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Chapter 1

Introduction

In 1953 Sz.-Nagy [SF] showed that every contraction on a Hilbert space dilates to a unitary
and moreover the dilation is unique under a natural minimality assumption. This was a
fundamental result and using this, one has simpler proofs of von Neumann’s inequality
and other strong results. In fact von Neumann’s inequality is a necessary and sufficient
condition for a Banach space to become a Hilbert space ([Pi], page: 26). Ando [An] ob-
tained minimal dilation to commuting unitaries for pairs of commuting contractions. But
Varopoulos, Crabb-Davie and Parrott (see [Pi]) gave examples to establish that simulta-
neous dilation to n commuting unitaries is not possible for n commuting contractions with
n > 3. Eventually a successful theory of minimal dilation to isometries with orthogonal
ranges called minimal isometric dilation or standard noncommuting dilation was devel-
oped by Bunce, Frazho and Popescu ([Bu|[Frl-2][Pol-5]). This dilation is for a class of
operator tuples defined as follows.

DEFINITION 1.0.1 A contractive n-tuple, or a row contraction is an-tuple T = (T1,...,T,)
of bounded operators on a Hilbert space H such that TY7y +---+ T, T < I.

In this thesis we are mainly concerned with three types of dilations of tuples, one of
which is the minimal isometric dilation as referred above, the other two introduced by
us namely standard g-commuting dilation (standard commuting dilation is a particular
case of this) and minimal Cuntz-Krieger dilation. The standard commuting dilation was
introduced by Drury, Arveson and Popescu (refer [Du][Ar4][Po5]) and was used crucially
in the study of multivariate analogue of von Neumann’s inequality, Poisson transforms,
operator spaces, invariants of Hilbert modules and others. Athavale [At1-2] and Agler [Ag]
used this type of dilations while considering reproducing kernel Hilbert spaces.

Popescu [Pol-5] has shown that many of the single operator dilation theory of Sz-
Nagy and Foias holds for minimal isometric dilation of n-tuples also (in fact for infinite
sequence of tuples also). Davidson, Kribs, Pitts and Shpigel ([DKS][DP1-2]) have given
a fine decomposition of the WOT-closed algebras generated by this dilations and used
them to get invariants for similarity. Popescu and Kribs also used this dilation to develop
noncommutative analogue of Arveson’s curvature invariants and Euler characteristics of
Hilbert modules.

In Chapter 2 of this thesis which is based on joint work with Bhat and Bhattacharyya
[BBD] we obtain a fundamental relationship between the minimal isometric dilation and
the standard commuting dilation. We introduce the concept of ‘maximal piece’ of a tuple
of operators satisfying certain relations with respect to a set of polynomials. This concept
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becomes useful to study all types of dilations that we are interested in this thesis. For each
type we make appropriate choice of the set of polynomials. In this Chapter we select the set
of polynomials so that it induces commuting property in the maximal piece and we call this
as ‘maximal commuting piece’. An alternate procedure of constructing minimal isometric
dilation using positive definite kernel is also given followed by a summary of generalization
of von Neumann’s inequality. In Section 2.2 we show that the minimal isometric dilation
of the standard commuting dilation of a commuting tuple coincides with the minimal
isometric dilation of the tuple. Here as well as while answering similar questions related
to other dilations we use the concrete presentation of minimal isometric dilation given by
Popescu [Pol]. In section 2.3 we give a complete classification of the representations of
Cuntz algebras which arise out of the dilation of commuting contractive tuples. We are able
to do this by showing that these representations are related to the GNS representations of
Cuntz states. This one is a major achievements of the theory of identifying the standard
commuting dilation as maximal commuting piece. Then we quote the result from [DKS]
giving the complete description of WOT-closed algebras generated by minimal isometric
dilation. Recently, there has been a lot of effort to study such representations in connection
with wavelet theory, see for instance the papers [BJ1-2] of Bratteli and Jorgensen. The
notion of spherical unitaries of Athavale and Arveson is very useful in this.

In [De], we studied the dilations of ‘g-commuting tuples’ and these are defined as follows:

DEFINITION 1.0.2 A n-tuple T = (T, ...,T,) is said to be ¢g-commuting if T,;T; = ¢;;T;T;
for all 1 < ¢,j < n, where ¢;; are non-zero complex numbers. (To avoid trivialities we
assume that g;; = ¢;;').

When the matrix ¢ = (¢ij)nxn is chosen to be the one which has all entries 1, this dilation
becomes the standard commuting dilation. Chapter 3 in this thesis is based on Dey [De].
For a g-commuting tuple on a finite dimensional Hilbert space H say of dimension m, g;;
are either 0 or m-roots of unity. But there are no such restrictions on infinite dimensional
Hilbert spaces. There are some interesting results about dilations of ¢-commuting tuples
in a work of Bhat and Bhattacharyya [BB]. The notion of g-commuting tuples and related
dilations become important because of its occurrence in Quantum Theory ([Co][Mal][Pr]).
Also such tuples are simplest noncommuting tuples and so are helpful when one enquires
about the form of certain notions for noncommuting tuples, which already exist for com-
muting tuples. We are interested in checking whether the standard g-commuting dilation
sits inside the minimal isometric dilation, and this would be a generalization of an impor-
tant result we have in previous Chapter. For answering this question affirmatively we need
a new ¢-Fock space (one particular case of which is the symmetric Fock space). These are
also subspaces of full Fock space like the symmetric Fock space and each comes through
some representation of permutation groups. In fact these representations become unitarily
equivalent for different choices of matrix g. These g-Fock spaces are different from those
of Bozejko, Speicher and Jorgensen. We give another description for this through a par-
ticular representation of permutation group. We give a formula for the projection of full
Fock space onto this space. On this Fock space we consider a special tuple of g-commuting
operators and show that it is unitarily equivalent to the tuple of shift operators of [BB|.
The universal properties of standard ¢g-commuting dilation using methods similar to those
used in [Po4] for minimal isometric dilation have been discussed in Section 3.3. In Section
3.4, we calculate the distribution of S; + S with respect to the vacuum expectation for



standard tuple S associated with I',(C") and study some properties of the related operator
spaces.

We look at the minimal Cuntz-Krieger dilation in Chapter 4 which is based on joint
work with Bhat and Zacharias [BDZ]. Let A = (ai;)nxn be a 0 — 1-matrix, i.e., a;; € {0,1}
and each row and column of A has atleast one entry 1. Then Cuntz Krieger algebra O, is
defined as follows:

DEFINITION 1.0.3 Cuntz-Krieger algebra O 4 is the unital C*-algebra generated by n par-
tial isometries sy, - -+, s, with orthogonal ranges satisfying

— * — n *
8iSj = ijSiSj, S78i = D i1 0ijS;S)

— n *

The above equations are called Cuntz-Krieger relations. Cuntz-Krieger dilations are related
to Cuntz-Krieger algebras and they arise when the following type of operator tuples are
dilated:

DEFINITION 1.0.4 A n-tuple T is said to satisfy A-relationsif T;T; = a;;T;T; for 1 <1i,j <
n where A = (@ij)nxn-

Cuntz-Krieger algebras are some simple C*-algebras which are not stably isomorphic to
Cuntz algebras and this were studied by J. Cuntz and W. Krieger [CK] in connection
with topological Markov chains. Minimal Cuntz-Krieger dilation is introduced as study of
this dilation sheds light on the structure of Cuntz-Krieger algebras (and Cuntz-Krieger-
Toeplitz algebras) and its decomposition. This dilation is constructed using Popescu’s
Poisson transform. An alternate construction of minimal Cuntz-Krieger dilation using
positive definite kernels is also given. Here we address the question as to how the minimal
Cuntz-Krieger dilation and minimal isometric dilation are related (Section 4.3). This helps
us in classifying Cuntz-Krieger algebras arising out of dilation of contractive tuples. For this
we need to consider a subspace of the full Fock space which we call A-Fock space, obtained
by enforcing A-relations on the m-particle spaces. Section 4.4 starts with some results on
universal properties of minimal Cuntz-Krieger dilation which generalize the results related
to minimal isometric dilation of [Po4]. Further the related WOT-closed algebra generated
by the operators constituting the minimal Cuntz-Krieger dilation tuple has been studied
using similar methods as that of Davidson, Kribs, Pitts and Sphigel ([DKS|[DP1-2]).

In Chapter 5 we discuss some examples of these dilations. Of special mention is that
the Fermionic Fock space has been realised as a space associated with the maximal piece
for certain set of polynomials.

We will consider complex and separable Hilbert spaces. For a subspace H of a Hilbert
space, P will denote the orthogonal projection onto 4. For any Hilbert space K, we have
the full Fock space over K denoted by I'(K) and the Boson (or symmetric) Fock space over
IC denoted by I's(K) defined as,

NK)y=Cokeok¥ e -0k ®--,

r(K)=Ceokeoko---0k¥a-.-,

where K@" denotes the m-fold symmetric tensor product. We will consider the Boson
Fock space as a subspace of the full Fock space in the natural way. We denote the vacuum



4 CHAPTER 1. INTRODUCTION

vector 1 0@ - - - by w. Let {ej,...,e,} be the standard orthonormal basis of C*. The left
creation operator V; and the right creation operators Y; in I'(C") are defined by

Vie =¢; ® x, Yr=2QRe;

where 1 < i < n and x € T'(C") (Of course, here ¢; ® w and w ® e; is interpreted as e;).
Vi’s are clearly isometries with orthogonal ranges and so are Y;’s. We denote the tuples
(Vi,---,V,) and (Y3,---,Y,) by V and Y respectively. Also Y V;V*=>YVY*=1—-FE; <
I, where Ej is the projection on to the vacuum space.

For operator tuples (77, . ..,T},), we need to consider the products of the form Ty, T,, - - -
T,,., where each af € {1,2,...,n}. We would have the following notation for such prod-
ucts. Let A denote the set {1,2,...,n} and A™ denote the m-fold cartesian product of A
for m > 1. Given a = (o, ..., qy) in A™, T* will mean the operator Ty, T, - - - T,,,. Let

A denote U%_,A™, where A° is just the set {0} by convention and by T° we would mean
the identity operator of the Hilbert space where 7;’s are acting. Let S, denote the group
of permutation on m symbols {1,2,---,m}. Let {ey,...,e,} be the standard orthonormal
basis of C". For o € A, e® will denote the vector ey, ® €4, ® -+ ® e€q,, in the full Fock
space I'(C") and €° will denote the vacuum vector w.

Preliminaries

We begin with a brief description of dilation theory of single contraction and von Neu-
mann inequality. Let V' be an isometry on a Hilbert space K. Then K can be decomposed
uniquely into an orthogonal sum of reducing subspaces K = Ky & Ky, for V such that
the compression of V' to Ky and K; are unitary and unilateral shift respectively. Here
Ko =N, V™K and K1 = @22,V (K © VK). This decomposition is called Wold decompo-
sition for a single isometry. Sz.-Nagy showed that for every contraction T, i.e., ||T]| <1
on a Hilbert space H, there exists a minimal isometric dilation V' which is unique upto
unitary equivalence. By this one means that V is a isometry on some Hilbert space K
which keeps H1 invariant,

PyViy =T and K =span{V™(h):h e H,me NU{0}}.

To obtain such a dilation we define Dy := (I — T*T)%, Dr as the range of Dy and
V:H &) (52 ® DT) —H S (l2 ® DT) by V(ho, hl, . ) = (Tho, DTh(), hl, - ) where ho € H
and h; € Dr,7 > 0. From this one can further obtain the minimal unitary dilation U on
K by using the well-known result that an isometry can be extended to a unitary on a
space containing the space H and then arranging the minimality by taking compression to
appropriate space. From this one can prove that for any polynomial p, we get

Ip(T)|| < |sz1|1<p1 p(2)]-

This is called von Neumann’s inequality. Indeed p(T) = Pyup(U)|# and hence

(D) < llpU)]] = sup{lp(2)| : z € spectrum U} < sup [p(z)|.

2/=1

Ando[An] has shown the following dilation result for a 2-tuple T = (T3, T5) :



THEOREM 1.0.5 (Ando’s Theorem) Let T = (T1,Ts) be commuting 2-tuple on H, such
that ||T|| < 1,||T%|| < 1. Then there exists 2-tuple U = (Uy, Us) consisting of commuting
unitaries such that

PyUMUE|y = TPTE  n, k> 0.

From this we get the generalization of von Neumann inequality in 2-variables which is the
following: For a polynomial p in 2 commuting variables

(T, )| < sup {|p(z1, 22)[}-

|z1];|22| <1

Following this Varopoulos and Crabb-Davie [Pi] gave examples to show that dilation to
commuting unitaries is not possible and that even the natural generalization of von Neu-
mann inequality for tuple of commuting contractions does not hold. Parrott [Pa] came out
with an example in which the dilation to commuting unitary is not possible but for n = 3
case but von Neumann inequality is satisfied. If we define ¢, = sup{p(Th,---,T,) : |T;| <
1,1 < ¢ < n} then ¢; is infact greater than 1. Question of determining ¢, still remains
open. Fang [Fa] has given a generalization of the inequality using Bohr’s radius. Another
canonical generalization of von Neumann inequality would have been the following: For p
being a polynomial in n commuting variables (n > 2) and T being a contractive n-tuple,
is it always true that

Ip(T1, - T)ll < sup{lp(ze, - 2a)| Y Jaif* < 137 (1.1)

i

Arveson showed (refer [Ar3]) not only that this generalization does not hold but even
showed that for some tuples 7" we can make choices of polynomial p such that the right
hand side of equation (1.1) less than 1, but the left hand side is unbounded. We would
briefly talk about the generalized versions of von Neumann inequality given by Bozejko,
Popescu and Arveson in Section 2.2.
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Chapter 2

Standard Dilations of Commuting
Tuples

2.1 Maximal Commuting Piece and Dilation

DEFINITION 2.1.1 Let H, L be two Hilbert spaces such that H is a closed subspace of L.
Suppose T, R are n-tuples of bounded operators on H, L respectively. Then R is called a
dilation of T if

Riv="Tu

forallu € H,1 <1 < n.Insuch a case T is called a piece of R. If further 7" is a commuting
tuple ( i.e., T;T; = T;T;, for all i, j), then it is called a commuting piece of R. A dilation
R of T is said to be a minimal dilation if span{R°h:a € A,h € H} = L.

In this Definition we note that if R is a dilation of 7', then H is a co-invariant subspace
of R, that is, it is left invariant by all R}. It is standard (see [Ha]) to call (R;,..., RY) as
an extension of (T7,...,T7) and (17, ..., T;) as a part of (R7, ..., R}). In such a situation
it is easy to see that for any o, 8 € A, T%(T?)* is the compression of R*(R")* to , that
is,

T*(T?)* = PyR*(R%)*|y. (2.1)

We may extend this relation to any polynomials p, ¢ in n-noncommuting variables to have

p(L)(¢(D))* = Pup(B)(q(R))" |-

Usually it is property (2.1) is all that one demands of a dilation. But we have imposed a
condition of co-invariance in Definition 2.1.1, as it is very convenient to have it this way
for our purposes.

We begin with a n-tuple of bounded operators R on a Hilbert space £ and introduce
a general notion in terms of finite set of polynomials a particular case of which we would
need in this Chapter and some other case would be useful in later Chapters.

Let R be the WOT-closed algebra generated by R;’s, and let {p¢}¢cz be some polyno-
mials in n-noncommuting variables with finite indexing set Z. Consider

C(R) = {M: M is a co-invariant subspace for each R;,
(pe(B))"h = 0.Yh € M1 <i<nEcT).

7
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So C(R) consists of all co-invariant subspaces of a n-tuple of operators R such that the
compressions form a tuple RF = (RY,..., RP) satisfying p¢(RF) = 0 for all £ € Z. It is a
complete lattice, in the sense that arbitrary intersections and span closures of arbitrary
unions of such spaces are again in this collection. Therefore it has a maximal element
which we denote by LP(R) (or by £P when the tuple under consideration is clear).

DEFINITION 2.1.2 The mazimal piece of R with respect to {pe¢}ecr is defined as the
piece obtained by compressing R to the maximal element £?(R) of C(R) denoted by RP =
(R}, ..., RP). The maximal piece is said to be trivial if the space LP(R) is the zero space.

It is quite easy to get tuples with trivial maximal piece, as tuples with no non-trivial
co-invariant subspaces have this property. Of course, our main interest lies in tuples with
non-trivial maximal pieces. The following Lemma gives more concrete description of the
maximal piece.

LEMMA 2.1.3 Let R be a n-tuple of bounded operators on a Hilbert space L. Let K¢ =
span{Rpe(R)R°h - h € L and a, 3 € A} for all € € T, and K = 3pan Uger Ke. Then
LP(R) = K*. In other words, LP(R) = {h € L : (R*pe(R)R?)*h = 0,Y€ € T and o, B €
Al

PROOF: Firstly K= is a co-invariant subspace of R is obvious as each R; leaves K invariant.
Now for 4,5 € {1,2,...,n}, and hy € K+, hy € L,

((pe(R))*hy, ho) = (hy, pe(R)hs) = 0.

So we get (p¢(R))*h1 = 0 and hence K € C(R). Now if M is an element of C(R), take
i,je{l,...,n},a € A,hy € M,h € L. We have

(1, R*pe(R)R°h) = ((R*pe(R)R’)*hy, h) = 0

as (R*)*hy € M. Hence M is a subspace of K. Now the last statement is easy to see. ]
Even if we take M, := span{R%p¢(R)h : h € Land a € A} for all £ € Z, and
M = span{Ugez M}, still we get LP(R) = M= .

COROLLARY 2.1.4 Suppose R, T are n-tuples of operators on two Hilbert spaces L, M.
Then the mazimal piece of (R1®Th, ..., R,®T,) acting on L&H&M is (RIBTY, ..., REGTP)
acting on LP & MP. The mazimal piece of (R1 ® I,...,R, ® I) acting on L @ M is
(RP®1,...,RE.®1I) acting on LP @ M.

Proor: Clear from Corollary 2.1.7. O
Now let us see how the maximal piece behaves with respect to the operation of taking
dilations. Before considering specific dilations we have the following general statement.

PROPOSITION 2.1.5 Suppose T, R are n-tuples of bounded operators on H, L, with H C L,
such that R is a dilation of T. Then HP(T) = LP(R)(\H and R is a dilation of T".

PrROOF: We have Rfh = T;h, for h € H. Therefore, (pe(R))*(R%)*h = (pe(L))*(T*)*h
for h €e H,1 < 14,5 <n,and a € A. Now the first part of the result is clear from
Corollary 2.1.7. Further for h € LP(R), Rfh = (R?)*h and so for h € H*(T') = LP(R) (H,
(R?)*h = R;h =T;h = (T?)*h. This proves the claim. O
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Suppose J stands for the two sided closed ideal
span Uger {R°pe(R)R? : o, B € A}

of R. Then R/J is generated by R,, 1 < ¢ < n where Ri = R; + J. From the above
Proposition it follows that R = (R, - - -, R,,) satisfies p¢(R) = 0. Further if the WOT-closed
algebra generated by RY,-- -, RP is denoted by RP? then there is a algebra homomorphism
from R/J to RP which maps R; to R for 1 < i < n. This homomorphism is given by
the map ¥ : R/J — RP such that for any polynomial ¢ in n-noncommuting variables
U(g(R) + J) = q(RP). To check well definedness we start with some polynomial g such
that ¢(R) € J. So ¢(R) € 5pan Uger {R*pe(R)R® : o, 8 € A}. And so for k,h € KP as R}

leaves KP invariant we have

<Q(Ep)k; h) = <PICPq(E)P]CPk, h)
(g(R)k, h) = (k, (q(R))"h) = 0.

For the last equality we use Corollary 2.1.7. Hence ¥(¢(R)+ J) =0, i.e., ¥ is well defined.
It is trivial to check homomorphism property of .

DEFINITION 2.1.6 Suppose R = (Ry,- -+, R,) is a n-tuple of operators on a Hilbert space
L. Then the mazimal commuting piece of R is defined as the maximal piece obtained for
a indexed set of polynomial p;;(2) = 2z;2; — 22, (i,7) € {1,---,n} x {1,---,n} = J. In
this case we denote RP by R® and LP(R) by L(R). The space L¢(R) is called the mazimal
commuting subspace.

COROLLARY 2.1.7 Let R be a n-tuple of bounded operators on a Hilbert space L. Let
Ki; = span{R*(RiR,—R;R))h : h € L,a € A} forall1 <i,j <n, and KC = spanU,_, KCi;.
Then L(R) = K*. In other words, L(R) = {h € L : (R;R; — R;R;)(R*)*h = 0,V1 <
i,j <m,a€ A}.

