
Implementation

Overview

Packaging

Programming

Conversion

Testing

Requirements Gathering
Structured Interviews

Reengineering, JAD

Hardware

Feasibility Analysis
Architectural Selection

RFP/RFQ

Interface Design
Prototyping

Security and Control Design

Network Installation

Testing

Training, Documentation

Acceptance Testing

Support

Data Modeling

ERDs

DDs

File & Database Design

Data Conversion

Testing

Installation

Process Modeling
Decomp

Context

DFDs

Process Specs

Program Design
Structure Charts

Programming

Testing

Installation

Analysis

Design

Implementation

Support

Big Picture

Implementation Activities

• Program Construction

• Validation and Testing
– Programs, Systems

• Conversion, Installation
– Data, Hardware, Software

• Training

• Documentation

Consider balancing number and size of modules
before program construction

Minimum

Cost

C
os

t o
f S

up
po

rt

Number of Program Modules

Cost of

internal

complexity

Cost of

interface

complexity

Refining your Program Design

• eliminate excessively small modules
– unless they perform a common function

• factor out reusable modules
– look for common code

• beware of RAM constraints
– benchmark on typical and “minimum” systems

Finalizing your Design

• At this point, the analysis and design models
are repackaged into two reports

• functional specifications

• technical specifications

• make sure they are “current”

Contents of Functional Specifications

• general design

• processing functions

• forms, screens, reports

• manual & automated procedures

• conversion and installation plan

• high level technical requirements

Contents of Technical Specifications

• network design

• file/database design

• program/module design

• testing and conversion procedures

• detailed hardware & software requirements

Implementation

Programs

Validate
TimeSheet Calculate

Pay Report
Pay

Employee

Databases

Division Department

Employee

Networks

Den

LA Pho

NYC

Users

Smith
VP Finance

Jones
VP Information

Doe
VP Marketing

Brancheau
President

Implementation Phase

• Entering the implementation phase, the
models finally give way to the real thing.

Implementation Phase

• Build/Test Networks

• Build/Test Databases

• Build/Test Programs

• Install/Test System

• Deliver System

Build/Test Networks

• Infrastructure may already be in place

• Often done by specialists

• Network skills becoming critical in 1990s

• TCP/IP is current standard

Build/Test Databases

• May be part of infrastructure (often not)

• Analyst/designer always involved

• Analyst/designer sometimes leads effort

• Relational DBMS are current standard

Build/Test Programs

• Analyst/designer always involved

• Check for reusable software components

• For each module:
– algorithm design
– coding
– testing

• Cobol, C, VB, C++, Smalltalk

Install/Test System

• Install software packages

• Test packages

• Conduct system test

• Prepare conversion plan

Deliver System

• Load files and databases

• Train client/users

• Wrap-up documentation

• Install (or convert to) new system

• Evaluate project and system

Key Deliverables from Implementation

• operational network

• loaded files and databases

• tested programs and OS commands

• trained users

• documented system

• project evaluation

Packaging

• Every module should become a separate
program (?): what is the problem with this
approach?

• So, packaging into program units

• (In visual programming) program units may
correspond to user interfaces or controls

Packaging

A

B

E

C D

U

A

B

E

C D

U

Prog 1

Prog 5

Prog 4

Prog 3Prog 2

Planning the Programming Effort

• Review design specification

• Organize programming team

• Develop detailed programming plan

• Beware of our eternal optimism
– Brook’s law
– mythical man month
– 80/20 and 90/10 rules
– inch pebbles vs. milestones

Organizing the
Programming Effort

• chief programmer approach
– organize around "superprogrammer"

• “pool” approach
– specifications assigned to programming "pool"

• team approach
– programmers assigned to project team
– can be enhanced with "development center"

Programming Specifications

• In general, the more experienced the
programmer, the less detailed the spec
– program context and functions
– unit test plan
– file/database i/o
– parameter i/o
– program design
– unit test data
– psuedo code

Programming Approaches

• Monolithic
– delays discovery of serious problems
– multiplies need for resources late in project
– pushes problems into operation/support

• Incremental
– allows testing to start earlier
– makes partial version available earlier
– distributes work load more evenly

