Abstract

This project tackles issues of scalability and reality transfer in evolution-
ary robotics through the hard task of scoring goals in robot football.

Evolutionary Robotics raison d’etre is to allow behavioural complexity
beyond that imposed by the limitations of design, and as such scalability
of techniques to more complex tasks is a central issue. The use of vision
addresses sensory complexity and a novel technique of object level repres-
entation, using virtual sensors to provide such a description of the world, is
implemented and seen to work. The use of task decomposition addresses task
complexity, allowing division of a complete task into simpler sub-behaviours,
making a potentially intractable problem tractable to solution by the evol-
utionary algorithm. Results show that designer misconceptions can reduce
the efficacy of the latter approach.

Good controllers were consistently evolved in simulation using genetic
programming of logic-level controllers, and for the most part successfully
transferred to reality. A controller that could score goals in a real-world en-
vironment using visual location of ball and goal was evolved. The complexity
of this task, within evolutionary robotics work, goes some way to validating

the scalability of the approaches.

Acknowledgements

Thanks to my supervisor, John Hallam, for helpful advice and discussion,
and always being willing to proof read, write a Perl script, etc. Thanks to
Rens Kortman for introducing the Khepera and Andrew Eremin for discus-
sions on evolutionary robotics. Thanks to all those who made the terminal
room a better a place to be.

Finally, I thank EPSRC who provided financial support during my year
of study, without which this project would not have been possible, via stu-

dentship ref: 9740124X.

i

Contents

1 Introduction
1.1 Thesis Structure

2 Evolutionary Robotics

2.1 A Difficult Design Problem
2.2 Evolution as the Solution?
2.3 Simulation as the Solution?
231 Noise e
2.4 Vision
2.0 Comments
3 Genetic Programming the Controller
3.1 GP in Evolutionary Robotics
3.1.1 Controller Architecture
3.2 Should GP beused?,
3.3 Shaping Through Decomposition
3.4 The Evolutionary Algorithm
4 The Robot, the Task and the Environment
4.1 The Khepera
4.1.1 The Vision Module
4.2 Robot Football
4.3 The Pitch (nograss)
4.4 Comments e
5 Modelling the Khepera
5.1 The Simulator
5.2 The Infrared Sensors
5.3 The Dynamics
5.4 The Vision Sensor

il

15
15
17
18
20
21

25
26
27
28
29
30

6 Virtual Sensors 41

6.1 AWhat?. 41
6.2 Genetic Programming 42
6.3 The Implementation 44
6.4 Training Data o 45
6.5 A GoodlIdea? 47

7 Evolving the Virtual Sensors is Hard 51
7.1 Synthesis. o1
7.1.1 The Ball Detector 52

7.1.2 Ball-position Sensor 58

7.1.3 Goal Detector 58

7.1.4 Why does GP Struggle? 59

7.2 Characterisation. 60
7.3 Comments 62

8 Controller Evolution 65
8.1 Evolution Preliminaries 65
8.2 The Decomposition 66
8.3 Ball Homing 68
8.3.1 Reality Transfer 73

8.4 Ball Pushing 73
8.4.1 Reality Transfer 75

8.5 Ball Spiraling 76
8.5.1 Reality Transfer 79

8.6 Pushing to Goal oo 79
8.6.1 Reality Transfer 81

8.7 A Monolithic Push-to-goal Controller 82
8.8 Discussion 85

9 Conclusion 89
9.1 Virtual Sensors 90
9.2 Further Work, 91
Appendices 101

v

List of Figures

3.1

4.1
4.2

5.1
5.2
5.3

6.1

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6

GP controller-module treeo 18
Khepera with K213 vision turret 26
Schematic of the K213 vision turret 28
IR sensor noise 34
Movement of Khepera 35
Ambiguity of images due to iris effects 39
A classification of image type 43
The limit of ball detector performance 5%)
Problem images o 56
Edge detection oL 57
Ball-position sensor performance 58
Ball Detector performance 62
Goal Detector performance on a single image type 63
Hierarchical decomposition of the task 67
Evolution of Ball Homing 69
Ball homing behaviour 71
Ball Homing with collision avoidance 72
Evolution of Ball Pushing 75
Ball (as-box model) pushing behaviour 76

8.7 Ball pushing behaviour 000 77

8.8 Evolution of Ball Spiraling 78
8.9 Ball Spiraling behaviour 79
8.10 Hierarchical pushing-to-goal controller behaviour 81
8.11 Monolithic pushing-to-goal behaviour 83
8.12 Evolution of pushing-to-goal 84

vi

List of Tables

5.1

7.1

8.1
8.2

Equations of Khepera motion 36

The importance of, and difficulty in evolving approximations

to, MIN and MAX information 60
GP parameters for Ball-homing evolution 69
Degradation of Ball spiraling upon reality transfer 80

Vil

viil

Chapter 1

Introduction

There is a growing realisation within the field of intelligent robotics that be-
havioural complexity is approaching a limit imposed by difficulty of design.
Evolutionary robotics, the application of evolutionary algorithms to robot
synthesis, has emerged as an attempt to breach this impasse. Time con-
straints typically require evolution in simulation. Such an approach intro-
duces the problem of successfully transferring the evolved controller from the
virtual to the real world. Such reality transfer is a central issue in evolution-
ary robotics, without attempts at which, work remains unvalidated.