PROOF: Follows from Lemma 2.1.3. O

PROPOSITION 2.1.8 Let V = (V4,...,V,) and S = (S1,...S,) be standard contractive tu-
ples on full Fock space T'(C") and Boson Fock space T's(C") respectively. Then the mazimal
commuting piece of V is S.

PrROOF: As we have already noted in Chapter 1, S is a commuting piece of V. To show
maximality we make use of Corollary 2.1.7. Suppose z € I'(C") and (z, V*(V;V,;—V;Vi)y) =
0forall o € A,1 <4,j <nandy e '(C"). We wish to show that z € I';(C*). Suppose
T, is the m-particle component of z, that is, v = ®p>0T, With z,, € (C")®™ for m > 0.
For m > 2 and any permutation o of {1,2,...,m} we need to show that the unitary
U, : (C*)®" — (C*)®", defined by

Ua(ul R---Q um) = Ug-1(1) R R Us—1(m),

leaves x,, fixed. Since the group of permutations of {1,2,...,m} is generated by permu-
tations {(1,2),...,(m —1,m)} it is enough to verify U,(z,,) = x,, for permutations ¢ of
the form (4,7 +1). So fix m and 7 with m > 2 and 1 <i < (m — 1). We have

(@pl“p,Ka(Vle - Vi%)@» =0
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for every y € I'(C"), 1 < k,l < n. As « is arbitrary, this means that
(Tm, 2@ (exr @ e — e ®er) @w) =0

for any z € (C")®"™ w e (C*)®"™ ™" This clearly implies U, () = T, for o = (i, i+1).
O

In [Pol] Popescu showed the existence of minimal isometric dilation for an infinite
sequence of operator which forms a row contraction by generalizing Schaffer construction
[Sc| of one variable case. But we would now give this Popescu’s result and proof for
contractive n-tuple.

THEOREM 2.1.9 For every contractive n-tuple of operators on Hilbert space H there exists
a minimal 1sometric dilation which is unique up to unitary equivalence.

PROOF: Let us define K = H@ (I'(C")®D) where D is the closure of the range of operator

D:He---0H—-He---dH
nc;;ies nc;;)ies

and D is the positive square root of
= [51'1'1 - Tz*TJ]nxn

Whenever it is convenient for us we identify H & - - - @ ‘H with C* ® H so that
—_———

n copies

hl,..., Zel@h

Then i i
D(ha, ..., by Zez®h = e ®(hi— Y T;T;hy).
i=1 j=1
Let for 1 <i<n,hé€Hand d, € D

Vi(h®) e"®dy) =Th@®@D(e; @h) @ e; @ > e* ®d, (2.2)

acl a€cl

for h € H, d, € D for o € A, and 1 < i < n (C*w ® D has been identified with D). These
are isometries as

Vi(h® Y e*®@do), Vi(h' &> ¢ @ dy))
a 5
= (T;Th, 1) + (D*(e; @ h), e; @ h') + ei®zea®da,ei®zeﬂ®d:ﬁ>

8
= ((T}T;+1-TrT)h, W) + Ze ®dmze ® dp)

= h@Ze ®da,h@Ze ® dy).



2.1. MAXIMAL COMMUTING PIECE AND DILATION 11

Also, for i # j
Vihe ) e @da), Vi @ > ¢ @ dp))

B
= (T;Tih, W) + (D(e; ® h), ¢; @ )
= (T;Th, W) + (=T} Tih, i) = 0.

So V;’s are isometries with orthogonal ranges. Also f/;* leaves H invariant as f/i*h =T;h.
For when h,h' € H and d, € D

(VFh, i @ Ze ®da)) = (Vi ®) e*®da))
= (b, T = (Trh, b’ = (T;h, K & Ze ® dq)
Next we would check if this dilation is minimal. Clearly Y. Vi = H @ (w®D) = H & D.

Further

Y V'H=He& weD) @Z VieDweD)e---a& »_ (V*@I)(we®D)

|ee|<m la|=m

Thus span{V°h : h € H,a € A} = H@® '(C") ® D = K. The uniqueness follows using

similar arguements as that of Theorem 4.1 of [SF]. O

Now we will give another method of constructing the minimal isometric dilation of a
contractive n-tuple. For a contractive tuple 7' = (73, ---,T,) on Hilbert space H define a
set

Mo ={(a,u) : e € A,u € H}.

For some o, 3 € Aif a =0, or |a| < || and a; = ; for 1 < i < || then we write o C .
Further if « C 8 or 8 C «a we define

0 if |a| = |B|
7= B+, Bg)  if o] <[P
(Ot|/3|+1,"',04\a|) if 8] < |al.

Let u,v € H be arbitrary. Consider a map K : My x My — C defined as follows:

5 (u,T7v) faCp
K((a, u)a (5, U)) = <U" (I,y)*v> ifa2p

0 otherwise.

We would show that K is positive definite kernel. For this we consider the matrix
N = (N o(f%)) where matrix N™ is written as block matrix in terms of N, g%), and rows
and columns of the block matrix are indexed by o, 8 € A and |a/,|8] < m. (For all the
matrices denoted by notations of the type A" below are in the form of block matrices
indexed by o, 8 € A and ||, |3| < m). Here

T ifaCp
N ={ (1) ifaDp
0 otherwise.
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We would show that K™ is positive which would clearly imply that K is positive definite
kernel. Here we use induction to show this. First we define the matrices L™ and F{™) as
Ts if |B]=1,]a|=0
L= 1 ifa=p,0<]q andF;fg)z{

0 otherwise

I -3 TT; if |of,|8/=0
0 otherwise.

Notice that NV = LO(LM)* + FU) Also for m > 1
N = 1 prem) (Limys 4 ™ where

0 0
(m) —

0 ifaor =0
MU= T° i#aCp0<]q
(I otherwise

Infact for |a|, |B] < m

and N1 is positive by hypothesis. So we get N(™ to be positive.
Hence there is a Hilbert space K and a injective map A : Mg — K such that span{ (o, u) :
1<i<na€eAueH}=Kand

(Ma, u), M(B,v)) = K((o,u), (B,)).
We claim that the tuple V = (V;, -, V,,) consisting of maps V; : K — K defined as
17,-)\((041, cee ), u) = M7, Q) 1),

is the minimal isometric dilation. That these are isometries with orthogonal ranges is clear
from the following equations and the definition of kernel K:

(Vid(an, -+ =5 o), ), VEA(Brs -+, Br)5 0))
MG, - ), w), A5, By -5 Br) )
K(E(Z a1,y ), u), (4, By 5 Br), v))
,]K(((al,---,am),u) (Br, =5 Brk),v)))

U<)\((C¥1,"',Ckm 7“) ((ﬁl:"';ﬁk):fu»'

0
0
Minimality holds as

W{EBA((I, u):aand B € A ueH}
= span{Ma,u):1<i<nacAueH}=K.

Finally notice that V;*’s leaves A invariant as

<‘7i*)‘(0’u)’/\((ﬁla'"aﬁm)av» = O‘(Oau) i ((ﬁla"'nﬁm)av»
A0 Brr ), 0)

Ig(( ’u) (( ﬁlaaﬁm) ))

= K((0,TFu), ((B1,- -+, Bm), )

= (A0, T7w), A((B1; - 5 Bm)s v))-
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DEFINITION 2.1.10 Let T = (13,...,T,) be a contractive tuple on a Hilbert space H. The
operator Ap = [I—(Ty T +- - -+T,T%)]2 is called the defect operator of T and the subspace
Ar(H) is called the defect space of T'. The tuple T is said to be pure if 3 m T%(T°)*
converges to zero in strong operator topology as m tends to infinity.

Suppose Y T;T; = I, then it is easy to see that ) .. T%(T*)* = I for all m and
there is no-way this sequence can converge to zero. So in the pure case the defect operator
and the defect spaces are non-trivial.

First we restrict our attention to pure tuples. The reason for this is that it is very easy
to write down standard dilations for pure tuples. So let H be a complex, separable Hilbert
space and let T be a pure contractive tuple on H. Take H = ['(C*) ® Ap(H), and define

an operator K : H — H by

Kh =) e*®Ar(T*)*h, (2.3)

where the sum is taken over all @ € A ([Po5],[AP1]). For h € Ap(H)
(K* () e*®@ha),h) = () e ®ha, Z e @ Ap(T’)h)

- Z(ha,AT(T" = ZT Arhg, h).

(67

So K*(3_,e*® hy) =Y., T*Arh, and
K*Kh = K*( Ze ® Ap(T%)*h ZT“ (Ap)2(T)*h

= h— lim T(T)*h = h.

|a|—o0
Thus K is an isometry. Moreover

KV (VP @)Kk = K'(V*(V*)'®@1)) e ®@Ar(T)h

= K*( Zea®e€®A (Z)(Z°)"h)
= ZTE ))(TP)*h =T*(T")*h.

Now H is considered as a subspace of H by identifying vectors h € ‘H with Ah € H.
Then by noting that each V;*®1 leaves the range of K invariant and 7* = K*(V*®I)K for
all o € A it is seen that the tuple V.= (V;®1,...,V,®1I) of operators on H is a realization
of the minimal isometric dilation of 7". Now if I is a commuting tuple, it is easy to see
that the range of K is contained in H#, = I',(C") ® Ap(H). In other words now H can be
considered as a subspace of #,. Moreover, S = ($1®1,...,5,81), as a tuple of operators
in #, is a realization of the standard commuting dilation of (71,...T,). More abstractly,
if T is commuting and pure, the standard commuting dilation of it is got by embedding
‘H isometrically in I';(C") ® K, for some Hilbert space X, such that (S; ® Ik, ..., S, ® Ix)
is a dilation of 7 and span{(S® ® Ix)h : h € H,a € A} = I';(C*) ® K. Up to unitary
equivalence there is unique such dilation and dim () = rank (Ag).
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THEOREM 2.1.11 Let T be a pure contractive tuple on a Hilbert space H. Then the max-
imal commuting piece Ve of the minimal isometric dilation V. of T is a realization of the
standard commuting dilation of T¢ if and only if Ar(H) = Agp(H(T)). In such a case rank
(Ar) = rank (Are) = rank (Ay) = rank (Agpe).

Proor: We denote H(T), Ar(H) and Ap(He(T)) by H¢, M, and M° respectively. It
is obvious that T° is also a pure contractive tuple. We already know from Proposition
2.1.5 that V° = (S ® In) on I',(C") ® M is a dilation of T°. Tt is the standard dilation
if and only if £ := span{(S®* ® Im)Kh : h € HE,a € A} is equal to I',(C") ® M, where
K : 1 — H is the isometry defined by (2.3).

From the definition of K, using the commutativity of the operators 7;, it is clear that
forh € H¢, Kh € T5(C")®@M°. Hence L C I';(C*) @ M. Further, as (S® 1) is a dilation,
(SF ® L) leaves K(H®) invariant. Therefore, ((I — Y S;S}) ® Im)Kh € L for h € HE.
But (I — ) S;S;) being the projection onto the vacuum space, ((I =Y S;Sf) ® Iy)Kh =

w® Arph. As {S®w,a € A} spans whole of [';(C") we get that I';,(C*) ® M¢ C £. Hence
L=T,C") @ M- and this way we have proved the first claim.

Now suppose V° is a realization of the standard commuting dilation of T This in
particular means that rank (Apc) = rank (Aye). Also as V is the minimal isometric
dilation of T, rank (Ar) = rank (Ag). Further as V' = (S®1Iuy), rank (Aye) = dim(M) =
rank (Ag). a B O

We may ask whether the equality of ranks in this Theorem is good enough to make a
converse statement. To answer this we make use of the following simple Lemma.

A B
=5 ¢)

is a bounded positive operator on some Hilbert space. Then rank (A) = rank ( g )

LEMMA 2.1.12 Suppose

Proor: Without loss of generality we can assume that M is a contraction. Then it is a
. . 1 1
folklore Theorem that there exists a contraction D such that B = C2DA2. Now

(5)=()

and hence rank ( g ) < rank A2. But A being positive, rank A = rank A>. Therefore

rank(é)grank (A)grank<g). O

REMARK 2.1.13 Let T be a pure contractive tuple on a Hilbert space H with minimal
wsometric dilation V. If rank Arp and rank Are are finite and equal then V* is a realization
of the standard commuting dilation of T°.

=

PROOF: In view of Theorem 2.1.11 we need to show that Ap(H) = Agp(H¢(T)). Since

Ap(H) O Ap(He(T)), and these spaces are now finite dimensional, it suffices to show
that their dimensions are equal or rank (Ar) = rank (ApPye). Clearly rank (Ap) >
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rank (AgPje). Also by assumption, rank (Ag) = rank (Age). By positivity rank (Age)
rank (AZ.). And then by previous Lemma rank (A%.) = rank (Pye(A%)Pye) = rank (A%
< rank (AZPHC) B B

If both the ranks are infinite then we can not ensure that Ar(H) = Ap(He(T)) is seen
by the following example.

)

DE

EXAMPLE 2.1.14 Let R = (R1, Ry) be a commuting pure contractive 2-tuple on an infinite
dimensional Hilbert space Ho (We can even take R;, Ry as scalars) such that Ag(H,) is
infinite dimensional. Take H = Hy @ C2, and let T}, T, be operators on H defined by

R1 R2

where t1, ty are any two scalars, 0 < t1,% < 1. Then T = (71, T3) is a pure contractive tuple.
Making use of Corollary 2.1.4, H¢(T) = H, (thought of as a subspace of A in the natural
way) and the maximal commuting piece of T is (R;, R2), and therefore rank (Age) =

rank (A7) = oo. But Ar(H) = Ar(He) @ C2.

We do not know how to extend Theorem 2.1.11 to contractive tuples which are not
necessarily pure.

We would discuss in brief the generalized versions of von Neumann’s inequality given by
Bozejko, Popescu and Arveson using the dilation theory. More references on this inequality
can be found in Chapter 1 of [Pi]. In [Bo] Bozejko gave the following extension of this
inequality:

THEOREM 2.1.15 Let T be a n-tuple of contractions on some Hilbert space and p be a
polynomial in n noncommuting variables. Then

(D) < sup{[lp(U)I[}

where the supremum runs over all possible n-tuples U = (Uy,---,U,) of unitary operators
on this Hilbert space.

Using minimal isometric dilation Popescu derived the following result:

THEOREM 2.1.16 For any contractive n-tuple T' and any polynomzial p in n noncommuting
variables

(D)) < [l

Drury [Dr] and later Arveson [Ard] investigated this inequality in light of standard com-
muting dilation. Arveson gave the following example to show that one of the natural
generalization of von Neumann’s inequality given by equation (1.1) fails in a big way.

ExXAMPLE 2.1.17 Assume n > 2 and ag, aq, ag,--- to be sequence of complex numbers

such that
Sl =1, 3 e =
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Let fy be polynomials in commuting n-varables defined as

1
Iz, 2 :Zsz " where s = et
i=1
Then it was shown in [Ard] that sups~ ,.2<; [[fn(21,- -+, 20)[| < 1 and fy converges uni-

formly over the closed unit ball but
Jim | fx ()| = oo
— 00

This leads to the realization that no effective model theory for n > 2 could be based
on subnormal operators. Now we state the Arveson’s version [Ar4] of von Neumann’s
inequality.

THEOREM 2.1.18 Let T be a commuting contractive n-tuple and p be a polynomial in n
commuting variables. Then
P[] < llp(S)II-

2.2 Commuting Tuples

In this Section we wish to consider commutative contractive tuples. Let us begin with
describing the way one obtains two standard dilations for such tuples.

Recall standard tuples V and S on Fock spaces I'(C™), and I';(C™) respectively, intro-
duced in Chapter 1. Let C*(V), and C*(S) be unital C* algebras generated by them. For
any o, 8 € A, V(I = Y V;V*)(VP)* is the rank one operator z — (e, z)e®, formed by
basis vectors e, e®. So C*(V) contains all compact operators. In a similar way we see
that C*(S) also contains all compact operators of I';(C*). As V;*V; = §;;1, it is easy to
see that C*(V) = span {V*(V?)* : a, 8 € A}. By explicit computation commutators
[SF,S;] are compact for all 4,j ([Ar4], Proposition 5.3, or [BB]). Therefore we can also
obtain C*(S) = span {S%(S®)*:a, B € A},

Suppose T is a contractive tuple on a Hilbert space H. We obtain a certain completely
positive map (Popescu’s Poisson transform) from C*(V') to B(#), as follows. For0 < r < 1
the tuple rT = (rTy,...,rT,) is clearly a pure contraction. So by (2.3) we have an isometry
K,:H—T(C")®A,(H) defined by

K.h=>Y e @A ((rT)*)h, heH,
where A, = (I — r2 S T/T7)z. So for every 0 < r < 1 we have a completely positive map
Yy 1 C*(V) — B(H) defined by

(X)) =K/ (X®I)K,, X eC'(V).

By taking limit as r increases to 1 (See [Po5| or [AP1] for details), we obtain a unital
completely positive map 1 from C*(V)) to B(H) satisfying

Y(VEVP)) = T*(TP)* for o, f € A
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As C*(V) = span {V*(V?)* : a,B8 € A}, ¢ is the unique such completely positive
map. Now consider the minimal Stinespring dilation of 4. So we have a Hilbert space H

containing H, and a unital *-homomorphism 7 : C*(V) — B(H), such that
$(X) = Pym(X)| VX € C*(V),

and span {7(X)h: X € C*(V),h € H} = H. TakingV = (Vi,...,V,) = (n(V), ..., 7(V,)),
one verifies that each (‘Z)* leaves # invariant and V is the unique minimal isometric dila-
tion of 7.

In a similar fashion if T is commuting by considering C*(S) instead of C*(V), and
restricting K, in the range to [';(C"), and taking limits as before (See [Ar4], [Po5], [AP1])
we obtain the unique unital completely positive map ¢ : C*(S) — B(H), satisfying

$(S*(8#)") =T*(T?)* «a,B €A

Consider the minimal Stinespring dilation of ¢. Here we have a Hilbert space H; containing
‘H and a unital *-homomorphism 7 : C*(S) — B(#H;), such that

¢(X) = Pym (X)|ln VX € C7(5),

and span {m (X)h: X € C*(S),h € H} = H,. Taking S = (S, ...,5,) = (m1(S1), ..., m(Sy)),
S is the standard commuting dilation of 7 by definition (It is not difficult to verify that it

is a minimal dilation in the sense of our Definition 2.1.1). As minimal Stinespring dilation

is unique up to unitary equivalence, standard commuting dilation is also unique up to
unitary equivalence.

THEOREM 2.2.1 Suppose T is a commuting contractive tuple on a Hilbert space H. Then
the mazimal commuting piece of the minimal isometric dilation of T is a realization of the
standard commuting dilation of T .

Our approach to prove this theorem is as follows. First we consider the standard
commuting dilation of T on a Hilbert space H; as described above. Now the standard
tuple S is also a contractive tuple. So we have a unique unital completely positive map
n: C*(V) — C*(S), satisfying

n(Ve(VP)) = 5%(8") a8l
Now clearly ¢y = ¢ on. Consider the minimal Stinespring dilation of the composed map
mpon: C*(V) — B(H;). Here we obtain a Hilbert space #Hs containing H; and a unital
s-homomorphism 7o : C*(V)) — B(Hs), such that
7T1077(X) :P'H17T2(X)|7'L1a VX EC*(K)a

and span {m(X)h: X € C*(V),h € H,1} = Ho. Now we have a commuting diagram as
follows

T2
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where all the down arrows are compression maps, horizontal arrows are unital completely
positive maps and diagonal arrows are unital *-homomorphisms.

Taking V. = (V4,..., V) = (m2(V1), ..., m2(V},)), we need to show (i) V is the minimal
isometric dilation of T and (ii) S = (m1(Sy),...,m1(S,)) is the maximal commuting piece
of V. Due to uniqueness up to unitary equivalence of minimal Stinespring dilation, we
have (i) if we can show that 7y is a minimal dilation of ¥ = ¢ o 7. For proving this we
actually make use of (ii). At first we prove (ii) in a very special case.

DEFINITION 2.2.2 A n-tuple T = (T3, ...,T,) of operators on a Hilbert space H is called
a spherical unitary if it is commuting, each 7; is normal, and TYT} + --- + T, 1 = I.