Code

Code

Code

Code

Code

Test

Fix

Test

Fix

Test

Fix

Test

Fix

Test

Fix

Produce
Payroll

Big Program (Monolithic) Approach

Incremental Approaches

• bottom-up
– a "concatenation" process
– requires "drivers"
– facilitates generation test data
– facilitates broader delegation of programming

• top-down (versioned or phased)
– a "refinement" process
– requires use of "stubs"
– tests most critical modules early

Structured Programming

• objective
– saves money over the long-run

• definition (more than avoiding GOTO)
– basic constructs
– hierarchical structure
– style conventions
– internal documentation

Structured Programming Constructs

• sequence
– any code block with single entry, single exit

• condition
– if ... then ... else ... endif
– if ... then ... elseif ... elseif ... endif
– case ... endcase

• repetition
– do while ... enddo (with test before)
– do until ... enddo (with test after)

Effective Programming Style

• write one instruction per line

• use meaningful names

• use common prefixes for related elements

• avoid unnecessary labels

• use indentation and spatial alignment

• use parentheses to show precedence

• avoid programming tricks

• use comments

• follow a standard

Top-Down Implementation

(1) Produce
Payroll

(3) Compute
PayAmount

(6) Get
TimeSheet

(2) Get Valid
TimeSheet

 (4) Produce
PayCheck

(5) Produce
AuditReport

(9) Get
Taxes

(12) Put
AuditReport

(11) Put
PayCheck

(7) Get
Employee

(8) Put
Error

(10) Get
Deductions

Code

Test

Fix

Code

Test

Fix

Code

Test

Fix

Bottom-up Implementation

(12) Produce
Payroll

(9) Compute
PayAmount

(1) Get Next
TimeSheet

(8) Get Valid
TimeSheet

(10) Produce
PayCheck

(11) Produce
AuditReport

(7) Put
AuditReport

(6) Put
PayCheck

(2) Get
Employee

(3) Put
Error

(4) Get
Taxes

(5) Get
Deductions

Top-Down vs. Bottom-Up

• should we build from top-down or bottom-up?
– both attempt to order the programming
– both encourage modular programming

• combination approach is often best
– bottom-up on input-side
– top-down on output-side

Combination Approach

(5) Produce
Payroll

(6) Compute
PayAmount

(1) Get Next
TimeSheet

(4) Get Valid
TimeSheet

(9) Produce
PayCheck

(11) Produce
AuditReport

(12) Put
AuditReport

(10) Put
PayCheck

(2) Get
Employee

(3) Put
Error

(7) Get
Taxes

(8) Get
Deductions

Testing

Definitions

Testing Debugging

Testing is the process of exercising a program
with the intent of finding errors

Debugging .NE. Testing

Debugging is diagnosing and correcting known
errors; testing, therefore, is the process of
locating and correcting presently unknown
errors

Levels of Testing

• Module testing -- testing a single module out
of context, with no interfaces to other
modules

• Integration testing -- verifying the interfaces
among modules

• Function testing -- verifying that the system
meets specs

• System testing -- verifying that the system
meets user objectives

Psychology of Testing

• Testing is the process of executing a program
with the intent of finding errors

• A successful test finds errors

• Remember that programmers have ego
involvement (they don’t want to find errors in
their own code, and don’t want others to find
them either)

Economics of Testing

• The earlier you can
catch the error, the
better

0

20

40

60

80

100

120

I II III I V

Relative
Cost to
Fix
Error

Testing Ideals: General

• The programming team should not examine its
own programs

• A program should be examined to ensure that
they:
– do what they are supposed to do
– do only what they are supposed to do

Testing Ideals:
Programmers & End Users

• End user involvement is critical

• Programmers are blind to their errors

• End users are (unintentionally) a hostile
environment for programmers: possibly on
different paradigm

Testing Ideals:
Test Cases

Test case design begins with a definition of the
possible and/or expected outputs or results

Nevertheless, test cases should be planned for
unexpected and invalid inputs/user actions as well
as valid and expected conditions

Test cases should not be designed or created
expecting that no errors will be found

Testing Principles

• The probability that there are more errors in a
section is proportional to the number of errors
already found in that section (errors are not
evenly distributed)