The aims of this project were to work at the current limit of behavioural
complexity in evolutionary robotics, developing techniques that would allow
progression beyond this. This was done through application to a complex
task — robot football. Crossing the reality gap under pinned all aspects of
design, and a data-intensive look-up table approach was taken: response of
modelled aspects in the real world was sampled and recalled in simulation to
recreate a virtual reality.

The work is characterised by its use of Genetic Programming, task de-
composition, and object-level virtual sensor approach to vision. The common
theme of these techniques is their scalability in principle. Scalability is iden-

tified as a key issue in evolutionary robotics, being essential if it is to realise

its potential as a means of extending the complexity of robot behaviour past
the ‘design limit’: At present the, still nascent, field is struggling to pro-
gress from the domain of ‘toy problems’. The intended scalability of task
decomposition and virtual sensors comes from the designer’s insertion of do-
main knowledge to guide evolution and prune the search space — they are
engineering/evolutionary hybrid approaches.

Genetic Programming and the style of controllers it encourages have been
largely overlooked, and in some cases dismissed, by the evolutionary robot-
ics community. Results here, and in [Lee et al. 97] show that logic level
controllers are highly tractable to Genetic Programming and merit further
consideration.

Evolutionary algorithms are not all powerful!! Through task decom-
position complex behaviours can be recursively broken into simpler sub-
behaviours, reducing an intractable problem to many tractable, independ-
ently evolvable ones. It is hoped that these can then be effectively recombined
to give the complete behaviour. Such success will depend upon the design of

the decomposition and results presented show how bad design?

can impose
constraints that hinder evolution and performance: A monolithic controller
is seen to perform better than a hierarchical one. In some cases decomposi-
tion may be necessary and some guidelines about how to go about this are
presented based on lessons learnt.

Tackling the problem of vision is also important if evolutionary robotics is

to progress to real world problems. Vision introduces problems to simulation,

and complexity in evolution. Both of these are circumvented by abstracting

'EA generated solutions are often presented with no impression of the work involved in
getting the EA to solve the solution, perhaps portraying them as more automatic/powerful
than they are. Throughout this thesis details of the steps involved in tuning the fitness
functions and EA parameters have been endeavoured to be documented to avoid this

potential illusion.
Znot intended as such

vision to the object level: ‘wvirtual sensors’ are evolved to give such object-
level descriptions using supervised learning on a training set of images. This
is a novel approach, and is open to criticism, particularly that of reverting
the problem of vision to the domain of static observer and classical machine
vison rather than exploiting the interactive nature of robot perception. In-
deed it proved a struggle to get good sensors using this technique, but given
such sensors this level of abstraction is attractive: Controller evolution using
vision was as tractable as for simple low bandwidth sensors, even with highly
unreliable virtual sensors. Simulation was simple and fast.

The project is based on work by [Lee 97| with extensions of vision and
complexity of task. Implementation of the above techniques, particularly
that of virtual sensors were time consuming and as such the work is largely
a development of a technology. The techniques were applied to the task
of visually locating a ball and pushing it to a visual goal — inspired by
robot football. This is a hard task in the sense of other achievements in
evolving robot controllers and is at the current state of the art in the field.
A controller that could score goals in the real-world, starting facing up to
90° from the goal, and dribbling the ball from the half way line, was evolved.
The general success stands as an existence proof, showing these techniques
to work, and calls for further development and comparative work to assess
their true worth. The complexity of the task goes some way to validating the
scalability of the approaches and it is hoped that the principles of scalability
upon which wvirtual sensors and task decomposition were based will allow

application to more complex problems.

1.1 Thesis Structure

Chapter 2 introduces the field of evolutionary robotics, introducing relevant

concepts and providing some context for the work presented.

Chapter 8 introduces the controller architecture and genetic program-
ming as the means of evolving such controllers.

Chapter / introduces the robot used — a LAMI Khepera with K213
vision turret, the environment — a flat surface bordered by uniform walls
with a vertically striped goal, and the task — pushing a tennis ball to the
goal.