Actually, if H is a finite dimensional Hilbert space and T is a commuting tuple on
‘H satisfying Y T;T; = I, then it is automatically a spherical unitary, that is, each T;
is normal. This is the case because here standard commuting dilation of T is a tuple of
normal operators and hence each 7} is subnormal (or see [At1] for this result) and all finite
dimensional subnormal operators are normal (see [Hal).

Note that if 7' is a spherical unitary we have ¢(S*(I — 3. S;S})(S?)*) = T*(I —
S TTF)(TP)* = 0 for any o, € A. This forces that ¢(X) = 0 for any compact oper-
ator X in C*(S). Now as the commutators [S}, S;] are all compact we see that ¢ is a unital
x-homomorphism. So the minimal Stinespring dilation of ¢ is itself. So the following result
yields Theorem 2.2.1 for spherical unitaries.

THEOREM 2.2.3 Let T be a spherical unitary on a Hilbert space H. Then the maximal
commuting piece of the minimal isometric dilation of T is T.

As proof of this Theorem involves some lengthy computations we prefer to postpone
it. But assuming this, we prove the Theorem 2.3.1.
PROOF OF THEOREM 2.3.1 : As C*(S) contains the ideal of all compact operators by
standard C*-algebra theory we have a direct sum decomposition of 7; as follows. Take
Hi = Hic ® Hin where Hic =span{m(X)h: h € H,X € C*(S) and X is compact} and
Hin = Hi1 © Hic, Clearly Hq¢ is a reducing subspace for ;. Therefore

mid) = ( et min (X) >

that is, m; = mc @ mnx where mo(X) = Puy o1 (X)Pryp, mn(X) = Py ym1(X) Py, -
As observed by Arveson [Ard], m(X) is just the identity representation with some mul-
tiplicity. More precisely, Hic can be factored as Hic = I's(C") ® Ar(#H), such that
mce(X) = X ® I, in particular mc(S;) = S; ® I. Also mn(X) = 0 for compact X.
Therefore, taking 7Z; = mn(S;), Z = (Z1, ..., Zy,) is a spherical unitary.

Now as 71 on = (mi¢c o n) @ (mnx on) and the minimal Stinespring dilation of a direct
sum of two completely positive maps is the direct sum of minimal Stinespring dilations. So
Ho decomposes as Ho = Hoc @ Hon, Where Hoo, Hon are orthogonal reducing subspaces
of mq, such that 7y also decomposes, say m9 = moc @ TN, With

T 0 N(X) = Puyemoc(X)|ae, minv o n(X) = Payyymon (X) 21,y

for X € C*(V) with Hac = Span {mc(X)h: X € C*(V), h € Hic} and Hoy = Span {man(X)h :
X € C*(V),h € Hin}. It is also not difficult to see that Hoc = span {myc(X)h :
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X € C*(V),X compact, h € Hic} and hence Hyo factors as Hoe = I'(C*) @ Ap(H)
with moc(V;) = V; ® I. Also (men(V1),...,man(V,)) is a minimal isometric dilation of
spherical isometry (Zi,...,Z,). Now by Proposition 2.1.8, Theorem 2.2.3 and Corollary
2.1.4, we get that (m1(S1),...,m(S,)) acting on H; is the maximal commuting piece of
(ma(V1), ..., ma(Va))-

All that remains to show is that my is the minimal Stinespring dilation of ¢ o 7.
Suppose this is not the case. Then we get a reducing subspace Hqy for m, by taking
Hoo = span {m(X)h : X € C*(V),h € H}. Take Ho; = Ho © Hao and correspondingly

decompose 7y as my = oy D a1,

) = ( ) 21 (X) >

Note that we already have H C Hoy. We claim that Ho C Hoy. Firstly, as H; is the
space where the maximal commuting piece of (my(V4), ..., mo
(V) = (m20(V1) @ w1 (V1), - - ., ma0 (Vi) @ ma1(V,)) acts, by the first part of Corollary 2.1.4,
H1 decomposes as Hi = Hig @ H11 for some subspaces Hig C Hag, and Hi1 € Hoy. So for
X € C*(V), Py,mo(X) Py, has the form (see the diagram)

moon(X) 0
0 0
Prams(X) P = mon(X) 0

0 0

where o, 711 are compressions of m; to Hig, H11 respectively. As the mapping 7 from
C*(V) to C*(S) is clearly surjective, it follows that #9, 11 are reducing subspaces for
7. Now as H is contained in Hyg, in view of minimality of m; as a Stinespring dilation,
H1, C Hayg. But then the minimality of mo shows that Ho C Hag. Therefore, Ho = Hoo. O
PRrROOF OF THEOREM 2.2.3 : Here we use the presentation of minimal isometric dilation
given by Popescu (2.2). In the present case as Y. T;T; = I, by direct computation D? is
seen to be a projection. So, D which is the positive square root of D?, is equal to D?.
Also by Fuglede-Putnam theorem ([Hal, [Pu)]), {T%,...,T,,TY,..., T} forms a commuting
family of operators. Then we get

D(hy,... k) = > e @Ti(Trhi —Trhy) = e @ Tj(hyj) (2.4)
i,j=1 Lj=1
where h;; = T]?“hi —T7hj for 1 <14,7 <n. Note that h; = 0 and hj; = —hy;.

Now we apply Corollary 2.1.7 to the tuple \% acting on H. Suppose y € H* ﬂ?—NLC(E)
We wish to show that y = 0. We assume y # 0 and arrive at a contradiction. One
can decompose y as y = 0 P Zad €* ® Yo, With y, € D. If for some «, y, # 0, then
(W ® Yo, V)VY) = (6* @ Yo, ¥) = (Y Ya) # 0. Since each (V;)* leaves H(V) invariant,
(V) *y € HE(V). So without loss of generality we can assume ||yo|| = 1.

Taking §im = 3 pepm € ®@ Yo, We get y = 0@ Dpm>0(Gim)- As yo € D, yo = D(ha, ..., hy),
for some (A1, ..., h,) (Presently D being a projection its range is closed). Set Zo = 9o = Yo,
and for m > 1,

o hig).

jm: Z 6Z1®®6Zm_1®6Z®D(€J®77:T*
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Clearly Z,, € (C*)®" ® D for all m € N. From the Definition (2.2) of V;, commutativity
of the operators T;, and the fact that D is projection, we have

1<i<j<n
= Y (TThy = TiThy) + Y D(e; ® Tihi; — e ® Tihy)
1<i<j<n 1<i<j<n
+ D (e:®D(e; ® hyy) — ; ® D(e; ® hyj))
1<i<j<n
= D{ Y, (e:®@Tjhij—e;@Tihij)} + Y € @ D(e; ® hyj)
1<i<j<n =1
= D()_ ei®Tihi)+ Y i ® D(e; ® hyj)
ig=1 =1

= D2(h1,...,hn)+ Z€Z®D(€J®h”)
2,j=1
= .’Z'() +§31

Therefore (y,Zo + 1) = 0 by Corollary 2.1.7. Now for m > 2

Z ‘71'1 ce Vim—1(z (f/l‘;:? - ‘7.7‘71)7;: s Titn_zT;him—ﬂ)
i1 yeenyim_1=1 ij=1
= Y Vi Vi D De®TT; . Ty T hi, i
Bl yeenytm—1=1 4,j=1

—e; @T/T;, ... Ty [ Trhi, i)+ > {ei®D(e;@T; ... T; Trhi, ;)

2,j=1
—;®@D(e; T}, .. .1}2_27}’%%_”)}]
n n
— Z €iy R Q €Cim1 & [D(Z €; () ETZ e 7;;_2T;him,li
i1 yeegim1=1 ij=1

—e; @ TT; ... T}, Tihin i) +{)_ e ®D(e; @ Ty, ... T;,_Ti hi,,_3)

1
i,j=1

= &®D(e;®T; ... T}, T hi, ;)]
ij=1
(in the term above, i and j have been interchanged in the

last summation)

o Z ei1®...®eim_1®

[D(Z e @T) ... T} _hi, i— Z e; @ T} ... T Trhi, ;)

i=1 ij=1
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i,j=1

eil ® ..
E1yeenslim—1,8,J=1

D(e;@T;...T;

Z.m—Z

€i1®”

E1yeensbm—1,8,7=1

(LT, b+ TIT,

ei1®...®eim71®ZD(ei®1}’;..

(T;T;h

'®eim—1®ei®D(€j®Tz§

T

Lo

tZ;kh/imfl'i - 7"; R 1;;_27‘;*}2/1’”14*1])}]

n
*
° Emfzhimfli)

=1

'®€im—1 ®e

im — LT, b =TT ey + TG

€y [ SJRIIEN) Cim_s X €; X D(e]- X T;: .. 'T’itn_zhij)

LT

Im—2

1))

(in the term above, index i, ; has been replaced by i

and 7 has been replaced by j in the first summation)

n

=D

1 yeeyim—2,i,=1

61'1®"'®eim_2®ei®D(ej®Tii“

T hig)

- Z € ®"‘®€im_1 ®€Z®D(€J®,T;; TZn—th)
i1y 1,55 =1
=Tm—1—Tm
SO, <ya£lm—1 - iﬁm> =0.
Next, we would show that ||Z,,41]| = ||Zo|| = 1 for all m € N.

n

D

£1yeensbim, b, =1

|1l = ¢

€y ®®€Zm®€Z®D(€J®Ejﬂtnh”),

Y ey @ ®ey, ®er ®Dley ®T5 ... Tj hay))

n

= Y (Z D(e; ® Ty,

815eensbm,t=1 j=1
n

11 yeeeybm,i=1
n

i1yeimg=1 Lk=1

(D> e; T
=1

(Y a@Tu(T;T;,

L Thhig), Y D(ey @Tj .. T} hujr))
j:l

T i), Y e @ Ty T huge)
i=1

T by =TT T by,

n
=1

h;))
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= Y ZTk Ty .. T hyy — TP T T ), Ty T Rig)
i1 yerimyii=1 k=1

= > O _(TuT;hij — TeT; hae), hig)
i,j=1 k=1

= Y QT hy = TTT by =TT Tihs + T T he), T3 hy — T hy)
i,j=1 k=1

= Y O (LT;T; i — T T hy), Ty by — T hy)
i,j=1 k=1

= Y QO (LTT hy) = T hy, T b = T hy)
ij=1 k=1

= D ATGQ T T he) =TT by, ha) = Y AT TT5 T )
i,j=1 k=1 i,j=1 k=1

—T~T*hj, hy)

:ZZTT*ZTkThk ZTT*h],h ZZTT*ZTkThk

i=1 j=1 j=1 =1

—Zm*hj,h»
=1

= En](in:TkTi*hk) - En:m*hj,hi) - ZTkT*hk h;)

i=1 k=1 j=1 j=1 k=1

= Y (hj =Y TiTihy), hy) = (D(ha, ... hy), (has -y ha))
j=1 k=1

= [1&]* = 1.

As (y,Zo + Z1) = 0 and (y, &, — Trpy1) = 0 for m € N, we get (y, %o + Trp1) = 0
for m € N. This implies 1 = (9o, %) = (Yo, Z0) = —{Jm+1,Tm+1). By Cauchy-Schwarz
inequality, 1 < ||Jmat1l||[|Zms1ll 5 1-€;; 1 < ||Jmy1]| for m € N. This is a contradiction as
Yy = 0® @p>0Ym is in the Hilbert space H. [l

2.3 Representations of Cuntz Algebras and Related
WOT-closed Algebras

For n > 2, the Cuntz algebra O, is the C*-algebra generated by mn-isometries s =
{s1,..., 8}, satisfying Cuntz relations: sfs; = 6;;I,1 < i,j < n, and ) s;sf = I. It ad-
mits many unitarily inequivalent representations. Various classes of representations of O,
have been constructed in [BJ1-2], [DKS]. Given a tuple of contractions T = (11,...,T;)
on a Hilbert space satisfying > T7;7; = I, we consider its minimal isometric dilation
V =(V,...,V,). We know that the isometries V; satisfy Cuntz relations and we obtain a
representation 7y of the Cuntz algebra O,, by setting mr(s;) = Vi. We wish to classify all
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representations of O, we can obtain by dilating commuting contractive tuples 7.

Let C,, = C(0B,) be the C*-algebra of all continuous complex valued functions on the
sphere 0B, = {(21,-..,2,) : Y. |zi|* = 1}. We have a distinguished tuple z = (21,...,2,)
of elements in C, consisting of co-ordinate functions. Given any spherical unitary Z =
(Z1,...,Zy,) there is a unique representation of C, which maps z; to Z;. Now given any
commuting n-tuple of operators T, satisfying > 7,7 = I, we consider its standard com-
muting dilation S = (Si,...,S,). Let pr be the representation of C,, obtained by taking

pr(z) = S;.

DEFINITION 2.3.1 Let 7 be representation of O, on a Hilbert space £ with W = (W7,.. .,
W) = (7(s1),---,7(sn)). The representation 7 is said to be spherical if span {W®h :
h € L(W),a € A} = L, where L5(W) is the space where the maximal commuting piece
W€ of W acts as in Definition 2.1.6.

Note that this Definition means in particular that if 7 is spherical then the maximal
commuting piece W° is non-trivial. We will see that it is actually a spherical unitary. But
this is not a justification for calling such representations as spherical, because this happens
for any representation of O, as long as W¢ is non-trivial! The actual justification of this
Definition is in Theorem 2.3.3.

THEOREM 2.3.2 LetT = (T1,...,T,) be a commuting tuple of operators on a Hilbert space
H, satisfying > T;T; = I. Then the representation g coming from the minimal isometric
dilation of T is spherical. Suppose R = (R1,...,R,) is another commuting tuple, possibly
on a different Hilbert space, satisfying Y R;Rf = I. Then the representations mr, mg of
O,. are unitarily equivalent if and only if the representations pr, pr of C, are unitarily
equivalent.

PROOF: In view of Theorem 2.2.1, the maximal commuting piece of the minimal isometric
dilation V of T is a realization of the standard commuting dilation S of 7. The first claim
follows easily as the space on which the standard commuting dilation acts includes the
original space H. So V is the minimal isometric dilation of S. Similar statement holds for
the tuple R. Now the Theorem follows due to uniqueness up to equivalence of minimal
isometric dilation of contractive tuples, and unitary equivalence of maximal commuting
pieces of unitarily equivalent tuples. O

So this Theorem reduces the classification problem for representations of O,, arising out
of general commuting tuples to that of representations of C,,. But C,, being a commutative
C*-algebra, its representations are well-understood and is part of standard C*-algebra
theory. We find the description of this theory as presented in Arveson’s classic [Ar3] most
suitable for our purposes.

Given any point w = (wy,...,w,) € 0B,, we have a one dimensional representation
¢w of Cp, which maps f to f(w). Of course w is a spherical unitary as operator tuple on
C. We can construct the minimal isometric dilation (W7, ..., W*) of this tuple as in the
proof of Theorem 2.2.3 (Schéffer construction). We see that the dilation space is

H"=Ce ([(C)8C,) cCe (I(C)eC),

where C7 is the subspace of vectors orthogonal to (@, . .., w,) in C". Further the operators
W/ are given by

W ( hEBZe ®d) =wh@®D(e; ®h) B e; @ Ze ® d,)
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We denote the associated representation of O, by p,. This representation is known to be
irreducible as it is nothing but the GNS representation of the so-called Cuntz state on O,
(See [DKS], Example 5.1), given by

* * —_— J—
A ...Sjp |_>wz.1 wlmwjlep

Siy S, S

Now an arbitrary multiplicity free representation of C, can be described as follows (see
[Ar3]). Consider a finite Borel measure p on 0B,,. Then we get a representation of C,, on
the Hilbert space L?(0B,, i), which sends f € C, to the operator ‘multiplication by f’.
This representation can be thought of as direct integral of representations ¢,, with respect
to measure p. Now it is not hard to see that the associated representation of O, is simply
the direct integral of representations p,, with respect to measure y and acts on $H™ pu(dw).
Finally an arbitrary representation of C, is a countable direct sum of such multiplicity free
representations. So we have proved the following result.

THEOREM 2.3.3 FEwvery spherical representation of O, is a direct integral of representations
puw, W € OB, (GNS representations of Cuntz states).

Here we have not bothered to write down as to when two such representations are
equivalent. But in view of Theorem 2.3.2, we can do it exactly as in ([Ar3], page:54-55),
by keeping track of multiplicities and equivalence classes of measures.

THEOREM 2.3.4 Let m be a representation of O,. Then (i) m decomposes uniquely as
7 =7 @®rt, where 7° is spherical and (7'(s1),..., 7 (s,)) has trivial mazimal commut-
ing piece (Either m° or ' could also be absent); (i) The mazimal commuting piece of
(m(s1),-..,m(sn)) is either trivial or it is a spherical unitary. (iii) If © is irreducible then
either the maximal commuting piece is trivial or it is one dimensional. In the second case,
it 1s unitarily equivalent to GNS representation of a Cuntz state.

PROOF: Suppose 7 is a representation of O, on a Hilbert space £ and W = (7 (s1), ..., 7(sp)).
Consider the space £° generated by L£¢(W) as £° = §pan {W°h : h € L(W),a € A}.
Now each W; leaves £¢(WW) invariant and clearly O, = C*{s%(s®)* : @, 8 € A}. Then
it follows that £° is a reducing subspace for 7. Taking £! = (£°)*, we decompose 7 as
70 @ ! with respect to £ = L@ L'. Tt is clear that this is a decomposition as required by
(i). Uniqueness of this decomposition and (ii) follow easily as maximal commuting piece
of direct sum of tuples is direct sum of maximal commuting pieces (Corollary 2.1.4) and
then (iii) follows from Theorem 2.3.3. d

Let us see as to what happens if we dilate commuting tuples T, satisfying just > T;7; <
I. In this case, as is well-known, the minimal isometric dilation decomposes as ((V; ®
HeWw,...,(V,®I) &W,) where (V1,...,V,) is the standard tuple of full Fock space,
and (Wi,...,W,) are isometries satisfying Cuntz relations. If T is not pure the term
(Wh,...,W,) is present and we get a representation of O,. However, as seen in the
proof of Theorem 2.2.1, (W7,...,W,,) is a minimal isometric dilation of a spherical tuple
(Z1,...,Z,) (the ‘spherical part’ of the standard commuting dilation of T') and hence the
representation of O, we get is still spherical.

On the other hand it is easy to get examples of non-commuting tuples dilating to
representations of O, which are not spherical. For instance we can consider the tuple
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R = (Ry, Ry) on C? defined by

0 1 0 0
m=(o0)m=(10)

Then as RiRf + ReR; = I, the minimal isometric dilation of (R;, Ry) satisfies Cuntz
relations. We can see that it has trivial commuting piece through a simple application of
Corollary 4.3 of [DKS].

Now we quote the result regarding complete description of the minimal isometric dila-
tion of contractive tuples on finite dimensional Hilbert space and the related WOT-closed
algebra obtained by Davidson, Pitts and Shpigel [DPS] For a contractive n- tuple T let us
denote the WOT-closed algebras generated by Ty, - - -, Tp; Vi, - -+, V, and V4, -+ -, V,, by G; V
and B respectively. Further denote by M, the C*-algebra generated by all n X n matrices.

THEOREM 2.3.5 Assume T to be contractive n-tuple on some finite dimensional Hilbert
space H and V to be its minimal isometric dilation on Hilbert space Ho. Suppose H denote
the subspace spanned by all minimal B*-invariant subspaces VW on which Py, ZTT*\W =
Ly. Then Hon = G[H] and using an indexing set G one can write H = deG
where Hy are minimal B*-invariant subspaces of dimension d, and multiplicity my. The
compression B of B to H is a C*-algebra and with respect to the above decomposition we
can write H = deG Mgy, ® C™s. Denote by Hay the minimal dilation space of compression
of T to Hy and by Py, the projection onto H,. Then

Hy=> (Hoy®C™) @ Hoy =H & (I(C") @ C")

geG

where Hay = H, ® (T(C™) @ C¥), 1, = dy(n — 1),

I=(n—1)) lgmg+ rank (I - TT7).

geG

G~ (B(Hy)P)®C™ +V & '

g€eG

Finally we remark that if we are to consider the case n = oo, that is, if we have infinite
tuples {71, T5,...,}, then the standard commuting tuple {Si,Ss,...,}, no longer con-
sists of essentially normal operators as the commutators [S;, S;| have infinite dimensional
eigenspaces with non-zero eigenvalues. This is a serious obstacle in extending results of
Section 2.2 and 2.3, to infinite tuples.
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Chapter 3

Standard Dilations of g-commuting
Tuples

For a g-commuting n-tuple T on a finite dimensional Hilbert space H say of dimension m,
because of the relation

Spectrum(7;7;) U {0} = Spectrum(7;7;) U {0} = Spectrum(g;;7;T;) U {0},

th_yoot of unity. So we work with infinite dimensional Hilbert

we get g;; is either 0 or m
spaces here.