Probability
of other
errors

of errors already found

Programming Errors: Where Errors Occur

The probability that there are more errors in certain
program units--objects in a hierarchy, form, page,
group of objects, or a section of code--is
proportional to the number of errors already found
in that unit

i.e., errors are not evenly distributed
20% of these program units have 80% of the errors

Sloppy programmers tend to make a larger number
of errors than more careful programmers
Some program units are more frequently used than
others

Programming Errors:
Why Errors Occur in this Way

Black Box (Input-Driven Method)

White Box (Logic-Driven Method)

Error Guessing

Testing Methods

White Box Testing

• Also Known As Logic Coverage Testing

• Consists of
– Statement coverage: execute all statements at

least once
– Decision coverage: do all decisions at least once
– Condition coverage: do all conditions at least once
– Condition-Decision coverage: previous coverage

plus all points of entry are invoked at least once
– Multiple condition coverage -- all possible

combinations of condition outcomes

Logic Coverage Testing

• Disadvantages
– Does not detect specification errors
– Cannot detect absence of necessary paths
– Insensitive to data since it only tests logic

Black Box Testing

• Compares outputs with what is expected

• Does the module do what it is supposed to
do, and nothing else

• Infinite number of inputs which must be tested

Black Box Testing

• Input Driven

• Types
– Equivalence Partitioning
– Boundary Analysis
– Cause Effect Graph

Valid Invalid

3, 6, 9

Jones,
Smith

Bus

B8

0, 1062, -100

no owner,
9 owners

Taxicab

83

Classes of
Conditions

Sample
Requirement

Item in range--test
1 within range and 1
on each end

Item count can be
from 1 to 999

Multiple values-- test
several & 1 on each end

Car can have up to 6
owners

Limited set of values--
test 1 valid & 1 invalid

Type of vehicle
limited to: bus, truck,
passengercar, cycle

Required positions--
test 1 that is
and 1 that isn't

Customer id must
begin with a letter

Equivalence Partitioning

• Both valid and invalid

Valid Invalid

1, 999

Jones

A, A1,
 ZZ

0, 1000

no owner,
 7 owners

0A, 9Z

Classes of
Conditions Sample

Requirement
Item in range--
1 within range &
1 on each end

Item count can be
from 1 to 999

Multiple values-- test
several & 1 on each end

Car can have up to 6
owners

Limited set of values--
test 1 valid & 1 invalid

Type of vehicle
limited to: bus, truck,
passengercar, cycle

Required positions--test
1 that is & 1 that isn't

Customer id must
begin with a letter

Boundary Analysis

• A variant of equivalence partitioning:
Equivalence partitioning at the boundary

A B C D E F G H

In-State Student

Graduate Student

Professional Student

Low Tuition

Moderate Tuition

High Tuition

Outrageous Tuition

Y

Y

Y

X

Y

Y

N

X

Y

N

Y

X

Y

N

N

X

N

Y

Y

X

N

Y

N

X

N

N

Y

X

N

N

N

X

Causes

Effects

Cause-Effect Graph

• Test all combinations of causes as inputs
against the valid effects

Error Guessing

• Intuitive, based on experience

• May be incomplete, but useful supplement to
other testing techniques

• May involve language dependent problems: eg.
dBase III has a limitation on the number of
memory variables

If combinations of input conditions or
end user actions are a likely problem,
start with cause-effect graphing.

Always use boundary analysis.

Use one logic coverage technique.

Add some test cases using error
guessing.

Conclusively, Heuristics of Testing

System Testing

• Volume testing (normal volume)

• Stress testing (peaks and surges)

• Usability testing (human factors)

• Security testing

• Performance testing

• Storage testing

• Reliability testing (mtbf)

• Recovery testing

Debugging

• Brute force (print stmts, dumps)

• Induction (hypothesize based on data, test)

• Deduction (list possible causes, test each)

• Backtracking

• Testing

• Error analysis (when was error made, who made it,
what was done incorrectly, could it have been
prevented, why wasn’t it detected earlier)

Debugging Principles

• Think. If you reach an impasse, sleep on it

• Describe the problem to someone else

• Avoid experimentation

• Where there is one bug, there are others

• Fix the error, not the symptom

• The probability of the fix being correct is not
100%

• The probability of the fix being correct drops as
the program gets larger

• Error correction may create new errors