Chapter 5 details the simulation of the Khepera and the environment.
The approach of look-up tables is used to create a ‘virtual reality’ of IR sensor
response and Khepera movement. Problems with the intended methods of
vision modelling, leading to the idea of virtual sensors, are explained.

Chapter 6 explains the method and principles behind the virtual sensor
technique, along with a conceptual argument for and against such an ap-
proach.

Chapter 7 chronicles the virtual sensor development and describes the
characterisation of the evolved sensors for modelling in simulation.

Chapter 8 describes the evolution of the controllers. The decomposition
and fitness functions are described. Controller modules are evolved and the
subsequent reality transfer is presented. Some analysis of controllers at the
behavioural and logic level is made. An experiment on controller decompos-
ition is included.

Chapter 9 summarises the work and suggests future directions.

Chapter 2

Evolutionary Robotics

Evolutionary robotics is the application of evolutionary algorithms to
the synthesis of robot controllers, and in some cases robot morphology
[Hautop-Lund et al. 97]. It has emerged as a response to the growing real-
isation that designing increasingly complex robots using the behaviour-based
paradigm, e.g. [Brooks 91a], is disproportionately difficult and that “inter-
esting robots may be too difficult to design” [Harvey et al. 93]. It is hoped
that by using the semi-automatic approach of evolutionary algorithms robotic

behaviours can breach this impasse.

2.1 A Difficult Design Problem

A number of observations have been made about why behaviour-based robot-
ics controllers are difficult to design. Behaviour-based controllers are charac-
terised by their behavioural, rather than functional, decomposition. In the
archetype architecture, Brooks’s subsumption architecture, behaviour mod-
ules are wired together in task producing layers linking perception and action
in a highly reactive manner [Brooks 85, Brooks 90]. More complex task func-
tionality is added in the form of new sense—action layers that interact with

existing layers solely by means of suppression, inhibition, or message passing

to modules therein. Brooks alludes to natural evolution as the inspiration for
this incrementalness [Brooks 90, Brooks 91b]. This is in contrast to the clas-
sical treatment, prevalent until the late 80’s, of sense, planning and action

as being largely independent of each other.

A behaviour based controller is thus a highly distributed system with
the associated complex dynamics, and [Resnick 97] notes the problems de-
signers can have with distributed systems in general. Whilst there have
been many successes with simple, insect-like behaviours, there is a problem
in design scalability because the complexity can scale with the interactions
between modules: exponential with respect to modules in the worst case.
[Gomi & Griffith 96] note that examples of early behaviour-based controllers
were no larger than several dozen competence modules; [I. Harvey 97] put

the figure at 10 layers.

Further problems arise from the robot being an embodied agent, having
interactions with an external environment. The result of actions is often
hard to foresee and uncertain. The sensors are only measuring devices, often
noisy and non-linear, they do not give descriptions of the world in terms of
objects [Brooks 92]. Good characterisation is needed if the designer is to see
the world from a robot-eye view and utilise this to give effective perceptual
constructs. Even with a good understanding of the response of a sensor it is
hard for the designer to consider all secondary sources the sensor will respond
to. In addition, [Nolfi et al. 94] notes that action selection design is made
difficult by the strong sense-action coupling in behaviour based systems: the
robot’s behaviour depends on current stimuli, which depends on previous
actions, ..., and a loop is formed. A choice of motor action is thus linked to
previous actions and we now have temporal agent-environment interaction

complexities.

2.2 Evolution as the Solution?

Given the above burdens on the designer and the resulting limitations design
is placing on the behaviours achievable, using the semi-automatic method
of genetic algorithms is attractive. These population based, empirical credit
assignment [Angeline 94| search methods have been applied successfully to
many Al fields including the evolution of robot controllers. Their efficacy
aside they are also superficially attractive for their biological metaphor and

its relevance to evolving agents.

Using evolutionary algorithms allows the roboticist to declare the robot
controller at a task or behaviour level, ideally without having to worry about
any lower level mechanisms. This is done through the user defined fitness
function, which also interacts with the environment, to define successful be-

haviour.

A minimum evolutionary run might involve a population of 30 robots,
running for 30 generations. It can be seen that a fitness evaluation time of
the order of minutes will give a run time of the order of days. Such assessment
times may be practical for trivial behaviours such as obstacle avoidance but as
complexity increases more time is needed to encounter and check for the full
repertoire of behaviour. Multiple trials comprising a single assessment have
also shown to be beneficial [Reynolds 94b, Jakobi 94a], further increasing
run times. Operating over such long periods of time the robot physiology
is susceptible to change — batteries lose capacity and drive-trains wear,
leading to altered dynamics — something the evolutionary algorithm will
have to adapt to. Examples of real-world assessment are [Floreano 97] where
collision avoidance takes 2-3 days to evolve and [Cliff et al. 92] where location

and movement to a visual target takes approximately 1 day to evolve.