In Section 3.2 we are able to show that the range of the isometry K defined in equation
(2.3) is contained in the g-commuting Fock Space tensored with a Hilbert space when T
is a pure tuple. Using this we are able to give a condition equivalent to the assertion of
the Theorem 3.1.6 to hold for g-commuting pure tuple. The proof of the particular case
of Theorem 3.2.6 where T is also g-spherical unitary (introduced in Section 3.2) is more
difficult than the version for commuting tuple and we had to carefully choose the terms
and proceed in a way that ‘g;;’ of the g-commuting tuples get absorbed or cancel out when
we simplify the terms. Also unlike commuting tuple case in Chapter 2 we had to use
an inequality related to completely positive map before getting the result through norm
estimates.

For a g-commuting tuple T = (T3, ...,T,), consider the product 7,7},

. Ty, where 1 < z; < n. If we replace a consecutive pair say T, T, , of operators in the
above product by g, +1wnggl 1y, and do finite number of such operations with different
choices of consecutive pairs of these operators appearing in the subsequent product of
operators after each such operation, we will get a permutation ¢ € §,, such that the final

product of operators can be written as kT _, To _,, - Ts _,,, for some k& € C, that is,
1T, T,,...T,, =FkT, _1(1)Tw PP -Tw Ay For deﬁnlng q- commutlng tuple in Deﬁnltlon

1.0.2 we needed the known fact that this k depends only on ¢ and x;, and not on the
different choice of above operations that give rise to the same final product of operators
T, , Ty . ... T, , .1t also follows from the Proposition 3.0.1.
o=l(1) " Fo—1(2) o= 1(m) ) ) »
Here after whenever we deal with ¢g-commuting tuples we would have another condition
on the tuples that |¢;;| = 1 for 1 <4, j < n. However for the Lemma 3.0.4 and Corollary
3.0.5 we don’t need this assumption. Let T = (T3,...,7T,) be a g-commuting tuple and
consider the product 1,75, ... T, where 1l < z; < n.Let 0 € S,. As transpositions of the

type (k,k+1),1 <k < m — 1 generates S,,,, let 0! be 7, ...7, where for each 1 <7 < s

27



28 CHAPTER 3. STANDARD DILATIONS OF Q-COMMUTING TUPLES

there exists k; such that 1 < k; < m — 1 and 7; is a transposition of the form (k;, k; + 1).
Let 6; = Tj41...7s for 1 <4 < s —1 and &, be the identity permutation. Let us define
Yi = Tg;(k;) and z; = Tk, 41)- If we substitute T, T, by q,,,,T,,T,, corresponding to 7,
substitute T, _,T,,_, by ¢, ,y, 12, Ty, , corresponding to 7,_1, and so on till we substi-

tute the corresponding term for 71, we would get ¢f (). ..q7 (z)T:__, oLz, Lo, i
where 7 () = quyy;- That is T, To, -+ 1o, = ¢ (2) - 5 (@) Ty () Ty -+ T i,y Lt
q°(z) = ¢ (z) ... ¢7 (z) where ¢7 (z) = gzyy,.-

PRrRoPOSITION 3.0.1 Let T = (T3, ...,T,) be a g-commuting tuple and consider the product

Ty Ty, .. Ty, where 1l < xz; < n. Suppose o € S, and q°(x) be as defined above. Then

qa(x) - H Uo,—1(5)20-103)

where product is over {(i,k) : 1 < i<k <m,o (i) > o '(k)}. In particular ¢° (z) does
not depend on the decomposition of o as product of transpositions.

Proor: We have
¢°(z) = ¢i(z)...¢7(z)

where ¢7(z) = ¢u4,- For a pair 4,k such that 1 < i < k < m let ¥ = o7'(k) and
i' = 07'(i). Let 0 = 7, ---7, and G; be as defined above. If i’ > k' then there are odd
number of transpositions 7, for 1 < r < m such that they interchange the positions of 4’
and £’ in the image of &, when we consider the composition 7,6,. And for 1 <i <k <m
if #/ < k' then there are even number of transpositions 7, for 1 < r < m such that they
interchange the positions of 7" and &’ in the image of &, when we consider the composition
7,.0,. For the first transposition in 7, that interchanges i and &', the corresponding factor
in ¢°(z) say ¢7(z) iS qq,,a,, for the second transposition that interchanges i and k', the
corresponding factor is gz, s,,, for the third transposition that interchanges i’ and &', the
corresponding factor is ¢s,,4,, and so on. But (¢z,2,,)”" = ¢s,,z, and so

qa(x) - H Q2,1 (1) %5103y

where product is over {(i,k) : 1 <i <k <m,o (i) > o' (k)}. O
Following similar arguements it is easy to see that if o € S, is such that (zq, -, z,) =
(.’L'g-fl(l), SR .Tafl(n)), then qa(.T) =1.

DEFINITION 3.0.2 Let H, £ be two Hilbert spaces such that A be a closed subspace of £
and let T, R are n-tuples of bounded operators on H, L respectively. If T is a ¢-commuting
tuple (i.e., T;T; = ¢;;1;T;, for all ¢, 7), then it is called a g-commuting piece of R.

DEFINITION 3.0.3 Let R be a n-tuple of operators on a Hilbert space M. The ¢g-commuting
piece R? = (R{,..., R%) obtained by compressing R to the maximal element M?(R) of
C(R) is called the mazimal g-commuting piece of R and MY(R) is called the mazimal
q-commuting subspace. The maximal g-commuting piece is said to be trivial if MY(R)
is the zero space.

The following result gives a description for maximal ¢g-commuting piece and is a conse-
quence of Lemma 2.1.3.
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LEMMA 3.0.4 Let R = (Ry,...,R,) be a n-tuple of bounded operators on a Hilbert space
M, Ki; = span{R*(q;; RiR; — RjR;)h : h € M,a € A} for all 1 < i,j < n, and K =
span Up_; Kij. Then MY(R) = K+ and MI(R) = {h € M : (§;;R;R; — R{R})(R*)*h =
0,1 <14,j<n,aec A}

COROLLARY 3.0.5 1. Suppose R, T are n-tuples of operators on two Hilbert spaces
L, M. Then the mazimal q-commuting piece of (Ry & T1,..., R, & T,) acting on
LOdMis (RI®T!,...,RLBTY) acting on LT1® M? and the mazimal g-commuting
piece of (R1 ®I,...,R, ®I) acting on LRI M is (R ®@I,...,RL ® I) acting on
LI M.

2. Let T, R are n-tuples of bounded operators on H, L, with H C L, such that R is a
dilation of T. Then HY(T) = L1(R)(\H and R? is a dilation of T1.

PRroOF: Follows from Lemma 3.0.4, Corollary 2.1.4 and Proposition 2.1.5. O

3.1 A ¢g-Commuting Fock Space

In this Section we would introduce g-commuting Fock space give two descriptions of it.
For any Hilbert space I, we have the full Fock space over K denoted by I'(K) as,

NK)y=Cokek® e -0k @,

We denote the vacuum vector 140 - - - by w. For fixed n > 2, let C* be the n-dimensional
complex Euclidian space with usual inner product and I'(C") be the full Fock space over
C*. Let {ej,...,e,} be the standard orthonormal basis of C*. For o € A, e® will denote
the vector e,, ®eq, @+ - ®e,,, in the full Fock space ['(C") and e° will denote the vacuum
vector w. Then the (left) creation operators V; on I'(C") are defined by

Vix=e¢,Qx

where 1 < i < n and z € T'(C") ( here e; ® w is interpreted as e;). It is obvious that the
tuple V. = (V4,...,V,) consists of isometries with orthogonal ranges and ) V;V* = I — I,
where I is the projection on to the vacuum space. Let us define q-commuting Fock space
I',(C") as the subspace (I'(C"))?(V) of the full Fock space. Let S = (Si,...,S,) be the
tuple of operators on I',(C*) where S; is the compression of V; to I',(C"):

Si = ProenyVilrgen)-

Clearly each V;* leaves I';(C") invariant. Observe that vacuum vector is in I';(C"). Then
it is easy to see that S satisfies > S;SF = [9— I (where 19, I{ are identity, projection onto
vacuum space respectively in I';(C*)). So V. and S are contractive tuples, S;S; = ¢;;S;S;
for all 1 <4,5 <n, and S;jz = V;*z, for x € [,(C").

Let U™ be defined on (C*)®" by

U;nyq(ewl ® « .. ® ewm) — qo-(‘rl")ezo-fl(l) ® P ® ezo_il(m) (3.1)
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on the standard basis vectors and extended linearly on (C")®™. As |g;;| =1for 1 <i,j <
n, U™ is unitary and U™ extends uniquely to a unitary operator on (C*)®". Let

(C)9" = {u e (C)®" : U™y =u Vo € Sp}

and (C")@ = C. From easy combinatorial arguements we observe that

dimension of (C")@n = ( n—l—z—i— 1 ) ;

LEMMA 3.1.1 The map defined from S,, to B((C")®") defined by o — U™ is a unitary
representation of the permutation group S,.

PROOF: Let @2, e, ®mleyl (C")®™,1 < x5, y; < n. Suppose there exists o € S,, such
that @, e, = @2, €z _, - Then (U’”’q(®m1€w@) ®iLiey,) = ¢ (z) and (S, eq;, U (®Ly €y, )) =

g I (y). Also
) y) = quo-(k)yo-(i) = H Qzyz;

where the products are over {(i,k) : 1 < i < k < m,o(i) > o(k)}. If we substitute
k=o0"1(7) and i = o (k') in the last term we get

—1 _ _
) HQsc 71(1 ).’.C 71(16’ (H qwa'fl(k’)wo'fl(i’)) ! = (qa(l')) !

where the products are over {(7, k") : 1 <4 <k <m,o7'(i') > o7 (k')}. So

o a1 — =)
¢’ (x) = (¢“ ()" = ¢ I (y).
The last equality holds as |g;;| = 1. This implies (U4(QI2 €, ), @ €y,) = (O €q;, U (R 1€4,))-
If there does not exists any o € S, such that ®" e, = 1€z, 1, then

(Ug1(®iL1€z,), ®i1ey,) = 0 = (R 1€:wU( ’31 1 (®i2ey,))

g

for all o' € S;,. So (U9)* = UMY for 0 € Sy, when acting on the basis elements of the
(C*)®™ | and hence is true for all elements (C*)®".

Next let 0 € S, be equal to 0,0, for some 01,09 € S,,,. We would show that UJ»? =
UMUT. Let €, = €3, ® ... ® €y, where ; € {1,...,n} for 1 < j < m. Let oll=m...7
and 05 = T,41...7; where for each 1 < ¢ < s, there exists k; such that 1 < k; < m —1
and 7; is a transposition of the form (k;, k; +1).

U tU (g, @ ... ® eg,) = U (g% (ac)ewg_l(l) R...0 €x 1.
2 2
= ¢"(2)q(z)es 1, @@l

(1) Ty 04 (m)

)

wheree, = ¢, ®...®e,,, i€, 2, = 7, S1(0) Butaso=m...7,.7,41...7s it is easy to see
that ¢7(z) = ¢ (2 )q (x) using the definition of q°(x). So we get

Usy Uy (€2, ® ... ® €5,,) = q”(x)eza_l(l) ®...0€, ., = Uy (es, ® ... ® €g,,)-
And hence U1 = U7 U, O

0102

In the next Lemma and Theorem we derive a formula for the projection operator onto
the g-commuting Fock space.
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LEMMA 3.1.2 Let P, be the operator on (C*)®™ defined by

1 m
Prn=— > U (3.2)

T 0ESm
Then Py, is a projection of (C*)®™ onto (C*)@"
PrROOF: First we see that
* 1 m,q\ * m,q __
R e
0ESH 0€ESm

Consider a permutation o’ € S,,.

P UM = m' Ut = — Z Umd = P, (3.3)

0ESH 0ESH
Similarly U}"?P,, = P,,. So P2 = P, and hence P, is a projection. d
THEOREM 3.1.3 ©%_,(C")@" =T, (C")

PROOF: Let Q = ©&%_,P,, be the projection of I'(C*) onto &°_,(C*)9" where P, is a
defined in Lemma 3.1. 2 We would show that ©2°_ (C")@" is left invariant by V;*. Let
R 16z, € € (C)®*",1 < x; <n. Then V;*{Pn(®,

es;)} is zero if none of z; is equal to i. Otherwise V;*{Pn,(®7. e;)} is some non-zero
element belonging to @;ﬁzo(@")@(m_l) because of the following: Suppose z; = 7 if and
only if j € {ry,...,r,}, and let Ay be the set of all o € S,, such that o~' sends 1 to
ry, 1 < k < p, then each element of A, is a composition 7p where 7 is the transposition
(1,7) and a permutation p which keeps 7 fixed and permutes rest of the m — 1 symbols
and viceversa. Let = (21,---,%y) and y = (z,-11), " -, Tr-1(m)). As V; are isometries
with orthogonal ranges,

Vi { P(®T 60,)} = V*{—ZU’“"I ™ es)}

g€Sm

- Y Uree)

TPEA

1 .
- % quliqp(y)v; { Z (ewp_l(nc) ® ewp—1(2) ®---® ewﬂ_l(%—ﬂ ®
k=1

TPEA
€opiiy ® Capr,y B a )}

p~1(1) k+1)

1 p
~ om quq/’(y)l/;*{ 2;4 (e ® €r,npy @ B, Ol
k=1 TPEAL

®€IP’1(%+1) @ empfl(m))}
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where ai(z) are constants and e;, ® --- ® €z, @ -+ ® e, denotes the term e; ® --- ®
€z, | ® €y, ® @ e, This shows that &%_,(C")@" is left invariant by V;*.

Taking R; = QV;Q we would show that R is g-commuting. For transposition (1, 2), let
us define U, ,y as &77_,UTy) where U(Ol’:’Q) = [ and U(ll”qQ) = I. Let ®_je,, € (C)®"1 <
a; < n. Using results of Lemma 3.1.2 we get

RRjR'w = QV;V;V°w = QU ,ViV;(®,eq;)

= QU 5{ei®¢; ® (®F1ea)} = Quiic; ® €; ® (V] ¢€a,)

= jSQV}V;‘Kaw = jSRjRiﬁaw.
and clearly &%_,(C*)9" = span{R"w : a € A}. So (Ry,...,R,) is a g-commuting piece of
V.

To show maximality we make use of Proposition 3.0.4. Suppose z € ['(C") and
(x, V¥qi;ViV; = ViVi)y) = 0 for all @ € A,1 < 4,5 < n and y € ['(C*). We wish to
show that x € ['j(C"). Suppose z,, is the m-particle component of z, i.e., = @m>0Tm
with z,, € (C*)®" for m > 0. For m > 2 and any permutation o of {1,2,...,m} we
need to show that the unitary U™ : (C*)®™ — (C*)®™, defined by equation (3.1) leaves
T, fixed. Since S, is generated by the set of transpositions {(1,2),...,(m —1,m)} it is

enough to verify U™(z,,) = z,, for permutations o of the form (i, + 1). So fix m and i
with m > 2 and 1 <7 < (m —1). We have

(@pp, V* (arVieVi — ViVi)V w) =0, (3.4)
for every 8 € A,1 < k,l < n. This implies that
(T, €* @ (qrier ® e — e R ex) @ €°) =0
for any o € A1, 3 € A™77L, So if
T = Za(s,t, o, B Qe; @ e ® €’

where the sum isover « € A*™! 3 € A" ! and 1 < s,¢ < n, and a(s, t, a, 3) are constants,
then for fixed a and g it follows from equation (3.4) that ga(k,l, o, 5) = a(l, k,«, 5) or
CIlka(k: la &, IB) = a(la ka «, B) Therefore for o = (7’7 i+ 1)

UOT_TLJI(a(k’ la «, ﬁ)eﬂf X € &® € &® 6/3 + a’(l7 ka «, ﬂ)ea b2y € ® € ® 6/3)
= qua(k,l,a,B)e* @ e @ ey @ €7 + gra(l, k, o, B)e* ® e, @ € ® €
=a(l,k,0,8)e* e Qe @€’ +alk,l,a,f)e*Qer @ e @ €P

This clearly implies U () = Ty O
COROLLARY 3.1.4 Foru e (CV)®",v € (CV)®,w e (C")®"
Pryiym{ Peri(u @ v) @ w} = Ppyiym{u ® Pim(v @ w)}

ProoF: If we identify Si4; and S;4 4, with the subgroups of Sgij1m such that o € Siy; fixes
last m elements of {1,2,---k+1+m} and 0 € 8§, fixes first k elements of {1,2,--- k+
I + m}, the Corollary follows easily using equation (3.3). O
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When g;; = 1 for all 4, j, we denote (C")@" by (C")®" and the g-commuting Fock space
[',(C™) by I's(C™). This I';(C™) is called the symmetric Fock space (or Boson Fock space).
The map U™ : S, — B(C")®" given by

U™ (o) = U™

gives the representation of S,, on B(C")®". Let U7 be denoted by U™* where ¢;; = 1 for
all 7, j. It is easy to see that for all ¢ = (¢;j)nxn, |¢ij| = 1, the representations are unitarily
equivalent. So there exists unitary W™ : (C")®™ — (C™)®™ such that

WAUTS = U™, (3.5)

This W™1 is not unique as for £ € C such that |k| = 1, the operator kW™ is also a
unitary satisfying equation (3.5). We will give one such W™ explicitely.
For m € N, y; € A define W™ over (C")®" as

W ey, ®@...Qey,) = q(T_l)(ac)ey1 Q...Qey,.

where x = (x1,-- -, x,,) is the tuple got by rearranging (y1,- - -, ¥,,) in nondecreasing order
and 7 € S, such that y; = z.(;). From Proposition 3.0.1 its clear that q(T_l)(x) does not
depend upon the choice of 7 and

WU (ey, @ ... @ €y,) =W™(ey _,,®...Q¢y _, )
= q(UﬁlT)fl(x)e ® Re
ya'_l(l) e Yy
7'71 g
= ¢ (z)ey, 1, ®--- @ey,

~1(m)
~1(m)
o 771
= ¢ (@), Trm))dT D (@)ey, 1, @y
= UM N (2)e, ®... @€, =UMW™ (e, ®...Qe,,).
So, Wmayms = Um4™4, Denoting the unitary operator &2°_,JW/™? on I'(C") by W?

where W% = I, we get
WiPrg(cr) = PryenW*

and for ¢ and ¢' we get intertwining unitary W¢ (WW9)* such that
W (W)* Prycry = Pron W7 (W),
Under Schur product Q@ = {q = (¢ij)nxn : |¢i;| = 1} forms a group.

PROPOSITION 3.1.5 The map from Q to B((C™)®™) given by q — W™ is a unitary
representation of Q.
PROOF: From the definition of W™9 we get

1

Wmad = e and (W)L = e

for g, € Qand ¢! = (qigl)nxn. When ¢ is the identity element of O, all entries g;; = 1
and therefore W1 is the identity matrix. Hence the Proposition holds. O
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Let (C™)@" be defined as
(CM@" = {u e (CM®" : U™ (u) = sign(o)u Vo € Sp}
then the antisymmetric Fock space or Fermion Fock space T',(C") is defined as
[a(C") = @ (CM)".

We observed before that the symmetric Fock space is the ¢-commuting Fock space where
¢;; = 1. But the antisymmetric Fock space is not equal to any of I';(C"). But consider
the case when ¢ = (¢ij)nxn is such that ¢;; = —1 for 1 < ¢ # j < n. Then antisymmetric
Fock space T',(C") is a proper subset of [',(C™) because of the following: Clearly (C")@"
is the set of all u € (C")@" which are orthogonal to those P,,e’ for which there exists
s,t€{1,2,---,m},s # t such that 3, = ; (P, is given by equation (3.2)).

