2/23/00

 

More on Sound Transmission

 

In a sound transmission system, there are five possible outcomes we will consider:

 

1. Sound transmission =

 

 

2. Sound reflection =

 

 

 

3. Sound absorption =

 

 

 

4. Sound diffraction =

 

 

 

 

 

 

5. Sound refraction =

 

 

 

 

 

 

 

 

 

Types of sound fields

 

1. Free field =

 

 

 

2.  Reverberant field  =

 

 

 

 

3. Diffuse field =

 

 

 

Exponents

 

The general expression for an exponential series is:

 

 

 

     is the base number which is used    (the exponent) times in multiplication resulting in the answer     .

 

    is said to be raised to the    th power.

 

 

 

If X=    and n=    , then Y=

 

                 because  

 

If X=   and n=    , then Y=  

 

                 because 

 

If X=     and n=     , then Y=

 

                 because

 

What if the exponent n is a negative number?

 

 

                                       

 

 

 

 

If X=    and n=     , then Y=

 

 

                    because  

 

 

If X=   and n=   , then Y=

 

                    because 

 

 

If X=     and n=     , then Y=

 

                    because

 

 

 

What if the exponent n is 1?

 

     Any base X raised to the power of 1 equals

 

 

    

 

 

    

 

 

 

 

What if the exponent n is zero?

 

     Any base X raised to the zero power equals

 

    

 

    

 

 

 

 

 

Laws of Exponents :

 

 

 

1.  Xm x Xn =

 

     Example:

 

 

 

 

 

2.  Xm

    ----  =

     Xn

    

     Example:      

 

 

 

 

 

 

 

 

3.  (Xm) n =

 

     Example:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logarithms

 

The general expression for a logarithm is:

 

 

 

When you take the log of a number, you are solving for the

 

For our purposes, we will always use base 10

 

For odd logs like log10 21, you have to use

 

 

 

 

 

 

 

 

 

 

 

 

 

Laws of Logarithms :

 

 

 

1.  log (ab) =

 

 

     Example:

 

 

 

 

 

2.            a

     log   ----  =

               b

    

 

     Example:   

 

 

 

 

                   

 

3.  log (a) b =

 

 

     Example:

           

 

 

4.            1

     log   ----  =

               a

    

 

     Example:   

 

 

 

 

 

 

 

 

 

    

 

 

Decibels

 

The range of human hearing from threshold (just

     hearing) to pain threshold (when sound becomes

     painful) is

 

     The difference between the sound pressure of a

         just detectable sound to the loudest sound

          tolerated is about                             !

 

     Having to do calculations with these numbers

         would be very cumbersome! (in other words –

                                             ! )

 

     In order to make calculations easier and quicker,

         we use a           scale of measurement instead of

         a               scale of measurement

 

          interval scale =

 

 

 

         ratio scale (logarithmic scale) =

 

 

Decibel is the logarithm of the ratio of

 

 

     Bel (named after                         ) was

         the unit named for these calculations; however,

         we typically use the decibel (              ) as

         the bel is still too large to use easily

 

     The symbol for the decibel is

 

     Ratio is a way of telling us how one thing relates

         to another

 

     We use a                          in our ratio

 

     Ratios are            measures, not

          (meaningless if you do not know the          )

 

     In our course, we will consider two different

                         values dependent upon what we are

          measuring:

 

         dB IL =

 

         dB SPL =

These two are not the same

 

 

dB IL is a             ratio

 

 

     The reference

 

 

 

         This is equal to

 

 

 

     Calculation:

 

                                          

         dB IL =  

          

 

 

          Example:

 

         If the output of a loudspeaker is 10 –6 W/m2,

         what is its output in dB IL?

                                            

         dB IL =  

                                         

 

                  

    

        

 

           

 

           

 

         What if the output is equal to the reference? 

 

                                            

         dB IL =  

                                         

 

                    =

    

                    =

 

                    =

 

                    =

         Thus

 

 

 

 

 

dB SPL is a ratio

 

 

     The reference is

 

 

         This is equal to

                 which is the same as

                 which is the same as

                 which is the same as

                 which is the same as

                  

 

 

     The calculation for dB SPL is different due to the

     relationship between pressure and intensity

 

              Intensity is

 

     If we substitute pressure into the intensity

     calculation, we get:

        

     Calculation:

 

                                            

         dB SPL =

                                            

          

    

         Using the laws of logs, we can simplify this

          equation to:

 

 

                                              

         dB SPL =

                                        

 

                                  

                         =  

                                         

 

 

 

 

          Example:

 

         If the output of a loudspeaker is 2 x 10 –2 Pa,

         what is its output in dB SPL?

 

 

                                         

         dB SPL =

                                        

 

                    =

    

                    =

 

                    =

 

                    =

 

         What if the output is equal to the reference? 

 

                        

         dB SPL =

                                          

 

                    =

    

                    =

 

                    =

 

                    =

 

         Thus

 

 

 

 

 

 

1