It can be seen that the principal problem for evolutionary robotics is one

of time duration. Solutions include assessment in simulation during evolu-

7

tion then down load of the fittest controller to the real robot [Nolfi et al. 94,
Jakobi 94a, Cliff et al. 93], and running parallel assessments as in nature
(suggested by [Floreano & Mondada 96]). The common choice is simulation
and indeed most evolutionary robotics is done in simulation. Such an ap-
proach can accelerate assessment by a factor of 10* [section 5.1, below] and
reduces the resources required, robotic and environmental, but brings with
it a new set of challenges; Section 2.3 below details these.

As well as being a necessary solution to human designer limits there is a
stronger viewpoint of evolutionary robotics as being emphatically preferable
to hand-coded design: By choosing a low-level representation for the genetic
algorithm the controller can be more plastic than a prototype used by a
designer, allowing the controller structure to emerge from the evolutionary
process. In this way, with no dogmatic adherence to, e.g., behavioural or
functional decomposition, the best controller type [or in practice degree of
each] for the job can be selected [Harvey et al. 93]. Such an argument is more
fundamentally about introducing assumptions/knowledge into the controller,
and there are proponents for and against this. The task decomposition used
in this project is an example of introducing domain knowledge and section 3.3

looks at this issue in more detail.

2.3 Simulation as the Solution?

Accepting that simulation is neccesary if robot controller evolution is to occur
in feasible time introduces the central issue of simulation to reality transfer of
the evolved robot. In an early evolutionary robotics paper [Brooks 92] high-
lights some of the expected pitfalls: That effort will go into solving problems
that do not come up with the real robot and world (regular validation on real
robots is recommended). That there is a near certainty that programs evolved

in simulation will fail on transfer to the real world because of the differences

in sensing and actuation arising from the difficulty to simulate the actual
dynamics of the real world. These are valid cautionary points and were per-
haps a reaction to artificial life style ‘grid worlds’ being used at the time, e.g.
[Pollack & Ringuette 90]. Since then there has been much work, and success

in “crossing the reality gap” e.g.[Lee et al. 97, Jakobi et al. 95, Nolfi ss].

A number of approaches have been used and shown to work, for simple

problems at least:

Mathematical modelling has been used by e.g. [Jakobi et al. 95]. A two-
dimensional, spatially continuous world with discrete 100ms time steps was
modelled, with the kinematics, sensor response and propagation of radiation
based on control theory and physics equations respectively with empirically
defined constants. Noise at the real-world level is added. The level of detail
and decidedly salient features to model were reached through intuition and
experimentation, and a need to keep computational costs for a single assess-
ment low. Obstacle avoidance and light-seeking behaviours were evolved and

transferred to reality with no qualitative changes in behaviour.

The look-up table approach [Nolfi et al. 94] is a data intensive method
that involves sub-sampling of sensor response over all possible scenarios that
can be encountered in simulation. For example an IR sensor response to a
wall is measured over 20 distances over 180 orientations to the wall. Given
a particular situation in simulation the actual responses of the sensors can
then be recalled — recreating a faithful representation of the robot’s world.
Such an approach takes into account the idiosyncracies of each sensor and
[Nolfi et al. 94] found that each sensor responded in a significantly differ-
ent way from other ‘identical’ sensors when exposed to the same situation.
This approach can also be applied to the dynamics of the robot, measuring

movement for combinations of motor commands.

In contrast to mathematical modelling, the look-up table approach offers

greater faithfulness to the real world and lower computational overheads,

but has diminished generality. [Nolfi et al. 94] recognise that the look-up
table approach becomes more costly as environmental complexity increases:
Without any generic assumptions, samples of every obstacle must be taken,
perhaps resulting in a too highly memory intensive simulation. Combining
sensor measurements from individual objects is a potential problem — com-
binatorics prevent sampling of all relational positions. Non-symmetrical ob-
jects require sampling from many view points; in [Nolfi et al. 94, Lee et al. 97|
circular obstacles are used. For these reasons the scalability of such an ap-

proach is questionable.

The issue of scalability is of vital importance if evolutionary robotics is
to transcend its relatively simple controller behaviour achievements, to fulfill
its raison d’etre as a means for taking robotics past the limitations of human

design.

The Mathematical model approach has been validated in terms of cop-
ing with sensor model complexity up to the level of IR and ambient light
sensors in fabricated ‘two dimensional’ environments containing a few geo-
metrically regular objects. The level of dynamical complexity modelled by
either approach is so far very basic, typically involving no interaction with
the environment except between the wheels and floor. The current state of
the art using either approach is no interaction with walls and perhaps push-
ing of a cylindrical box [Lee et al. 97]. Using the radical envelope of noise
approach and minimal simulation, see section 2.3.1, [Smith 97] has modelled
interaction with walls and ball-pushing. It should be noted that in nearly all
cases mentioned a LAMI Khepera research robot is used. The properties of
light weight, small size, cylindrical shape and precise P.I.D controlled stepper
motors make it far easier to build an accurate simulation of a robot of this

sort than it would be for many others [Harvey et al. 93].