Next we would give another realization of the standard tuple S. Let P be the vector
space of all polynomials in g-commuting variables z1,..., 2, that is z;2; = ¢;;2;2;. Any
multi-index k is a ordered n-tuple of non-negative integers (ki,...,k,). We shall write
ki+...+k, as |k|. The special multi-index which has 0 in all positions except the 7** one,
where it has 1, is denoted by e,. For any non-zero multi-index k& the monomial 2% ... zk»
will be denoted by 2% and for the multi-index k£ = (0,...,0), let 2% be the complex number
1. Let us have the following inner product with it. Declare z£ and 2! orthogonal if & is not
the same as [ as ordered multi-indices. Let

kyl- k!
EZ: 1 n
12| TR

Note that the following inner-product is also refered in [BB] in Definition (1.1) for general
case. Now define H' to be the closure of P with respect to this inner product. Define a
tuple S’ = (S],...,S!) where each S! is defined for f € P by

Sif(z1y-y2n) = 2zif (215 -5 2n)

and S; is linearly extended to H'. In the case of our standard g-commuting n-tuple S of
operators on [',(C"), when k = (ki,...,ky) let S& = S ... S* and when k = (0,...,0)
let SE=1.
Using (3.2) and the fact that V;’s are isometries with orthogonal ranges for k£ =
(k1y- -, kn), |k| = m we get
1 Peev k!
IS5l = (Paie Vo) = (g 30 Ui, Vi) = st
0ESH
When we denote VEw as er, ® ey, ,1 < z; < n, then to get the last term of the
above equation we used the fact that there are k{!---k,! permutations ¢ € S,, such that
€, @ Qg =€, @By, - Next we show that the above tuples S’ and S
are unitarily equivalent.

PROPOSITION 3.1.6 Let S' = (S),...,S") be the operator tuples on H' as introduced above
and let S = (Sh, ..., Sy) be the standard q-commuting tuple of operators on I'y(C*). Then
there exists unitary U : H' — H such that US] = S;U for 1 <i <n.
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PROOF : Define U : P — I',(C") as

k[<s |k|<s
where by2E € P, by, are constants. As ||25]| = ||SEw|| we have
1> 0217 = D 1Bl 1251 = Y 1wl 1S"wl1” = 11 ) beS*wl)”
|k|<s |k|<s |k|<s |k|<s

So we can extend it linearly to H' and U is a unitary.

USZ{(Z bz) = Ulz Z bezk) = qfl - g5 Z bp2kTe)

|k|<s |k|<s |k|<s
= &g Y St = S bStw)
|k|<s |k|<s
|k|<s
ie., US = SU for1 <i<n. O

For any complex number z, the z-commutator of two operators X, Y is defined as:
(X,Y], = XY - 2YX.

The following Lemma holds for S as S’ and S are unitarily equivalent and the same
properties have been proved for S’ in [BB].

LEMMA 3.1.7 1. Each monomial S&w is an eigenvector for >S5S — I, so that it is a
diagonal operator on the standard basis. In fact,

is*s(sk Z” k+61w||2 w
= Istwl2 ) =

=1

Also > S;S; — I is compact.

2. The commutator [S}, S;] is as follows:

(57, 5,18k = (Hﬁmwll2 1St

IS5l [IS* w2

) ﬁﬁw, when k; # 0.

If k; = 0, then [S], Si]ﬁﬁw — S;*SZ-QE — Mﬁk

llSkw|?

3. S}, Sjlg;; 1s compact for all 1 < 4,5 < n.
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3.2 Dilation of ¢-Commuting Tuples

Take # = I'(C*) ® Ap(H), and define an operator K : H — H as in equation (2.3). (this
operator was used for g-commuting case by Arias, Popescu [AP1], Bhat and Bhattacharyya
[BB]).

LEMMA 3.2.1 Suppose T = (T,---,T,) is a pure g-commuting tuple on a Hilbert Space
H and let K be the operator introduced in equation (2.8). Then there exists a Hilbert space
IC such that (S1 ® Ik, ..., S, ® Ix) is a dilation of T and dim (K) = rank (Ar).

ProoOF: K(h) = cie* @ Ap(T*)*h for h € H. Let B™ denote the set of all « € A™
such that a; < ap < -+ < - So,

K(h) = Z Ze%—l(n B ® oy @ Ar(Ta, 1y Ty yg)P

m=0 o,a

where the second summation is over o € S,,, and o € B™. Further

K(h) = 3% a1y @ @ea_,, ®(07(@) T Ap(Tay - Ta,)'h

m=0 o,a
- Z an(a)e%—l(l) ¥ €, —1(m) ® AZ(Tal o To,) h
m=0 o,a
= Z Z (m!)Pmeoq & Qea, ® A1(7—1041 o 'Tam)*h'
m=0 acB™
So the range of K is contained in H, := T',(C") ® Ap(H). O
In other words now H can be considered as a subspace of H,. Moreover, S = (S; ®
I,...,S,®1I), as a tuple of operators in H, is the standard g-commuting dilation of

(Ty,...T,). More abstractly we can get a Hilbert space K such that # can be isometrically
embedded in [',)(C*") ® K and (51 ® I, ..., S,®Ix) is a dilation of T and span{(S*® Ix)h :
heH,acA}= I',(C*) ® K. There is a unique such dilation up to unitary equivalence
and dim (K) = rank (Ar).

Let C*(V), and C*(S) be unital C*-algebras generated by tuples Vi, - - -,

V. and Sy, ---,Sp, I (defined in the Chapter 1) on Fock spaces I'(C") and I'j(C") respec-
tively. For any o, 8 € A, V(I — 3. V;V;*)(V?)* is the rank one operator z — (e, z)e®,
formed by basis vectors e®, e and so C*(V) contains all compact operators. Similarly we
see that C*(S) also contains all compact operators of I',(C*). As V*V; = §;;1, it is easy to
see that C*(V) = span {V*(V?)*: a, B € A}. As gjj-commutators [S}, Sjlq;; are compact
for all 4, j, we can also get C*(S) = span {S*(S%)*:a,s € A}.

Consider a contractive tuple 7 on a Hilbert space H. For 0 < r < 1 the tuple rT =
(rTy,...,7rT,) is clearly pure. If T is g-commuting, by considering C*(S) instead of C*(V),
and restricting the range of K, to I';,(C") ® Ap(H), and taking limits as 7 increases to 1
as for the linear map X — K(X ® I)K, (similar to that in page: 16) we would get the
unique unital completely positive map ¢ : C*(S) — B(#), (also see [BB]) satisfying

$(S*(S°)) =T*(T°); @, BeA (3.6)
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DEFINITION 3.2.2 Let T be a ¢g-commuting tuple. Then we have a unique unital com-
pletely positive map ¢ : C*(S) — B(H) satisfying equation (3.6). Consider the minimal
Stinespring dilation of ¢. Here we have a Hilbert space H; containing H and a unital
s-homomorphism 7, : C*(S) — B(H,), such that

¢(X) = Pym(X)ls VX € C*(S),

and span {m(X)h : X € C*(S),h € H} = Hi. Let S; = m(S;) and S = (S4,...,5).
Then S is called the standard q-commuting dilation of T.

Standard g-commuting dilation is also unique up to unitary equivalence as minimal
Stinespring dilation is unique up to unitary equivalence.

THEOREM 3.2.3 Let T be a pure tuple on a Hilbert space H.

1. Then the mazximal q-commuting piece V! of the minimal isometric dilation V. of T
is a realization of the standard q-commuting dilation of T if and only if Ap(H) =
Ap(HU(T)). And if Ap(H) = Ap(HAU(L)) then rank (Arp) = rank (Arpe) = rank
(Ay) = rank (Aya).

2. Let the minimal isometric dilation of T be V. If rank Ar and rank Are are finite
and equal then V% is a realization of the standard g-commuting dilation of TY.

PrROOF: The proof is similar to the proofs of that of Theorem 2.1.11 and Remark 2.1.13.
O

If the ranks of both Az and Ags are infinite then we can not ensure that Ap(H) =
Ap(H4(T)) and hence can not ensure the converse of second part of the Theorem 3.2.3-1, as
seen by the following example. For any n > 2 consider the Hilbert space Ho = I',(C") @ M
where M is of infinite dimension and let R = (S$1® I,---,S, ® I) be a g-commuting pure
n-tuple. Infact one can take any R to be any g-commuting pure n-tuple on some Hilbert
space Ho with Ag(H,) of infinite dimensional. Suppose Py, = (pfj)nxn for 1 < k <n are
n X n matrices with complex entries such that

pij{tk ifi=kj=k+1 andp”-:{t” ifi=n,j=1

0 otherwise Y 0 otherwise

where #;’s are complex numbers satisfying 0 < |tx] < 1. Let H = Ho @ C*. Take T =
(Ty,---,T,) where Ty for 1 < k < n be operators on H defined by

Tk:<Rk Pk) for1 <k <n.

So T is a pure tuple, the maximal g-commuting piece of T is R and HY(T) = Ho (by
Corollary 3.0.5). Here rank (Agq¢) = rank (Ag) = oo but Ap(H) = Ag(He) & C".
Consider the case when T is a ¢-commuting tuple on Hilbert space H satisfying
M T = 1. As C*(S) contains the ideal of all compact operators by standard C*-algebra
theory we have a direct sum decomposition of 7; as follows. Take H; = Hic ® Hin
where Hic = span{m (X)h : h € H,X € C*(S) and X is compact} and H;y is the
orthogonal complement of it. Clearly H;c is a reducing subspace for m;. Therefore
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m = mc ® mpy where mo(X) = Py, 71 (X) Py, mn(X) = Py ym1(X)Py,,. Also
m1c(X) is just the identity representation with some multiplicity. Infact H;c can be writ-
ten as Hic = [',(C") ® Ar(H) (see Theorem 4.5 of [BB]) and m5(X) = 0 for compact
X. But Ar(H) = 0 and commutators [S}, S;] are compact. So if we take W; = m5(S;),
W = (Wy,...,W,) isa tuple of normal operators. It follows that the standard g-commuting
dilation of 7" is a tuple of normal operators.

DEFINITION 3.2.4 A g-commuting n-tuple 7" = (T3,...,T,) of operators on a Hilbert
space H is called a g-spherical unitary if each 7; is normal and TVI} + -+ -+ 1,1 = 1.

If H is a finite dimensional Hilbert space and 7 is a g-commuting tuple on H satisfying
M T;Tr = I, then T is a g-spherical unitary because each 7; would be subnormal and all
finite dimensional subnormal operators are normal (see [Ha|).

THEOREM 3.2.5 Let T is a q-commuting contractive tuple on a Hilbert space H. Then the
mazimal g-commuting piece of the standard noncommuting dilation of T is a realization of
the standard g-commuting dilation of T .

PROOF: Let S denote the standard g-commuting dilation of T on a Hilbert space #; and
we follow the notations as in beginning of this section. As S is also a contractive tuple, we
have a unique unital completely positive map 7 : C*(V) — C*(S), satisfying

n(Ve (VP = 548"  a,B €A

It is easy to see that v = ¢ on. Let unital *-homomorphism m : C*(V)) — B(H,) for
some Hilbert space Hs containing H;, be the minimal Stinespring dilation of the map
mon : C*(V) — B(H;) such that m o n(X) = Puyma(X)|ay, VX € C*(V), and
span {m(X)h: X € C*(V),h € H1} = Ho. We get the following commuting diagram.

B(H2)
\:
B(H1)
s \

c(V) — C*(S§) — B(H)
n )

2

where all the down arrows are compression maps, horizontal arrows are unital completely
positive maps and diagonal arrows are unital x-homomor- phisms. Let V= (Vl, ceey Vn)
where V; = m(V;). We would show that V is the minimal isometric dilation of T. We
have this result if we can show that my is a minimal dilation of {» = ¢ o 7 as minimal
Stinespring dilation is unique up to unitary equivalence. For this first we show that S =
(m1(S1), ..., m(S,)) is the maximal g-commuting piece of V.

First we consider a particular case when T is a g-spherical unitary on a Hilbert space
H. In this case we would show that standard g-commuting dilation and the maximal
g-commuting piece of the minimal isometric dilation of T is itself. We have ¢(S*(I —
$°5:85)(SP)*) = (I — " T T7) (TP)* = 0 for any «, B € A. This forces that ¢(X) = 0 for
any compact operator X in C*(S). Now as the g;;-commutators [S}, S;l,; are all compact
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we see that ¢ is a unital *-homomorphism. So the minimal Stinespring dilation of ¢ is itself
and standard g-commuting dilation of T is itself. Next we would show that the maximal
g-commuting piece of the minimal isometric dilation of 7' is T. The presentation of the
minimal isometric dilation which we would use is taken from [Pol]. The dilation space #
can be decomposed as H = H@® (I'(C*) ® D) where D is the closure of the range of operator
D defined in page 14. At some places we would identify H @ - -- & H with C* ® H so that
n copies
(hi,...,hy) =D €; ® h;. Let the minimal isometric dilation V; be as given in equation
(2.2). We have
TT; = T;T, and T,T, = ¢, TTNL < i,j < n.

Also by Fuglede-Putnam Theorem ([Ha] [Pu])
;T = q,;1iT; = ;i TT; and T7T7 = g 17T, V1 <1i,j<n.

As Y. T;T;y = I, by direct computation D? is seen to be a projection. So, D = D?. Note
that ¢;;q;; = 1, i.e., g;; = qj;- Then we get

D(hy, ..., hy Ze,@TT* — ;17 hy) ZeZ®T ii)

1,J=1 1,5=1

where h;; = T h; —q; T h; = T} h; — qijT7hy for 1 < 4,5 < n. Note that h; = 0 and

As clearly # C H9(V), lets begin with y € H+ N HI(V). We wish to show that y = 0.
Decompose y as y = 0@ Y .5 €% ® Yq, With y, € D. We assume y # 0 and arrive at a
contradiction. If for some «, y, # 0, then (W ® ya, (Ea)*y) =(e* ® Yo, ¥) = (Ya» Ya) # 0.
Since (V*)*y € HI(V), we can assume ||yo|| = 1 without loss of generality. Taking §,, =
ZaeAm e* ® Yo, we get y = 0D Dy>0Ym- D being a projection its range is closed and as
yo € D, there exists some (A1, ..., hy,) such that yo = D(hy,...,hy). Let £5 = g = yo and

T = Z” 1€ ® D(e; ® hij). Further denoting [[, ., ;< @ivi, DY Pm, for m > 1 let

n

Ty = Z 6, Qe Ve Q
115stm—1,5,5=1
m—1
D(ej ®pm 1 H qzszIzk])T* - T::n lhzj)-
k=1

So &, € (C*)®" @D for all m € N. As T is a g-commuting n-tuple and D is a projection,
we have

1<i<j<n 1<i<j<n
=+ Z D(ei (24 T]h” — jSej ® Tzhm) + Z (62' & D(ej X h”)
1<i<j<n 1<i<j<n

—gjie; @ D(e; @ hyj))
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1,j=1 1,j=1

= Dz(hl,...,hn)-i— Zez@D(6J®h’U) :f()-i-i‘l.

iajzl

So by Proposition 3.0.4, (y, %y + 1) = 0 . Next let m > 2.

n n m—2
Z Vi - V;'m—l{z (qu‘/;‘/; - V}V;)pm—l(H qikj)
11y eybm—1=1 i,j=1 k=1
(T3, - T3, hivii)}
n n m—2
= Y e®..06,,0) Doai(]] )
11, bm—1=1 3,j=1 k=1

(gijes @ TYTITY T by — € @ T T hiy_yj))

n m—2
+ > (][ eii){aiiei ® D(e; @ T, T} . Ty i)
ij—1 k=1

PYORY = )\

n

n m—2
= — Z e ®- Qe {me—l(H Tirj)
j=1 k=1

21 yeensbm—1=1
n

D(e;®T ... T, Lhi, )+ D, € ®..®¢, 8

21 5eenytm—1=1

n m—2
() e ®D(e; ® qijpmas (] [ i) T Tr - T7 ,hiuij)

ij—1 k=1
n m—2
Y ei®@D(e; @ pma([ [ 4:) (T - T2 hi i)}
ij=1 k=1

(in the term above, i and j have been interchanged in the last summation)

n n m—2
= - Z €y @ Q€ ,06Q {Z pm—z%is(H iriGinj)
11 yeenytm—2,0=1 j=1 k=1
n n
D(6]®7;j1;;72h19)}+ Z €i1®...®€im71 X Zei®D(ej
21 5eenybm—1=1 3,j=1

m—2

Apm1tiy (| [ @) T3 T T iy = i T T T T B)

Im—2" tm—1
k=1

m—2
—pm ([ [ ) @TS T3 T b = @i GTT T T B0))Y
k=1

(in the term above, index i,, ; has been replaced by i in

the first summation)
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n

-y

ei1®..

m—2

‘@ €y ® € ® Dmal H Qi)

21 yeenylim—2,8,J=1 k=1
Die;®T; ... T;, _,hij)
n
+ Z €, X Ve, 6
i1 yoengim 1, =1
m—1
Pt (][ 4i05)D(e; @ T, ... T}, hij) = =Fmr + &im.
k=1

Hence by proposition 3.0.4, (y, T, 1 —

n

Zm) = 0. Further we compute ||Z,,|| for all m € N.

m—1

1Znl> = (>, e ®---®e, , ®e@D(e;@pm(] ] Giitis)
Lo 150, =1 k=1
n
Tr . Th hig), Y, e @ ®ep Qe ®
W yeenstl i =1

m—1
D(ey ® pmi(] [ @i 0di, i) T3 - T _ hary?))

k'=1

n
= Z <ZD e] ®pm 1 ququ'tk] . Crzm lhzj)a

11, mim—1,0=1 j=1
ZD €4 & Pm—1 quk/z%k/] : sz lhzj’»

n

>

i1y —1,i=1

k'=1

Zey & Pm—1 H‘quzu : sz lhzj)a

n m—1
Z €4 02y pm—l(H qzkrqukl]')T:; co El—lhij’>
j'=1 k'=1

n

P>

ily--yim—lai 1

* * *

'Lml Zl

n

- ¥

1 yeeerime 1,0, =1
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N} me . quk,zq,k,, ej @T ... Ty hij)

k'=1

pm 1 HQZk’LQZk] ZE T} 11" fT:;n 1h1j_

m—1

G Ty T i) P (]| it )T - - T Bi)

n

= Z<hwh >

> (T,

k'=1
n

LI, T b hy).
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Let 7 : B(H) — B(H) be defined by 7(X) = Y | T,XT; for all X € B(H), and let
7™ My, (B(H)) — M, (B(H)) be defined by 7™(X) = (7™(Xij))nxn for all X = (X;j)nxn €
M,(B(#)). As T is a contractive completely positive map, 7™ is also a contractive com-
pletely positive map.

So we have 7™(D) < I and

12wl = > E™ D) ety -y B, (et hen))

IA
5
=

L) hrn)a (h’T17 DRI hrn)>

r=1
= Z (hriy hyi) = Z (T3 by = @ T 0y, T by — @, T D)
ri=1 i,r=1

= > {{T;Tihe = T} Tihi, hy) — (T Tohy — T Tohi, hi) }

i,r=1
= iulr - iT:Ehm hr> - i(i T;*Trh/r - hia hZ>
r=1 =1 =1 r=1

= 2) (b~ T'Tihihy)
r=1 =1
= 2(D(h1,...,hy), (b1, ..., hy)) = 2||F0||* = 2.

As (y, Zo+71) = 0 and (Y, Tpy—1 —Zrm) = 0 for m+1 € N, we get (y, Zo+2,,) = 0 form € N.
So 1 = (Jo, Yo) = {Jo,To) = —{Ym,Tm). By Cauchy-Schwarz inequality, 1 < ||Gm||||Zm]| ,
which implies % < ||gm|| for m € N. This is a contradiction as y = 0 ® ®>00m is in the
Hilbert space H. This proves the particular case.

Using arguements similar to that of Theorem 2.2.1 of [BBD], the proof of the general
case (that is when 7} is not necessarily normal) and the proof of “V is the minimal isometric
dilation of 77, both follows . Il

3.3 Universal Properties of Standard ¢-commuting Di-
lation

Suppose T’ is g-commuting contractive tuple on H and S is its standard g-commuting
dilation. Let C*(S) denote the unital C*-algebra generated by S. Then the linear map

from C*(S) to B(#) such that Sa(sﬂ)* > PHSQ(Sﬂ)*\H = T*(T?)* is a unital completely
positive map. Now we check some universal properties of standard g-commuting dilations
using methods employed by Popescu in Section 2 of [Po4]. Note that if 7 is the Stinespring
dilation associated with the standard g-commuting dilation S then
SiS; = #(S7S))
e span{#(S*(S")*): a, B € A}
= span{Sa(SB)* ca, B € A}



3.3. UNIVERSAL PROPERTIES 43

PROPOSITION 3.3.1 Suppose S on Hilbert space Hi is the standard g-commuting dilation
of a g-commuting contractive tuple T.

