examples in Sys Arch

Examples in Access

Logical to Physical

Physical Database Design

Data Modeling

Transform Analysis

Transaction Analysis

Derivation

Cohesion

Coupling

Others

Evaluation

Structure Chart

Process Modeling