Although in principle entirely extensible, in practice limitations of the

computational requirements of the model and the skill /resources of the mod-

10

eller have prevented this. As mathematical models strive for increased realism
at some point simulation-time or design-time will make the approach slower
than real-world evolution. The success of such an approach therefore relies
on the designer making the right approximations such that reality transfer

is still possible.

2.3.1 Noise

A number of experiments into the effect of noise in simulation have shown
that it is important to faithfully represent the real environment’s noise levels.
In the extreme case of zero noise, evolution will exploit the fact that the robot
will behave identically in similar situations [Harvey et al. 93|, but such reli-
ability cannot be counted on in the real world. In the case of too much noise
one can get freak peak or trough levels that no longer trigger behaviours in
the real world. [Nolfi et al. 94] discovered that adding a translational posi-
tional noise they termed ‘conservative noise’ to the robot in simulation elim-
inated the drop in fitness upon reality transfer observed with conventional
or no-noise in simulation.

In [Jakobi et al. 95], it is noted that noise added above the level of that
found in the real environment “may help to cope with the inevitable defi-
ciencies of the simulation by blurring them”. This has since developed into
the radical envelope of noise hypothesis [Jakobi 97a] where a distinction is
made between features which may have some bearing on the robot behaviour
(base set aspects) and those that should not affect behaviour (implementa-
tion aspects). Non-reliance on implementation aspects is ensured through
making them unreliable through variation over trials; in such a situation fit
individuals must ignore these aspects of the simulation. This approach is
powerful in terms of allowing generalisation — e.g. the colour of a ball could
be made an implementation aspect, ensuring that the controller would not be

sensitive to the actual colour of the ball in the real world — and evolving ro-

11

bots that operate in more complex environments, by selectively removing the
need to model certain aspects by making them implementation aspects'. The
emphasis of simulator design moves away from trying to minimise all differ-
ences between simulation and reality to acknowledging these and preventing
the controller relying on them. This technique has been successfully applied
to evolution in simulation, and subsequent transfer to reality, of corridor

following, visual target seeking,[Jakobi 97b] and robot football [Smith 97].

2.4 Vision

This project uses camera-like (one-dimensional) vision. It is intended that
this be used for navigation purposes, facilitating identification of objects at
a distance. Given that the complexity of sensor required is related to the
range of behaviours and environment in which the tasks are to be performed,
it is essential evolutionary robotics tackle vision if it is to progress past ‘toy
problems’.

Examples of simulating vision in evolution are [Floreano & Nolfi 97] and
[Smith 98] using thresholded and grey level Khepera vision module images
respectively. [Jakobi 98] and [Jakobi ng] use 32 pixel and video resolution

images, modelled using the radical envelope of noise approach.

2.5 Comments

This chapter has focused on the issues of evolutionary robotics relevant to
this project. Other issues/challenges, not necessarily focussed on in this

project, outlined by [Matari¢ & Cliff 95] include:

e Fitness Function Design: It is non-trivial expressing behaviours in the

Lalthough the base set must of course be adequate for the desired behaviour to be a

priori possible

12

form of a fitness function. The exploitative nature of the GA will
often ‘cheat’, finding a way to satisfy the fitness function that does
not produce the behaviour intended. The design process is often one
of incremental trial and error, which unfortunately is often masked by

failure to report on this process.

High level fitness functions, e.g. goals scored, are often inadequate as
they do not provide enough guidance — the step from not scoring to
scoring is a large one and the fitness landscape has no intermediate
points, up which the evolution can gently climb. Given this, compon-
ential fitness functions are required, for example the standard collision
avoidance one consists of move-fast, move-straight and avoid-objects
components. For more complex problems the interactions between
these sub-goals and their relative weightings further exacerbate design.
Work towards high level fitness functions working in conjunction with
ecological constraints by [Floreano & Mondada 97] is a potential solu-

tion. The decomposition used in this project, see chapter 3, is another.

Co-evolution: As a powerful method for searching fitness landscapes,

in particular for evolving group or adversarial behaviour. See e.g.

[Miller & CIliff 94, Floreano & Nolfi 97].

Genetic Encodings: The controller must be expressible as an encod-
ing, phenotypic or genotypic, suitable for manipulation by a genetic

algorithm. See chapter 3.