1. Consider a unital C*-algebra generated by the entries of the tuple d = (dy,- -, dy),
and let that be denoted by C*(d). Assume that d also satisfy for 1 <i,j <n

did; € span{d®(d®)" : o, B € A}.
Further assume that if for every i, j

S8 =3 Fap59"(3°)" for some kap,; € C
of

then djd; = Z ko p,i;d*(d°)*
,p
Let there be a completely positive map o : C*(d) — B(H) such that o(d*(d”)*
d;

T(TP)*. Then there is a *-homomorphism form C*(d) to C*(S) such that d; — S;
forall1 <11 <n.

2. Suppose w : C*(T) — B(K) is a x-homomorphism and 0 : C*(8) — C*(T) be the
completely positive map obtained by restricting the compression map (to B(H)) for
B(Hy) to C*(S). Assume the minimal Stinespring dilation of w00 to be & such that
100(X) = P (X)|e. Then (7(S1),--+,%(Sy)) is the standard q-commuting dilation
of (w(T), - -+, m(Th))-

PROOF:

1. Note that )
C*(d) = span{d®(d’)* : a, B € A}.

Stinespring decomposition of g gives o(X) = Pyn(X)Py where 7 : C*(d) — B(K)
for some Hilbert space K such that 7(d}) leaves #H invariant and

K =span{n(d®)h: h e H,a € A}.
Define linear map U : K — H; satisfing

U(n(d*)hg) = S he.

U is a unitary operator as for h, € H

I7( D dhall® = > (o((d)*d*)ha, he)

lo|<m e, |B|<m
By o ~a
= ) S8 hahg) =1 DY S hall?
lal,|8|<m la|<m

Also one can see without much effort that Un(d;) = S;U and hence the map form

C*(d) to C*(S) given by X +— Un(X)U* is a *-homomorphism satisfying d; — S;
foralll1 <:i<n.
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2. By applying (1) of this Proposition to 7 o # we can prove the final statement of the
Proposition.

O

THEOREM 3.3.2 Let T be qg-commuting contractive n-tuple on H and S be its standard q-
commuting dilation on the space H1. Suppose w1 and Ty are two x-homomorphism of C*(T)
on Hilbert space K1 and ICo respectively. Let 0 be as defined in the previous Proposition.
If X be an operator such that Xm1(Y) = m(Y)X for all Y € C*(T), and 71 and 75 are
the minimal Stinespring dilations of m1 o 0 and my o O respectively. Then there exists an
operator X such that X7, = 79X and X'P,Cl = P,ch.

PROOF: We get for Y € C*(T)

m(Y) 0 00y (00 m(Y) 0
0 WQ(Y) X 0 - X 0 0 7T2(Y) '
Now the proof follows from Arveson’s commutator lifting Theorem (Theorem 1.3.1 of
[Arl]). O

COROLLARY 3.3.3 Let T be q-commuting contractive n-tuple on ‘H and S be its standard
q-commuting dilation on space H. If X € C*(T)' then there exists a unique X € C*(S)'N
{Py} such that Py X|y = X. Also the map X — X is a x-isomorphism.

PROOF: The proof follows from direct application of Arveson’s commutator lifting Theo-
rem (Theorem 1.3.1 of [Arl]). O

3.4 Distribution of S;+S; and Related Operator Spaces

Let R be the von Neumann algebra generated by G; = S; + S; for all 1 < 7 < n. We
are interested in calculating the moments of S; + S} with respect to the vaccum state
and inferring about the distribution. The vacuum expectation is given by €(7T) = (w, Tw)

where T' € R. So,

. . 0 if n is odd
e((Si + S7)") = (w, (Si + 5])"w) ={ Cn = z1-(2) otherwise

PRERE

where C), is the catalan number (refer [Com]). This shows that S; + S has semicircular
distribution similar to the ones considered by Voiculescu ([Vo]). Further this vaccum
expectation is not tracial on R for n > 2 as

€(G2G2G1Gr) = (w, (52 + 53)(S2 + S3)(S1 + ST)(S1 + ST)w)
— (w0, (5255515, + S55,S1 S )w) = 1

€(GoG1G1G2) = (w,(Sy+ S3)(S1+ S7)(S1 + S7)(Ss + S5)w)
1
= (w, (S;S{Sng + S;SleSg)w) = 5
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We would now investigate the operator space generated by G;’s, using notions of the

theory of operator spaces introduced by Effros and Ruan [ER]. Here we follow the ideas of
[BS2] and [HP]. For some Hilbert space H and a; € B(H),1 < i < n define

n n
1 1
(v, -+, @) lmae = max(| Y aiafl|2, | Y ajail]?).
i=1 i=1

Let us denote the operator space
(

r 0 0 "1

Tn

ri,---,rp, € C» C M, ® M,
rm 0 o0 0
\

0

/
one has

by E,. Let {e;; : 1 <4,j < n} denote the standard basis of M,, and §; = e;; @ ey;. Then

=1

n

| Zai ® 5i||B(’FL)®Mn = [[(a1, - -, an)lmas-
THEOREM 3.4.1 The operator space generated by G,
to F,.

1 <1 < n is completely isomorphic
PROOF: Its enough to show that for a; € B(#),1 <4 < n we have

”(Ch, T, an)”maw

<

n
1> ® Gillgor, ey < 2Ml(a1, @) lmas
1=1

1> @0 Sillgerer = 13 (0@ D1® )l
=1 =1
< IS wat S S o < 1S
=1 =1 1=1
Similarly
1> 00 Silorey = 13016 8@ ® Dllor, o
1=1 =1
< 1> alall.
=1
So

12_ e ® Gillagr,or) < 2l(@1; -+, @n) -
i=1
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Let S denote the set of all states on B(#). Now using the fact that ¢(G,G;) = (w, S;S;w) =
dij we get

Iy a® GZ-||,2}~{®F oy = sup(T ® e)[( E a; ® G;)" E a; @ Gj
> o) >
j:

i=1 TES i=1

n n
= sup7(}_aja;) =) _ajaillg
i=1

TES i—1

Using similar arguements

n n
13 0@ Gillr o = 11D a5
i=1 =1



Chapter 4

Minimal Cuntz-Krieger Dilation

In this Chapter we realize the generators of Cuntz-Krieger algebras through dilation and
this helps us in understanding these algebras and their representations.

DEeFINITION 4.0.1 Let I and £ be two Hilbert spaces such that K is a closed subspace
of £ and T, R be n-tuples of operators on ', L respectively. Let A be a 0 — 1-matrix.
When T satisfies A-relations (see Definition 1.0.4), a minimal dilation R of T is said to be
manimal Cuntz-Krieger dilation if R consists of partial isometries with orthogonal ranges
satisfying A-relations and

RiR;=T-) (1—ay)R;R;. (4.1)
7j=1
Each dilation generates a Cuntz-Krieger algebra 0,4 extended by compact operators.

4.1 Maximal A-relation Piece and A-Fock Space

DEFINITION 4.1.1 Assume matrix A to be 0 — 1-matrix. For a tuple R on a Hilbert space
L, when polynomials are pgm) = 212m — Gmz12m, (I,m) € {1,---,n} x {1,---,n} =T we
call the maximal piece with respect to {pum)} @ m)ez as the mazimal A-relation piece and
LP(R), RP is denoted by EA(ﬁ),ﬂA. The space La(R) is called the maximal A-relation
subspace.

LEMMA 4.1.2 For a given 0 — 1-matriz A let R = (Ry,...,R,) be a n-tuple of bounded
operators on a Hilbert space M, K;; = span{R*(a;jRiR; — RiR;)h : h € M, € ]\} for
all 1 <i,j <n, and K =3panU},_; Kij. Then My(R) = K+ and M4(R) = {h € M :
(ai;RER; — RER;)(R*)*h =0,V1 < i,j < n,a € A}.

COROLLARY 4.1.3 Let R and T be two n-tuples of bounded operators on M and H re-
spectively.

1. The mazimal A-relation piece of (R ®Ty,-++, R, ®Ty,) is (R TH, -+ RA®TA)
acting on M ® Ha and the mazimal A-relation piece of (R ®1,---, R, Q1) acting
on MH is (RA®I,--- RARI) on My H.

47
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2. Suppose H C M and R is the dilation of T then R is the dilation of T4 with
7‘[,4(1) = MA(E) NH.

The above Lemma and Corollary follows from Lemma 2.1.3, Corollary 2.1.4 and Proposi-
tion 2.1.5.

We need to introduce the following new type of Fock space for our further study of
representations Cuntz-Krieger algebras and dilations.

DEFINITION 4.1.4 For a given A = (a;j)nxn as above, the A-Fock space is defined as the
subspace of I'(C™) which is the maximal A-relation subspace (I'(C"))4 (V) with respect to
the left creation operators. It is denoted by ' 4(C™). We also define n-tuple S = (Si, - - -, Sp)
where S;’s are the compressions of left creation operators V;’s on to I'4(C").

Similar Fock spaces was also studied by Muhly [Mu], Solel and others.
Given A-relations we denote {ov € A : either |o| =m > 1 and aq;a,,, =1 for 1 <i <
m —1, or |a| < 1} by Ca. Here we give another description of the A-Fock space.

PROPOSITION 4.1.5
PA(Cn) = Wz{ea NS CA}

PrROOF: Let a € A™ be such that there exists 1 < k < m — 1 for which aq,q,,, = 0.
Denoting ay, a1 by s,t, it is clear that

e € span{ V" (V,V; — as,V,Vi)h : h € T(C"), v € A},

which implies that such e* are orthogonal to PAgC”). Where as if forall 1 < k£ < m —
1, Gapay,, =Llthenforalll <4, <m-—-1,8€Ahel(C")

<ea’Kﬂ(V;Vj - CLUV;V})}D =0,

and so such e® € I'4(C"). Hence by taking completions the Proposition follows. g
Suppose e* € T'4(C"), and when || > 0 let o = (o, -+, Q). Then

o __ a __ € if ‘a| =0
Sie® = Prcn)Vie® = { Ui, € @ e*  if ja| > 1
0 if |a| =0
Sie® = Ve = Oion W if o] =1

61'0416042 ®"'®eam lf‘a| > 1’

0 if la] =0
5ia1€a if |Ck| =1.

w if |a| =0
i, €*  if || >'1

$&w:{ mﬂ&$a={

PROPOSITION 4.1.6 The mazimal A-relation piece of a n-tuple of isometries with orthog-
onal ranges is a n-tuple of partial isometries with orthogonal ranges.
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PrOOF: Let V = (‘A/l, . ,Vn) be a n-tuple of isometries with orthogonal ranges on a
Hilbert space K. Fix matrix A = (@;j)nxn as above and denote the projection onto K4(V)
by P. Any k4 in (V) can be written as k4 = o—1Vpky ® ko for some k, € K, 1<p<n
and some ko € (1), ‘A/},IA/;,*)IC. Clearly kg is in K 4(V) using Lemma 4.1.2. By the same
Lemma one observes that other k,’s also belong to K4 (V) as for k € ,a € A

{ky, VE(ViV; = aigViVi)k) = (Voky, V, V" (ViV — a3 ViVi) k)
= (Dg=1Vekq @ ko, V,V (ViVj — a;;ViV;)k)
= (ka, VY (ViV} — a;ViVj)k) = 0

The above calculation uses the fact that ranges of Vq’s and [ — > . V;V* are all mutually

orthogonal. Next we show that

PViky = Viko, (4.2)
PVZ’Vpkp = aipvif/})kp (4.3)

Equation (4.2) follows from (Viko,zﬁ(ffs‘}; — astf/sf/t)k) =0, forall B € A,1 < s,t <
n, k € K (since ko is orthogonal to range of Vi1 <t< n). When a;, = 0, we have
PVV,k, = P(V;V, — a5, ViVy)k, = 0 = a;,V;V,k,. So it is enough to show for a;, = 1 that
ViVik, € Ka4(V). When |a| > 1 or |a| = 0, it easy to see that for 1 < s, <n, k€K

(ViVhiy, V7 (VaVi — Vi Vi)k) = 0 (44)
as Vy’s are isometries with orthogonal ranges and k, € K4 (V). When |a| = 1,

<Vivpkp’ Vz(Vth - aptf/pf/t)@ = <‘A/pkpa (Vth - aptvpf/t)k)
= (@51Viks © ko, (Vi — apVVi)k) = 0.
And also clearly equation (4.4) holds in all other cases when o = 1. So equation (4.3) holds
and we have
VAWVAiVika = PVVIPVika

= PV P(@,ViVyky © Viko)

= PVl (@105 ViVoky © Viko)

= @14y, PViVpk, ® PViky

= PViky = Viky.

So \A/iA’s are partial isometries. The next assertion of the Proposition that for 1 <+ #7<mn,
range of V;# is orthogonal to range of V/* can be proved in the following way:

(VAYVAka = Vi PVika
=V PVi(®p_,Vypkp @ ko)
= V;-*(EBpaipV;V;,kp D V;ko) =0
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COROLLARY 4.1.7 The following holds for S :
1. I =377 | S;SF = P} where P} is the projection on to the vacuum space.
2. S;’s are partial isometries with orthogonal ranges.
358 =1—- Z;.L:l(l — a)5; 57
PROOF:
LI =385 = PryenI = X ViV ) Pryony = B
2. Follows from Proposition 4.1.6.

3. Suppose e* € I'4(C"), and when |a| > 0 let & = (a4, - -, ayy). Then

“a w if |a| =0
[I—Z(l—aij)Sij]e _{ a @ 1f\a|21

- a1 €
J

O

4.2 Minimal Cuntz-Krieger Dilation and Standard Non-
commuting Dilation

Here we will consider the dilations of contractive n-tuple satisfying A-relations. One of the
dilation is the standard noncommuting dilation and the other one is motivated from the
relations satisfied by the generators of Cuntz-Krieger algebras.

Let C*(V) and C*(S) be the unital C*-algebras generated by V;,---,V,, and Sy, -- -, Sy,
respectively of Fock spaces I'(C") and I'4(C"). As V consists of isometries with orthogonal
ranges, it easily follows that C*(V) = span{V*(V*)* : a,3 € A}. Even for S, we have
C*(S) = span{S®(S?)* : o, B € A} because of orthogonal ranges of S;’s and Corollary
4.1.7-3. Hence if R is a minimal Cuntz-Krieger dilation for some contractive tuple satisfying
A-relations then there is a unique *-homomorphisms 7 satisfying S*(S°)* — R*(R")* for
a,BeA (using Corollary 4.1.7-3). This is so because S;’s and R;’s have orthogonal ranges
and for1 <i<n

T(S;8) = 71 =) (1—a;)8;S;) =1-Y (1 —ay)R,;R;

For a pure contractive tuple T on H, there exists an isometry K : H — H where
H = T'(C") ® Ap(H), as given in equation (2.3). If T satisfies A-relations, clearly the
range of K is contained in I'4(C") ® Ar(H). In this case (S1®1,---,S,®1I) is the dilation
of T which implies S} ® I leaves K (#) invariant. Now as (I -3 S;S5)®I)Kh = w® Agh
and span{S®w : a € A} =T'4(C"), we get (S; ®I,--+,S, ® I) to be the minimal dilation
of T

Starting with any contractive tuple T satisfying A-relations on a Hilbert space H, we
obtain for 0 < r < 1 the tuple T = (r1y,---,7T,) to be pure. Here range of K, (as
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defined in chapter 2) is contained in I'4(C") ® Ar(H). So using arguement of chapter 2
(for ) and taking limit as r increases to 1 for the linear map X — K*(X ® I)K, (refer
page: 16) we get a unique unital completely positive map 0 : C*(S) — B(#) such that

0(S*(S%)*) = T*(T?)* for a, B € A. (4.5)

For some Hilbert space # containing #, let a *-homomorphism 7; : C*(S) — B(#) be
the minimal Stinespring dilation of # such that

and span{m (X)h : X € C*(S),h € H} = #. Then the tuple S = (Si,---,5,) where
S, =m (S;), is the minimal Cuntz-Krieger dilation of 7" and this is unique upto unitary
equivalence.

One sees that S consists of partial isometries with orthogonal ranges and satisfy A-
relation. Also by applying m; to both sides of equation in Corollary 4.1.7-3, we see that

S’:S’Z =1- Z(l — aij)g’j ~;-(. (46)

J

Now we will give another method of constructing the minimal Cuntz-Krieger dilation
of a contractive n-tuple T' = (T3,---,T,) on Hilbert space H satisfying A-relations. Im-
portance of this method is that it helps in getting a better understanding of the structure
of this dilation. Here we would be using positive definite kernels. Define a set

Mo = {(a,u) v € A,u € H}.

For some o, 3 € Aif @« =0, or |a| < || and a; = S; for 1 < i < || then we write o C S.

Define
1 if |a| or |B] <1

Gap = g U, 1 <|af <[P
Garay " G e 1< |6 <lal

If o C Bor B C adefine

’Y:{ (Bia+1,- -5 Bp) i o] < B

(41, 0ga) if |B] < |

Let u,v € H be arbitrary. Consider a map K : Mg x My — C defined as follows:

(u,v) ifa=0=0
B <u’ &a,ﬂ[I - Zk(l - a’a|a|k)Tle:]v> a=p6#0
K((a,u), (8,v)) = (1, a5 T70) ifag g
(1, s (1)) if a2
0 otherwise.

We would show that K is a positive definite kernel. For this we consider the operator
N = (N é’%)) where N(™) is written as block matrix in terms of N é%), and the row and

column for the block matrix are indexed by a, 8 € A and |a/, |8] < m. (For all the matrices
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denoted by notations of the type A™) below are in the form of block matrics indexed by
a,f € A and |af, |5] < m). Here

I ifa=p5=0
a,aﬁ[l — Zk(l — aala‘k)TkT,:‘] o = ﬁ ?é 0
N = g 5T if a C 8
a,p(T7)* ifaDp
0 otherwise.

We would show that N is positive which would clearly imply that K is positive definite
kernel. Here we use induction to show this. First we define the matrices L™ F(™) and
M) as

TB 1fa:0,\ﬁ|:1

(m) ! e my [ I=2,TT if a=5=0
Los = é lfo(‘:h; vﬂv i:: 0 Fop = { 0 otherwise
0 ifa=0o0 =0
and M‘(“m) = { N 1 aotherv;isli
a,B :

We further denote I — Y, (1 — a;,)Ti T} by Gi, 1 < i < n. Notice that N©©, M©® are clearly
positive. Moreover as T;G; = T;,

N — L(l)M(l)(L(l))* + F®

where M) consists of only diagonal block and the diagonal entries are 0,Gy,---, G, in
order. So N, MW are also positive. If & = (auy, - - -, ) then let us denote (4, ay, - - -, Q)
by (i, ). When a = 0, (i, c) is taken to be same as (7). Also for m > 2

N(m) — 1,m)pr(m) (L(m))* + F(m)

where M (™ also consists of only diagonal block and the diagonal entries are 0, Ey, - - -, E,.
These E; are

_ _ aylm)
(Ez)a,/?’ = M(i,a),(i,ﬂ)'

Also
E; = D;M™ Y (D))
where
a/z',/le/jl if a = 0, |,3| =1
(Di)as = i ifa=0+#0
0 otherwise

and MY is positive by hypothesis. So we get M and hence N to be positive.
From this we can say that there exists a Hilbert space K and a injective map A : My — K
such that span{A(a,u): 1 <i<n,a€ A,u e H} =K and

(Mo, u), A(B,v)) = K((a, u), (8,0)).
Now the claim is that the S = (Sy,---,S,) consisting of maps S; : K — K defined as
gi)‘((ala T Otm), U) = )‘((Za Oy, 0, am)a U),
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constitute a tuple S which is the minimal Cuntz-Krieger dilation of 7. That these have
orthogonal ranges is clear from the following equations and the definition of kernel K: For

L F ]

<SZ ((al’ ) O )au)’gj)‘((ﬁla"':ﬁk) ))
- <)‘((l A,y QO )au)a)‘((ja/Bla"'aBk) )
= K((l a1,y ), u), (4, B, Br),v) =

As required for dilations we have SFA(0,u) = A\(0, 7;u) as seen below:

(SEA(0,u), A(B,v)) = (A

Now we would evaluate SS;\(a, u).

(SrSiA(0,u), A(B, v)) = (M(3),u), A((3, B), v))
= K(((9),w), ((i,8),v))
{ (u, [ = (1 — a) T Ty vy if =0

N (u, amlzﬁv) otherwise
and
A0, u) =) (1= aw)A((k), Tyu), A(B, v))
= K((0,u),(8,v)) = > (1 - ag)K(((k), Tiu), (8,v))
_ (]_ (I,Zk)TkT*]’U> if ﬁ =0
B { [Tﬂ Zk (1 — ai) TR T TPlv)  otherwise
_ — 2 (1 — ai) T Ti]v) if =0
a { [Tﬂ 1—az,31)T v) = (u, amlzﬂv) otherwise.
Hence

oy A0, u) = 324 (1 — aiw) A((K), Tyu)  ifa=0
S;SiA(a, u) = { i A, 1) otherwise.