Evolving Morphology: Brooks advocates this in [Brooks 92] as a method
for reducing the size of the search space. Robot morphology ostensibly
has a large effect on behaviour, and co-evolution of body and control-
ler can optimise both and the interaction between the two. Taking
this approach is consistent with the emerging view of mind-body as

a strongly coupled whole [Clark 97]. [Hautop-Lund et al. 97| evolve

13

wheel-base and radius, body size, and sensor positions along with the

controller, in simulation only.

The motivations behind evolutionary robotics have been outlined. It
promises a great deal although in its present nascent stage is failing to work
at even a labour-saving level, with evolved controllers taking more or the same
amount of effort as would have been required had they been hand crafted
[Matari¢ & Cliff 95]. The author considers the central problem to be one of
the [inevitable] simulator design and subsequent need to cross the reality gap,
with the scalability of technique used being paramount. There are advances
to be made in terms of complexity of dynamics and sensory environments.
Additional approaches to crossing the reality gap include evolution in simu-
lation followed by further evolution in the real environment [Nolfi et al. 94],
and choosing controller representations that are robust to real world transfer

[see section 3.2, below].

14

Chapter 3

Genetic Programming the

Controller

The Genetic algorithm of choice for this project is Genetic Programming,
GP, an evolutionary search algorithm with a tree data-structure encoding.
Individual trees are (typically) functional, LISP-like programs. The possible
functions, located at the branching nodes of the tree, form the function set
and the possible atoms, located at the leaf nodes, form the terminal set.
A population of trees is manipulated by an evolutionary algorithm, briefly
described in section 3.4. [Koza 92b] provides a comprehensive introduction to
GP and it will only be discussed further in the context of the variant used in
the project. Evaluating the effects of variations of GP and GP parameters on
the evolution is not an aim of the project. The controller representation used
was developed by [Lee et al. 97]. The ‘sgpc’ program [Tackett and Carmi] is
used as the GP engine.

3.1 GP in Evolutionary Robotics

The first example of GP use in evolutionary robotics is [Koza 92b], with wall

following and box pushing behaviours evolved in simulation. The function

15

set was {IFLTE (if argl less-than-or-equal-to arg2, do arg3 else do arg4)?,
PROG?2 (a Lisp construct for sequencing evaluation of its two arguments)};
the terminal set consisted of sonar sensors (returning distances to the nearest
wall at which they were pointing), actions (moving backwards/forwards,
turning by a constant amount), and carefully chosen constants such as the
minimum safe distance to avoid hitting a wall. As a piece of evolutionary ro-
botic research? this work remains unvalidated since no attempt was made to
test the controller in reality, and so it should be considered as Artificial Life.
It has been criticised as: Relying on the simplicity of the simulated environ-
ment [Brooks 92], with no noise modelling; Choosing the terminal/function
set on the basis of an existing control program [Matari¢ 90] that could per-
form similar tasks, thus providing no evidence for GP as a general method,;
Using artificial sensors, returning an absolute description rather than a re-
sponse, and artificial actions, being absolute distances of motion not motor

commands.

Another example is the sequence of work [Reynolds 94c, Reynolds 94a,
Reynolds 94b] evolving corridor following and collision avoidance. The func-
tion set was {+,-,*,% ‘protected divide’ (preventing overflow if division by
zero is attempted),ABS,IFLTE, TURN,LOOK_FOR_OBSTACLE (returning
the distance to the nearest obstacle in the direction of its argument)}, the
terminal set was real constants. This work is more realistic than [Koza 92b]
with noise and robustness of controllers with respect to e.g. different starting
positions being considered. However, the sensors used still return a distance
rather than a real sensor response and the evolved controllers have not been
validated in reality. The tree representation used was real-valued with the

overall value of the tree being transformed to a steering direction, in which

!A conditional statement returning a real number — consistent with the rest of the

tree nodes
2which the author may not have intended it be

16

the robot moves for a fixed period of time.

The work of [Lee et al. 97] is the only example, known to the author, of
GP evolved controllers being validated on real robots, and hence could be
said to be the sole example of GP evolutionary robotics, as opposed to GP
artificial life. Box pushing towards a light was evolved and this is at the
current state of the art in terms of behavioural complexity in evolutionary
robotics. Lee’s controller architecture is used in this project and is detailed

in the next section.