S’ S;, i.e., S’i, 1 <4 < n are partial isometries. Further

I — Z(l — ax) SkSiIM e, w)
= Mo,u)— > (1 —au)SkS;S A0, u)
_ { (0,u) = > (1 — aw)A(k), Tju) fa=0
Uiy M, 1) otherwise.

From one gets S;
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In the previous equation we have made use of the fact that S;,1 < i < n are partial
isometry with orthogonal range. We conclude that S satisfy equation (4.1). Minimality
holds as

span{Sﬂ)\(O,u) :Beluet}
= span{Ma,u):1<i<nacAueH}=K.
Next we would study the decomposition of the minimal Cuntz-Krieger dilation in terms
of nondegenerate part of the associated Stinespring dilation. As for any «, 5 € A the rank
one operator 7 — (SPw, n)S% on T'4(C™) can be written as S*(I =3 S;S)(S?)* and they

span the subalgebra of compact operators in C*(S), we conclude that C*(S) also contains
all compact operators. So ‘H can be decomposed as H = Hc @ Hy where

He =5pan{m(X)h:h e H,X € C*(S) and compact}

and Hc is bi-invariant with respect to S;’s, that is, invariant with respect to S;’s and
S¥’s. Also 7 can be decomposed as m¢ @ Ty where me(X) = Py m(X)Py, and
mn(X) = PﬁNﬁl(X)PﬁN Here as my kills compacts, min(I — ) S;SF) = mn(F;) = 0.
Hence (min(S1), -+, mn(Sn)) satisfy Cuntz-Krieger relations (as well as A-relations). So
min(Si),1 <4 < n generate a Cuntz-Krieger algebra. Also by standard C*-algebra theory
He =T4(C") ® K for some Hilbert space K such that m¢(S;) = S; ® I.

From equation (2.3) we get for o, 8 € A

K*[S%(I Zss* )(SP)* @ I|Kh
= K*[Se(I ZSS* )(SP)* @ I( ZS%«J@AT(T”) h)
= Zsa =Y SiSHSP) ﬁ”w ® Ar(T7)"h)

— KN(Sw® Ag(T)h) = AT
As m = T @ TN i a x-homomorphism, by Stinespring Theorem there exists a isometry

L= [ él ] such that L; maps H to I'4(C") ® K and Ly, maps H to some Hilbert space
2

K. Now for o, 8 € A
T*AL(T?)'h = 6(S*(1 - ZSiSQ“)(ﬁﬂ)*)(h)
= Ly[So(I Zss* )(SP)* @ I1L;(h)
+Ly[min (SY(I ZSS* )(S#))]Ls(h)

= Ly[So(I Zss* )(SP)* ® IL*(h)

as min Kkills compacts. Hence the map L; can be chosen to be K and K := Arp(H).
So C ® K is a wandering subspace which generates H. In fact given just a n-tuple of
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partial isometries satisfying equation 4.1 and satisfying A-relations its clear that we will
get such decomposition, as minimal Cuntz-Krieger dilation of such tuple is itself and such
decomposition is called Wold decomposition. Further using arguements similar to Theorem
1.3 in [Pol]| we get that

Hy =N_,span{S h: h € H,|a| =m}.

COROLLARY 4.2.1 1. rank (I — Y, ViVi*) = rank(I — Y, S;S})
=rank(l =), T;T}).

Q.Iﬂnb%QDEZMAZk QS ) HN

PRrROOF: Clear. O
Now we would see how the minimal Cuntz-Krieger dilation and minimal isometric
dilation are related.

THEOREM 4.2.2 Let T be a contractive n-tuple on Hilbert space H satisfying A-relations.
Then the mazimal A-relation piece of the minimal isometric dilation of T is a realization
of the minimal Cuntz-Krieger dilation of T.

ProOOF: Let 0 : C*(S) — B(H) be the unital completely positive map as in equation
(4.5) and let m; be the corresponding minimal Stinespring dilation. Also S, =m (S;) as
before. As standard tuple S on I'4(C") is also a contractive tuple, there is a completely
positive map ¢ from the C*-algebra C*(V) generated by the left creation operators to
C*(S), satisfying

eV (VP)*) = 5*(SP)* for «,B €A
So, the completely positive map 1 from C*(V) to B(H) defined in page number 24, satisfies
1 = 0 o . Let the minimal Stinespring dilation of m; o ¢ be the *-homomorphism 7 :
C*(V) — B(H,) for some Hilbert space H, = span{n(X)h : X € C*(V),h € #H}. This
satisfies

m o p(X) = Pyr(X)|y VX e C*(V).

In the following commuting diagram

B(Hs)
- 4
B(H)
s {
Cw) > r(s) B

all the horizontal arrows are unital completely positive maps, down arrows are com-
pressions and diagonal arrows are minimal Stinespring dilations. Let V, = 7(V;) and
V= (Vl, .- ,V) We would first show that S is the maximal A-relation piece of V and
then show that K is the standard noncommuting dilation of T'.

Here we would use the presentation of minimal isometric dilation V/ given by Popescu

as in equation (2.2). Let for 1 <i < mn,h € H and d, € D

Vi(h®) e"®da) :=Sih®D(e;@h) @ e; ® Y e* @d, (4.7)

aeﬂ aeﬂ
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on the dilation space Hy = H & (['(C") ® D) WhereD::}:l@---@’}:é%ﬁ@---@?:éis

n—copies n—copies

D2 = [6Z]I g*g ]’ILX’n
= [(511 (I S*S )]nxn
Note that D? is a projection as S;’s are partial isometries and so D? = D. Let D denote
the range of D. We would identify H @ ---®H by C" ® H at some places and hence
h,_/

o n—copies
(hla T hn) by Z?:l e ® (I - S:Sz)hz and C"w® D by D

(hl, y Ze,@h zn:62®(]—g:;§z)hl
i=1

As S satisfying A-relation and V;* keeps H invariant, clearly # C (H3)4(V). Lets begin
with arbitrary z € H- N (H2)4(V) and then we would show z = 0. This z can be written
as 0D ), c7e" ® 2z, such that z, € D. If possible, let z # 0, then (W ® z,, (Ka)*z> =
(€% @ 20, 2) = (20, 2a) 7 0. As (V) 2 € (Ha)a(V), we can assume |[[2o]| = 1 without loss

of generality. Also 2o = D(hi,- -+, h,) for some h; € # as projection have closed range.
Let z =370 (1 — ai;)e; ® D(e; ® Sih;). Here z € C" @ D.

2%
= i(S}S‘]— S’S’ S*h +ZD€z®Zl_aw5~;h)
',j—l =1 j=1

+Z 1—a,j)ez®D(e]®S* ; —O—i—ZD[ez ® (I — S:S)hi| +
i,j=1

= Dz(hl,"',hn)-i—l‘:go-l-.??
So, (z,Zy +z) = 0 by Lemma 4.1.2.

IzlI> = 1) (1 —ay)e; ® D(e; @ Syhy)||?
2,j=1
i=1 j=1 o
= Z(Z(l —ag)(I — S‘;‘S})S’;hi, (1— a'ij)g;hi>
i=1 j=1 j=1
= Z(Z(l — ai;)(S; — S))hi, y (1 —ay)Sih) =
i=1 j=1 j=1

So, x = 0. Thus ||Z||* = (2, Z0) = 0 which is a contradiction. Hence z = 0 which implies
H = (Ha)a(V).
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Finally it can be shown that V is the minimal isometric dilation of 7’ by using arguments
similar to the proof of Theorem 2.2.1 and with this the proof is complete. O

In same way one can show that similar result holds even if commuting tuples are
replaced by ¢g-commuting case. To keep the presentation simpler we have worked with the
above special case.

4.3 Representations of Cuntz-Krieger Algebras

Cuntz-Krieger algebra O 4 admits inequivalent representations. When a tuple " = (71, - - -, T},)
on Hilbert space H satisfying A-relations and Y. , T;7;7 = I, the minimal Cuntz-Krieger
dilation S = (S;,---,5,) is such that C*(S) is a Cuntz-Krieger algebra and the gener-
ators Sy, ---, S, satisfy Cuntz-Krieger relations. When S is the minimal Cuntz-Krieger
dilation of tuple T satisfying A-relation and ) T;T; = I, the unital completely positive
map pr : O — C*(S) given by pp(s;) = S; is a representation of @4. We would classify
such representations when the tuples under consideration are commuting.

For a tuple R = (Ry,---,R,) on a Hilbert space K, we would use the concept of
mazimal commuting piece and the space K¢(R) as defined in Section 2.1. We refer to
KC¢(R) as mazimal commuting subspace.

DEeFINITION 4.3.1 1. A commuting tuple T = (T, ---,T,) is called spherical unitary
if Y T;TF = I and T;’s are normal.

2. A representation p of O4 on B(K) for some Hilbert space K, is said to be spherical
if K={R“(k):k € K°(R) and o € A} where R; = p(s;),1 <i < n.

DEFINITION 4.3.2 The mazrimal commuting A-subspace of a n-tuple of isometries V with
orthogonal ranges is defined as the intersection of its maximal commuting subspace and
maximal A-relation subspace. The n-tuple obtained by compressing each V; to the maximal
commuting A-subspace is called mazimal commuting A-piece.

REMARK 4.3.3 Making use of Lemma 4.1.2, it is clearly seen that the maximal commuting
A-subspace of a n-tuple is infact the maximal commuting subspace of the the maximal A-
relation piece. It is also seen that the maximal commuting A-subspace is the maximal
A-relation subspace of the maximal commuting piece.

Let Py =1 on C and P,, acting on (C")®" be the projection -+ % o U where
U (1@ ®@Ym) = Yo11) ® *** ® Yo—1(m)

where y; € C". Also we denote &°_,P,, by P'. Given A-relations we denote {«a € A
either [a| =m > 1 and ag,e;, = 1 for 1 <i# j <m, or [a] <1} by C 4. It may be noted
that this is different from C4. It may be noted that this is different from C'4 as defined
just before Proposition 4.1.5.

DEFINITION 4.3.4 The subspace of I 4 (C") defined by
span{P'e® : o € Cy}.

is called commuting A-Fock space and denoted by I's4(C").
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To see that I';4(C") is the maximal commuting A-subspace of V. we first note that the
maximal commuting A-subspace of V is the intersection of symmetric Fock space I';(C")
(refer [BBD]) and the maximal A-relation subspace of V. Also

I, (C") = span{P'e* : a € A}.
Suppose a € A™ and for all 1 <k # 1 < m,aq,o =1 then for h € I'(C") and all , j,
(P'e*, V2 (ViVj — ayViVj)h) = 0.
So, from the definition it is clear that
T5a(C") CT4(C™) [T a(CT).

Let P denote the projection onto I';(C™) T4(C") and let z € [y(C") (T 4(C") be
arbitrary. Suppose a € A™ be such that (e®, z) is not equal to 0. As z € I'4(C"), it follows
that a € Cy. Further for any o € S,

(UMe®, z) = (UMe®, Pz) = (PU™e?, 2)
= (Pe® 2) = (%, 2).

Thus (U"e*, z) is not equal to 0. This implies that o € C4 and hence z € T',4(C"). We
conclude that I';4(C") is the maximal commuting A-subspace of V.

Here V;* leaves I';4(C") invariant and S} leaves I'; 4(C") invariant. Let the compression
of V; on T4 (C™) be denoted by W;. Suppose o € C4,and when |o| > 0let o = (v, - - -, )
where m = |«|. The operator W; turns out to be

WiP'e® = { Ple;®e* if ajq;00;; = 1,1 <j<m
0 otherwise.

Form this it is observed that W = (Wi, ---, W),) is the maximal commuting A-piece of V.

Let us denote the maximal commuting piece of V on I'(C") by S =(S,-++,8,). Then for
a€ Cy,a=(ag,--,ay), m> 1 the commutators

[@,S’;‘]P'e“ if Gin;00;i = 1,V1 < j<morifa=0
(W, W}|P'e® = L P'e® if a; =i for some 1 < j <m and a; =0
0 otherwise.

It is known that [S;, S}]’s are compact (refer [BBD], [Ar4] or [BB]). Hence clearly [W;, W;]’s
are compact. From this it follows that

C*(W) =span{W*(W")* : a, B € A}.

Clearly the vacuum vector is contained in I';4(C") and I — ) W;W} is the projection
on to the vacuum space. C*(WW) contains all the rank one operators of the type u —
(Wew, u)WPw on I';4(C") as those can be written as W*(WP?)*. As these rank one op-
erators span the subalgebra of compact operators, we conclude that C*(WW) contains all

compacts.
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For a commuting pure tuple 7" satisfy A-relations, with easy computation it can be
seen that the range of the isometry K, : H — ['(C") ® AzH,1 < r < 1, defined in
equation (2.3) is contained in I';4(C") ® ArH and we get a unital completely positive map
¢ : C*(W) — B(H) defined as strong operator topology limit of X — K}(.® I)K, as r
increases to 1. Let my : C*(W) — B(H,) be the minimal Stinespring dilation of ¢ for some
Hilbert space Ho and W; = mo(W;) where Ho = spﬁ{@ah caelhe H}.

DEFINITION 4.3.5 The above defined tuple W = (Wl, -+, W,) is said to be the standard
commuting A-dilation of T .

REMARK 4.3.6 It follows from Theorem 2.2.1 that for spherical unitary T satisfying A-
relation the maximal commuting piece of the minimal isometric dilation is 7. As T satisfy
A-relations, it clear that 7 is also the maximal commuting A-piece.

Next Lemma would be crucial for classifying certain types of representations of Cuntz-
Krieger algebras.

LEMMA 4.3.7 The maximal commuting piece of the minimal Cuntz-Krieger dilation of a
commuting tuple T satisfying A-relations is the standard commuting A-dilation.

PROOF: Let the unital completely positive map ¢ : C*(W) — B(H), o and H, be as
above. We denote the operator mo(W;) by W; and denote the n-tuple (Wl, e Wn) by W.
As W is a contractive tuple satisfying A-relation, there is a unital completely positive map
n: C*(S) — C*(W) such that n(S*(S?)*) = W*(W?)*. The completely positive map 6 as
in equation (4.5) is equal to ¢ on. Let 7; be the minimal Stinespring dilation of 7y o7 and
S; = 71(S;). We have the following commuting diagram.

B (7‘21)
i

B(Ho)
o 1
cr(§) — (W) — B(H)

1 ¢
Here the horizontal arrows are completely positive maps, diagonal arrows are x-homomorphism
and down arrows are compressions.
Its easy to see that C*(W) contains all compact operators and so H, can be decomposed

as Hoc ® Hony where Hoc = span{my(X)h: h € H,X € C*(W), X compact } and Hoy =
Ho © Hoc.

mo(X) = < et Ton (X) )

where oo (X) and mon (X) are compressions of 7y (X)) to Hoc and Hoy respectively. Further
Hoc = Ts4(C") ® Ap(H) and me(X) = X ® I. Let E; = mon (W;) and E = (B, - -+, Ey,).
As [W;,W}] and I — > W;W; are compacts, clearly E is a spherical unitary satisfying
A-relations.

From the properties of Popescu’s Poisson transform and I'4(C"), it follows that (W7 ®
I,---,W,®1I) is the maximal commuting A-piece of its minimal isometric dilations (V] ®
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I,---,V,®I). Also from Remark 4.3.6 we get E to be the maximal commuting A-piece of its
minimal isometric dilations. So from Remark 4.3.3 and Theorem 4.2.2 we observe that each
of them is the maximal commuting piece of their minimal Cuntz-Krieger dilation. Hence
by Corollary 4.1.3, W is the maximal commuting piece of S. From this using arguments
similar to Theorem 2.2.1 it can be shown that S is the minimal Cuntz-Krieger dilation of
W . Hence the Lemma follows. O

If a commuting contractive tuple T also satisfy A-relations for A = (aij)nxn, then
without loss of generality we can take A to be symmetric, i.e., A = A*. Then A is the
adjacency matrix of the graph G with set of vertices {1,2,---,n} and set of edges E =
{(4,7) ai; = 1,1 <i < j <n}. We call all the vertices i to be zero vertices if a;; = 0. Let
us associate for this graph a subset M of {(z1,- -, 2,) : D, |2i|* = 1} defined as the set
of elements satisfying A-relations, that is

n

M={(z1,-+,2n): Z 2] = 1, zizj = aijziz;, 1 < 1,5 < n}.

=1

The set M can be described in the following way: For a zero vertex 7, the corresponding

z; of any element of M will always taken to be zero. For any element (zq,---,2,) of M,
some elements 2;,, - - -, 2;, for different 1 <4 < n can be simultaneously choosen to be non-
zero if and only if 41, - - -, iy are nonzero vertices and form vertices of an induced subgraph

of G which is also complete.

Let CM be the C*-algebra of continuous complex valued functions on M. Consider
the tuple z = (21,+-,2,) of co-ordinate functions z; in CM. To any spherical unitary
R = (Ry,---,R,) satisfying A-relations, there is a unique representation of CM mapping
z; to R;. As for any commuting tuple T satisfying A-relations with > 7,7 = I, then
standard commuting dilation S = (Sy,---,S,) is a spherical unitary (refer Section 2.2)
and we have a representation np of CM such that np(z;) = S;. From Lemma 4.3.7, it
is easy to see that if D and E are two commuting n-tuple of operators satisfying same
A-relations (on not necessarily same Hilbert space), the corresponding representations pp
and pg of O, are unitarily equivalent if and only if the representations np and ng of CM
are unitarily equivalent.

Any z = (z1, -+, zn) € M satisfy A-relations as operator tuple on C and is a spherical
unitary. We can get a one dimensional representation 7, of CM which maps f to f(z). Let
(VE,---,VZ) and (S%,---,S%) be the minimal isometric dilation and the minimal Cuntz-
Krieger dilation respectively of this operator tuple z = (21, - - -, 2,). The dilation space of
minimal isometric dilation is

H =Ceo (T'(C") ®CY)
where C7 is the (n — 1)-dimensional subspace of C" orthogonal to (z1,---,Z,) and

hEBZe ®dy) =0, ®D(e; h) D e; ® Ze ® d,)

Using the minimal Cuntz-Krieger dilation S* we get a representation ¥ : O4 — C*(S?)
mapping s; to S7. This is the GNS representation of Cuntz state

52(s%) — 22(2P).

We call such states coming out of (21, -+, 2,) as Cuntz-Krieger states.
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THEOREM 4.3.8 Any spherical representation of O4 can be written as direct integral of
GNS representations of Cuntz-Krieger states.

PROOF: An arbitrary representation of CM is a countable direct sum of multiplicity free
representations. Also any multiplicity free representation of C¥ can be seen as a map
which send g € CM to a operator which acts as multiplication by g on L*(M, i) for some
finite Borel measure p on M and the associated representation 9 of 04 can be expressed
as direct integral of representations 9, with respect to measure p acting on $H?u(dz).

Thus the Theorem follows. O
1 110
1 1 00 . .
ExAMPLE 4.3.9 Let A = 1100 | Then for any commuting contractive n-tuple
1 001
satisfying A-relations also saisfy A’-relations where A’ is the symmetric matrix
1 11 0
1100 ) ) .
100 0 Further the set of vertices of the graph is {1,2, 3,4}, the set of edges is
0 0 0 1.
E ={(1,2),(1,3)} and zero vertex is 3. Hence M = [(C* x {0}?) U ({0}3 x C)] N 0B,.

COROLLARY 4.3.10 Any representation of O4 can be decomposed as wy & m; where w, is

spherical representation and (my(s1),- -+, m(sn)) has trivial mazimal commuting piece.
PROOF: Similar to proof of Theorem 2.3.4. O

It also follows that for irreducible representation of O4, the maximal commuting piece
of (m(s1),---,m(sy,)) is either one dimensional or trivial.

4.4 Universal Properties and WOT-closed Algebras
Related to Minimal Cuntz-Krieger Dilation

Assume S be the minimal Cuntz-Krieger dilation of a contractive tuple T satisfying A-
relations. Define C*(S) to be the unital C*-algebra generated by S. Clearly the linear map
from C*(S) to B(#) such that Sa(sﬁ)* — PHSQ(Sﬁ)*\H = T*(T%)* is a unital completely
positive map. We would investigate some universal properties of minimal Cuntz-Krieger
dilations using methods employed by Popescu (for minimal isometric dilations) [Po4]. We
skip that proofs of Proposition 4.4.1 and Theorem 4.4.2 as they are similar to those ap-
pearing in Section 2 of [Po4] and to Proposition 3.3.1, Theorem 3.3.2 and Corollary 3.3.3
of this thesis.