3.1.1 Controller Architecture

It is an entirely reactive, combinatorial logic system in which the output is
determined solely by the sensor state at evaluation [Lee et al. 97]. A com-
binatorial logic system can be mapped to a boolean network which can in
turn be mapped to a boolean tree [Bryant 92|, giving a architecture suitable
for use with a standard GP representation. The function set of the boolean
valued tree is {AND, OR, NOT, XOR}3. The leaves of this boolean tree are
structured sensor conditionals, consisting of a comparison function (>= is
used) taking terminals as arguments. The terminal set consists of real con-
stants and sensor values. Thus sensor values are compared with other sensor
values or ‘thresholded’ against real constants (taking values in the range of
the sensor values) to give a boolean value compatible with the higher level
branches of the tree. Such a tree (see figure 3.1), with two data types,
functions designed for specific data types, and syntactic constraints on tree
structure is termed a strongly-typed GP [Montana 93|. It would be possible

to do without syntactic constraints but would result in a higher proportion

3although some of these are superfluous in terms of being able to define any boolean
network this is not necessarily a bad thing. Although enlarging the search space, strictly
unnecessary functions may make a solution easier to find. Selection of function set remains

something of an art form.

17

of ineffective subtrees.

As described so far, a tree will transform sensor state to a boolean value.
A number of boolean values are required if the output is to be used to specify
the states of two motors (e.g. for a Khepera) so the values returned by N
such trees are used, these trees are joined by a dummy root node. With
N=6, as used in this project, the output of such a tree can be interpreted
as 8x8 possible motor commands, and this is deemed continuous enough for

the purposes of the tasks attempted.

DUMMY ROOT

Figure 3.1: A partially drawn controller-module. T denotes member of ter-

minal set {SENSOR, REAL-CONSTANT}

3.2 Should GP be used?

The review in section 3.1 shows the use of GP in evolutionary robotics to be
fairly limited. Neural networks (NNs) evolved using a genetic algorithm, are

the prevalent choice and a number of reasons have been cited for their use:

18

e That small variations in the structure or synaptic values of a NN result
in small variations of the behaviour of the controlled robot, and that the
resulting smooth fitness landscape of the search space aids the genetic

algorithm [Floreano & Mondada 96].

e Their resistance to noise and breakdown, and their generalisation abil-

ities [Floreano & Mondada 96].

e That they have the ability to adapt through learning after evolution
[Nolfi et al. 94]. [Brooks 92] cites this as an essential feature of any

controller evolved in simulation.

e That the primitives manipulated in the evolutionary process should be
at the lowest level possible since higher level semantics restrict the pos-

sible set of controllers available to the evolutionary search [Harvey et al. 93].

None of these properties of NNs, which GP programs may or may not have
to a lesser extent, is grounds for dismissing GP. [Floreano 97|, who uses NN,
concedes that there is not enough evidence for the superiority of one type with
regard to generalisation and complexity of behaviours of the evolved robot.
Indeed the lack of work with GP, and the success of [Lee et al. 97] means it is
a potentially fruitful area of research. The last objection is largely a matter
of whether one sees designer input as misguided prejudices hindering the
evolutionary process or expert domain knowledge cutting down the search
space and guiding the evolutionary process. It is more relevant to the higher
level behaviour language genetic programming representation proposed by
[Brooks 92] than the low-level logic networks used in this project.
Genetic programming is distinguished from the standard genetic algorithms

typically used to evolve neural net robot controllers by its variable length tree
representation. Such extensibility is attractive if it is to be applied to evol-

ution of arbitrarily complex robot controllers. Work at Sussex [Harvey 92]

19

uses a variable length genotype genetic algorithm for similar means. In prin-
ciple incremental evolution, starting with shorter genotypes with presumably
simpler behaviours and moving towards longer genotypes until sufficient be-
havioural complexity is encoded, is possible. Given this the, roboticist need
place fewer prior restrictions on the size of controller; underestimation may
prune the set of all good controllers from the search space, overestimation

may unnecessarily slow the evolution.

3.3 Shaping Through Decomposition

It is proposed that, at some level of behavioural complexity, evolution of com-
plete homogeneous controllers will become intractable [Perkins & Hayes 96].
An incremental method/architecture is thus eminently more scalable and the
architecture of [Lee et al. 97] has this property via task decomposition and
subsequent recombination through arbitration. Task decomposition defines
an incremental path through lower level behaviours being combined to form
more complex behaviours.

Decomposition is done using the behaviour based archetype, where beha-
viour producing primitives are coordinated through arbitration. The prim-
itives have the form of the controllers already described and the arbitrators
are similarly reactive networks, their boolean output switching activation
between behaviour primitives rather than being interpreted as motor output.
Using such an approach, hierarchies of arbitrators and behaviour primitives
can be evolved so as to select the ‘correct’ behaviour according to sensor
state. Such a plasticity affords evolutionary adaptation at the sensorimo-
tor level and behaviour selection level. There is now a requirement for a
designer to select the decomposition of the task into sub-behaviours, and
it is hoped that the modularisation chosen will be effective and that it will

make tractable, or speed up, the evolutionary process. This is likely since

20

human designers are good at decomposing complex tasks at a coarse, or
behaviour scale, or are at least better at this than at a lower level sensor-
imotor scale. Such a belief in the designer is the foundation of robot shaping
[Perkins & Hayes 97], where a similar hybrid engineering-evolution approach
is proposed.