PROPOSITION 4.4.1 Suppose S is the minimal Cuntz-Krieger dilation of a contractive
tuple T on Hilbert space H satisfying A-relations.

1. Consider a unital C*-algebra C*(d) generated by the entries of the tupled = (di, - - -, dy,)
where d satisfy equation (4.1) with respect to some matriz A. Assume that d also
satisfy did; = 0 for 1 < i # j < n. Let there be a completely positive map
0: C*(d) = B(H) such that o(d*(d®)*) = T*(T?)*. Then there is a x-homomorphism
form C*(d) to C*(S) such that d; — S; for all1 <i < n.
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2. Suppose m : C*(T) — B(K) is a x-homomorphism and 6 : C*(S) — C*(T) be
the completely positive map obtained by restricting compression map (to B(H)) for
B(H) to C*(S). Assume the minimal Stinespring dilation of wo 6 to be @ such that
100(X) = Peit(X)|g. Then (7(S1),---,7(Sn)) is the minimal Cuntz-Krieger dilation

of (m(T1), -+, m(Tn))-

THEOREM 4.4.2 Let T be contractive n-tuple on H satisfying A-relations and S be its
minimal Cuntz-Krieger dilation.

1. Suppose m and 7 are two *-homomorphism from C*(T) to B(K;) and B(K3) re-
spectively, for some Hilbert space K1 and ICy respectively. Let 6 be as defined in
the previous Proposition. If X be an operator such that Xm(Y) = mo(Y)X for
alY € C*(T), and 7y and 7o are the minimal Stinespring dilations of m o 6 and
o o O respectively. Then there exists an operator X such that X’frl = ﬁgX and
X P, = P, X.

2. If X € C*(I)' then there exists a unique X € C*(8) N{Py} such that PyX|y = X.
Also the map X — X is a *-isomorphism.

Though many of the arguements in the following part of this Section are similar to the
proofs in [DKS| and [DP2] we have given the complete arguement for the sake of making
this thesis self-contained. Using equation (4.6) we observe that

N; N:S’ZS’] = S]*[I — Z(l — azk)S’kS'};]gj
k
= CLUS’;S’]S’;SYJ = G,ijg;gj.
From this it follows that for o = (a1, -+, )

(Sa)*sa = Qaqan """ Qapm_10m g;;mgam o
= Qgias """ Qapy_1am [I - Zk(l - aamk)skslt]'

and o 5

5%(8%)"8% = 8%
We notice that each S is partial isometry. Let Hy and 73 be the dilation spaces associated
with V and S respectively as before and let us denote H © H by £. We know that V; and
S; leaves £ and H' respectively invariant. Let ® : B(Hy) — B(H,) be the completely

positive map defined by
O(X) =) ViPyr X PV

=1

So, ®(Pg) < ®(I). Also let Q; :== P¢S;Ps. Then for h € €
(> Q@) hhy = (> S Pe(8")h. h)

la=m jof=m
= (Y UV Pus PePys (V) h, b
|a|=m

A
]
5
=
2
>
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But as limy, 0o (®™(I)h, h) = 0 we have lim,, Z\al m(Q%(Q%)*h, h) = 0 which implies

that @ is pure. In the above computation we used VZ* invariance of H for 1 < i < n.
Here we are interested in understanding the structure of weak operator topology (WOT)-
closed algebra generated by the minimal Cuntz-Krieger dilation S of some contractive
tuple T = (11, ---,T,) satisfying A-relations where T; € B(H). Let A denote the unital

WOT-closed algebra generated by all S;,1 < i < n.

LEMMA 4.4.3 1. If A has no wandering vector then every non-trivial invariant subspace
reduces A.

2. K:=E0[X" Si€) is a wandering subspace for S.

PROOF: Let there be no wandering vector for A and let if possible N be a non-trivial
invariant subspace for A. If 37 | S;A is not equal to A then N & 37 | S;N would be
wandering as seen using orthogonal of ranges of S,’s, equation (4.8) and the following: For

ni,ny EN O, SN
<§:5Z§a1 Tt gamnla n2> - <a/ia1*§1a1 o '5amn17 n2> = 0

But this is not possible by our assumption. So

=1

Now let h € N be arbitrary. From the above equation it follows that one can write h as
D= SiSjn;; for some ny; € N. From this and equation (4.8) its clear that Sih € N for
all 1 < k < n.So N is reducing for A. Hence part 1 follows.

£ is also invariant subspace for A. The nontrivial case is when £ is non-zero. & #
> S,€ as otherwise & would be reducing which is not possible as H. spans H. It follows
from above that I is a wandering subspace of A. O

So we can write H = HOH'® (I 4(C")@K) for some Hilbert space H'. So Yoaci S S°K =
['4(C") ® K and this would be left invariant by Sy’s. Also SPFA oek 18 S; ® I for
1 <4 < n. Let us denote by B the WOT-closed algebra generated by Tl, -, T,. In order
to get reducing subspaces for A its sufficient to demand for B*-invariant subspace as seen
in the next Lemma.

LEMMA 4.4.4 Let L be a B*-invariant subspace of H. Then A[L] reduces A. If L, and
Ly are orthogonal B*-invariant subspace of H then A[Li] and A[Ls] are also mutually
orthogonal.

PROOF: S’Z* leaves £ invariant as S’Z* and T} leaves H and L respectively invariant. Also
AlL] =span{S°h:a e A h e L}.
Now for any z € £ and a = (o, - -, ), using equation (4.8)

[ — Zk(} - aikzgkgz]m ifog =14, |a| =1
a GoyasSas = Oam® if g =4, | > 1
0 if o 7é 1

Sk if |a] =0

3
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As L is invariant for A*, S$*S“z € A[L£] and hence reduce A.
Further when £; and L, are orthogonal B*-invariant subspaces, to establish that
A[L1] is A[L,] are orthogonal it is sufficient to check if for |o| < |B| and 1 € Ly,15 €

Lo, (Sall, Sﬁb) = 0. This holds easily for all cases because of the orthogonality of ranges
of different S;’s, B*-invariance of £; and the equation (4.8) except for the following case
we need more careful verification: For o = (ay, -, )

<(Sa)*(sa)lla l2> = <6La1a2 * Oy, _1am, [I - Z(l - a'amk)gkgl):]lla l2>

k

Garas ** Oapran {00 12) = (1 = aa,1){(Sils, Spla)}
k

= 0.

Hence the Lemma follows. O

Let us define Hy := Hxy NH. In the next Proposition we would take H to be finite
dimensional. Proof is similar to the proof of Lemma 4.1, Corollary 4.2 and Corollary 4.3
in [DPS].

PROPOSITION 4.4.5 Let T be a contractive tuple satisfying A-relations of operators on a

finite dimensional Hilbert space H.

1. Let K be a reducing subspace of H with respect to A and let there exists h € H such
that Pch is non-zero. Then there ezists k € A*[h] N Hy such that Pk is non-zero.

2. Any non-zero subspace of Hn which is co-invariant with respect to S;,1 < i < n has
a non-trivial intersection with Hy.

3. Hy = AHn]. When Y TT; = I and B = B(H) every co-invariant subspace of H
with respect to all S;’s contains H.

PROOF:

1. Let &' := Pxh and choose 0 < € < min{@agw)%}. As the tuples obtained by

compression of S to H' and Hy are pure and S;’s leaves these spaces invariant, we
can choose m sufficiently large that

D 1P (8% hlP? < €

al=m

Do P (8P < €

laj=m

Z ||PHN VR < €

laj=m

and

Also as ’}:[ N 1s bi-invariant with respect to S;, the properties of Hy clearly yields
> lal=m S%(S%)*Pc = Px so one gets

Do PSR =Y (ISR [Py (7)) > 1P — €

\al=m laj=m
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Let A; be the set of @« € A™ such that

1P (S7) R 1* > € M| Py (S7) " J?
and let A5 be the set of & € A™ such that

1P (S7)H|P > € M| Py, (57) Rl
The set Ay N A, is non-empty as

Y PSP

aEA1NAs
> WP =€ = D NPR@ ) RN = D PSR
a€A; a€As
> WP =€ =D e Pue (SR> = ) e MIPy, (S7) R
€A1 a€As
h/ 2
> ||h’||2—62—6—6>%.

Also as T is a contractive tuple, 3°, 1. 4, [[Px(S")*A||? < [|A|[%. Form that it follows
easily that
7]

1P (") Rl
2l

1P (%) Rl >

Now with respect to €, = 1/m one can obtain sequence of o™ € A. The unit vectors
lm = (S*")*h/||(S*")*h|| satisfy

am

Py(S" )P
lim ||Pytly| < lim L | ”(%m) 2l
Py P
o L IPRBE
moo \/m (3% )h|
and similarly limy, o || Py lm|| = 0. Further
[Pclmll = [1(5*" ) B I/1(S®™)*Rl| > | P (S )* || /11(S*" )Rl

A M Predenll) / U R1D-

As the unit ball of finite dimensional H is compact, there is a subsequence converging
to a unit vector £ in H. Its clear that

Py k =0,k € A*[h)NHy and ||Pckl| > ||B']|/2]|A|-
Hence part 1 is proved.

2. The proof follows from part 1 of this Proposition by choosing A from the non-zero
subspace invariant with respect to S * and taking K = Hy.
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3. Clearly T*’s leave H invariant and from Lemma (4.4.2) we get that A[Hy] C Hy
is a reducing subspace for A. If we assume that Hy © A[H ] is not zero, part 2
of this Proposition gives a contradiction. Hence A[Hy] = Hy. When T =1
and B = B(H) one has # = Hy. By above arguement any non-trivial co-invariant
subspace with respect to S;’s has a non-trivial intersection with . But as B = B(H)
it is infact true that this invariant subspace contains .

O

Now we consider the tuple Y consisting of right creation operators. One can easily

notice using methods similar to proof of Lemma 4.1.2 that for polynomials p( ) = 212m —

miz1Zm, (I,m) € {1,--- ,n}x{1,---,n} =Z, we get (['(C"))?(Y) = T'4(C"). Let X; denote

the compression of Y; to I'4(C"), i.e., X; = Pr,(c)Yilra(c)- Suppose e € I'4(C"), and
when |a| > 0 let o = (o, -+, ). Then

e if o] =0

X;e® = PFA(C")Y;G = { Qapni€” @ €; if ‘a‘ > 1

Moreover from Proposition 4.1.6 it follows that X consists of partial isometries with or-
thogonal ranges satisfying A”-relations. Let £ and X’ denote the WOT-closed algebras gen-
erated by Si,---,S, and Xy, ---, X, respectively. Now we would analyze the structure of
these WOT-closed algebras. Let @ denote the projection onto span{e® : a € C}y, |a| = k}.

PROPOSITION 4.4.6 1. L coincides with the commutant of X in B(T'(C")), that is L =
X'. Also X = L' and hence L and X are double commutants of themselves.

2. L and X are inverse closed. Also the only normal elements in L and X are scalars.

PROOF: Any element in £ can be written as Z|a|>1 b, S for some b, € C. Let for g =

(ﬁla Tt aﬁm)a ﬂ, denote (Bma Tt aﬁl)-

aa\a|71a’7|7|,31€a Re’®el if vl >0

— IB’ [625%e'%
Gy " ® € if |y| = 0 X7 S%e.

§ai’3,€7 — {

So, L C X'. The proof of £ D X" is similar to proof of Theorem 1.2 in [DP2] as seen below:
Noticing that X;Qr = Qr+1X;. Let us define 0; : B(I'4(C")) — B(I'4(C")) by

(D)= Y QeLQsj
kZmaX{Oa*J'}

Then for L € X!
X:0;(L) =0;(L)X;.

Consider the Cesaro operators for L € X’ defined for £ > 1 by
14
SH(L) = 3 (1= B0, (L)
<k

By the properties of Cesdro sum one gets Xx(L) € X' and 3 (L) converges in SOT to L
as k — 0o. Moreover taking Lw = ) doS®w we observe that

ShLw= Y (1- M)daﬁaw

k
la<k
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and the Cesdro sums >, (1 — [a]/k)daS* € L. Hence £ 2 X"
To prove part 2 we take the approach of proof of Corollary 1.4, 1.5 in [DP2]. L is
inverse closed as for any invertible L € X’ and any M € X

L'M=L'MLL'=L'LML*=ML".

Similarly X is also inverse closed and one observes that this happens for any algebra which
is also commutant of some algebra. Assume K be a normal element in £ with ¢ = (Kw,w).
Clearly w is a eigenvector of £L*. So K*w = cw and hence Kw = cw. Moreover as K is in
the commutator of X we observe that

KS% = KX% = X*°Kw = cS%w.
Thus K is scalar operator cl. 0
PROPOSITION 4.4.7 Any element A € L leaves range of X*(X*)* invariant.

PrRoOOF: Note that one can argue as we did for S and show that X“ are also partial
isometries. Further as £ = &

XX AXH(X)" = X*(X) X AX")
XA(XY) = AX*(X*)".

the Proposition follows. O
In these algebras the wandering subspace description is much simpler than the general
case as can be seen from the next result.

PROPOSITION 4.4.8 1. If N is a invariant subspace of L then M =N &3 " | SiN is
a wandering subspace and LIM] = N.

2. A subspace is cyclic and invariant with respect to L if and only if it is the range of
some element in X.

PROOF: From the proof of part 1 of Lemma (4.4.3) its clear that M is a wandering
subspace. Rest is similar to proof of Theorem 2.1 in [DP2]. Apart from £[M] being subset
of N, we get from Wold decomposition that K := M & L[ M] is bi-invariant for S;’s and
satisfy IC =), S;K. If we assume K is not zero then there exists smallest integer mg such
that QK # 0 which yields a contradiction as

Qmo’C - ZQmoSi,C - Z SiQmofﬂc = 0.

So part 1 holds.

Cyclic subspaces of N are of the type L[n]. For this vector, define operator L by
LS%w = S%n. Clearly L commutes with S; and hence is in X. Also range of L is L[n]. For
the converse if K be in X, one can show that n = Kw generates the range of K. g



68

CHAPTER 4. MINIMAL CUNTZ-KRIEGER DILATION



Chapter 5

Examples

Ample interesting examples of ¢g-commuting tuples exists one of which is the following:

EXAMPLE 5.0.1 Suppose W is a finite abelian group with o(W) = N and W is its dual
group. with o(W) = N Let the binary operation be denoted by +. Define unitary operators
Uy, g €W and V,,a € W on L2(W)

Uyf(2) = (2 + ), Vaf(z) = a(a)f (@) for = € W.
Then we have for g,h € W and o, 3 € W
UUp = Ugin, VaVp = Vag, UgVa = ag)VaU,.

These are called Weyl commutation relations. If we consider a tuple (Uy,, -+, Uy, Var, -+, Vi)
for g; € W and «; € W then this tuple is a g-commuting tuple. Here for £k :=m +1,q :=
(Qij)kxk and

1 if1<i,j<m
o 1 ifm+1<i,j<k
W= ajm(g)  f1<i<mm+1<j<k

(Qiem(g;)) ™t fm+1<i<k1<j<m.

The next example shows that the fermionic Fock space can also be realized through
“maximal piece” concept. Minimal Cuntz-Krieger dilation is illustrated in the last example.

EXAMPLE 5.0.2 Also we would like to remark that the Fermionic Fock space I',(C") is
the intersection of the maximal g-commuting space and maximal A-relation subspace with
respect to the following ¢ = (¢;;)nxn and A = (a;;)nxn :

[ =g [0 ifi=
% =\ —1 otherwise % =Y 1 otherwise.

This can be shown using arguements similar to that used to show I';4(C") is maximal
commuting A-subspace with respect to V given in page number 58. In other words,
Fermionic Fock space I',(C") is the maximal piece for the set of polynomials:

P13 (2) = 2j2i — Gijzizj and po;(2) = 2z — aij2i2,V1 < 4,5 < n.
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e (01 (00 (01
ExXAMPLE 5.0.3 For H =C*, let T7 = 00 and 15, = 1 0 .TakeA_<1 0)

then one observes that T satisfy A-relation, 7117 +71,T; = I and T;’s are partial isometries.
Further the D used in the Theorem 4.2.2 turns out to be

1

Let us denote the two basis vectors in the range of D corresponding to the entries 1
appearing in D by f; and f5 such that

D(e1 ® (a1, a2) + €2 @ (b1, b3)) = arf1 + ba fo

for all ay, as, by, by € C. The dilation space for the minimal isometric dilation V = (‘71, ‘72)
of T is H® IT'(C") ® D where D is the range of D.

‘71\71(a1, az) = (0,0) + w ® (az,0) + €1 ® (a1, 0),

VaVa(ay, az) = (0,0) +w ® (0, a1) + €2 ® (0, as).

As aq, as are arbitrary using the above equations with the description of maximal A-relation

~

space ‘H from Lemma 4.1.2 we get H = H.
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Addendum

Motivation: Sz. Nagy dilation of contractions to isometries (or unitaries) is a very im-
portant basic construction in operator theory. There have been several attempts to extend
it to n-tuples of operators. One such extension is the notion of minimal isometric dilation.
Another such extension is standard commuting dilation of tuples, and this works only for
commuting tuples. So there are two standard dilations for commuting tuples. Then it
is a very natural question as to how are they related. This question has been answered
completely in this Thesis making use of the new concept of mazimal commuting piece.

Cuntz algebras are among the most important non-commutative C*-algebras. They are
simple, separable, nuclear and purely infinite. They have rich classes of representations.
Their representations appear in a wide variety of fields, such as quantum theory, wavelet
theory etc. They also appear quite naturally in dilation theory of n-tuples of operators. We
give a complete classification of representations of Cuntz algebras arising from commuting
tuples. This should be useful in other fields.

Tuples with a slightly twisted commutativity called g-commutativity appear in quantum
theory and a study of their dilations by Bhat and Bhattacharyya in [BB] gave interesting
results. We tried to extend our theory to this type of tuples and we could successfully do so.
Cuntz-Krieger algebras were introduced by Cuntz and Krieger while studying topological
Markov chains. One obtains them by making simple modifications to the defining relations
of Cuntz algebras. Here we have defined minimal Cuntz-Krieger dilation with two purposes
in mind- to look at some kind of partial isometric dilation and to extend our classification
results to Cuntz-Krieger algebras.

Interrelations between three main themes:

Our three main themes are basically relationship of (i) commuting dilations, (ii) g-
commuting dilations, and (iii) Cuntz-Krieger dilations with the minimal isometric dilation.
So it is fairly obvious that they are very closely related.

In Chapter 2 we see how the standard commuting dilation sits inside the minimal
isometric dilation. Chapter 3 extends this main result of Chapter 2 by replacing standard
commuting dilations by more general standard g-commuting dilations. When the set of
polynomials of maximal piece of Chapter 2 for minimal isometric dilations is replaced by
another special set, we obtain minimal Cuntz-Krieger dilation and we discuss about this
dilation in Chapter 4. In fact results of Chapter 2 can be derived from those of the later
chapters as special cases but it is worth proving them separately as this case is particularly
important and many of the proofs shortens due to special properties available in this case.

Moreover in Chapter 2 we get a complete classification of representations of Cuntz
algebras coming from dilation of commuting tuples. We couldn’t extend this result to
g-commuting tuples. Chapter 3 also has some results on operator spaces and universal
properties of tuples we have. In Chapter 4 we have an alternative derivation of minimal

75



76 ADDENDUM

Cuntz-Krieger dilation through positive definite kernels.
Problems for the future: We still don’t know much about the following interesting
questions:

1. Let T be a contractive n-tuple of operators on a Hilbert space H. Does the maximal
commuting piece of the minimal isometric dilation of T coincides with the standard
commuting dilation of maximal commuting piece of T under conditions like Ap(H) =
Ap(H) 7

2. Whether the results we have on minimal Cuntz-Krieger dilations and the related
classification results help in understanding the topological Markov chains (refer [CK])
better?

3. Are all the unital C*-algebras generated by standard g-commuting dilations for dif-
ferent values of ¢ non-isomorphic?

4. Let S denote the n-tuple obtained by compressing V to I',(C"). Can we classify the
von Neumann algebras generated by all G; = S; + S/, 1 <@ < n for different values
of ¢7