Using such a decomposition, suitable sub-sets of sensors can be selec-
ted for each primitive/arbitrator. Such selection is again imparting domain
knowledge, and prevents the evolutionary algorithm from having to ascertain
e.g. that an IR sensor is useless when it comes to finding the goal-mouth in a
robot football game. Decomposition also makes design of the fitness function
easier by reducing the number of components per function (see section 2.5)

An example of a hierarchical architecture as used in this project is shown
in figure 8.1: using an example of a robot footballer, the root node might be
an arbitrator between ‘find-ball” and ‘push-ball-to-goal’ behaviour-producing

subtrees.

3.4 The Evolutionary Algorithm

The genetic programming works on a population of controller trees. The ini-
tial population is randomly generated in this work although it can be seeded
with hand-coded controllers in an attempt to guide evolution. The genera-
tional variant is used initially, where the fitness of the entire population is
evaluated before fitness based selection * of individuals to pass their genetic
material to the next generation. Selected individuals are either copied into
the next generation, mixed through crossover to produce offspring, hopefully
combining good traits of both parents to produce even better individuals,

or mutated. Mutation involves pruning and randomly re-growing sub-trees,

4tournament or fitness-proportional methods were used, the choice was found to be

insignificant in terms of algorithm performance

21

crossover involves swapping sub-trees between individuals, the details can be
found in [Koza 92b]. The syntactically constrained nature of the controller
tree requires syntax preserving crossover, which is simply a matter of selecting
crossover points in the parents to be at the same node class (logic-function,
>= function, and terminal). The crossover, mutation and copying probabil-
ities are fixed and user-defined. The success of the algorithm was found to
be dependent on, although not overly sensitive to, these parameters. As a
rough heuristic crossover values below 0.4, and a split of the remaining 0.6

between mutation and copying, worked equally well.

The evaluation involves running the robot in simulation for a given num-
ber of time steps, possibly over multiple trials, and calculating its fitness over
these based on the fitness function. The controller is evaluated every 200ms,
roughly approximating a continuous reactive controller, on the current sensor
state, the motor speeds being set according to the controller output and re-
maining unchanged until the next update. The total fitness is typically the

accumulation of the fitness at each time step.

Selectional pressure in the evolutionary process causes convergence. Pre-
mature convergence, where the population is suboptimal and homogeneous,
should be avoided. Diversity can be maintained through lower selectional
pressure (e.g. via smaller tournament size in selection) and through an island
or cellular model GP, both of which were available in the GP system used.
In the island model smaller populations are evolved in parallel with occa-
sional migration of the best individuals between populations. The migration
parameters must provide a balance between global mixing and maintaining
local diversity. In the cellular GP individuals inhabit cells in a grid, mating
is more likely with nearby individuals and so diversity can be maintained

through geographical isolation.

Multiple trials are important to [statistically] counter the effects of non-

determinism [Matari¢ & Cliff 95] and to control for the effects of implement-

22

ation aspects — for example the starting position of the robot. As in the
Jakobian definition, section 2.3.1 above, ‘implementation aspects’ are those
that the evolved robot should not rely on. Variation of these prevents ‘brittle’
controllers from over-fitting, where exploitation of a regularity prevents gen-
eralisation to other conditions. Experimentation has been done on the best
method of combining scores from multiple evalutations to give the fitness:
[Jakobi 94b] notes how taking the mean gives a fitness closer to the true
value® but does not promote robustness; a controller that performs very well
on most of the training examples but fails on the others could be considered
fitter than one which performs moderately on all of them. In contrast, taking
the worst score ensures robustness although information is discarded; per-
forming badly on all runs gives equivalent fitness to scoring badly on just
one run. [Smith 97] prefers median-score as the fitness measure. [Lee 97]
investigates random selection of a sub-set, from a super-set, of starting po-
sitions at each generation, finding that it reduces the computational cost of
the evolution®. The method of choice is still an open issue, being largely

problem specific.

5The fitness averaged over N trials, as N tends to infinity
6[Gathercole 98] gives a thorough treatment of Dynamic Subset Selection in evolving

GP classifiers

23

24

Chapter 4

The Robot, the Task and the

Environment

The task was inspired by robot football. The use of ‘football’ to describe
the behaviour is perhaps hyperbolic; more prosaically it is pushing an object
to a target. In terms of behavioural complexity in evolutionary robotics

this task is state of the art. The task and environment were shaped by the

25

properties/limitations of the Khepera robot and the K213 vision turret.

4.1 The Khepera

The LAMI Khepera research robot with K213 vision turret is shown in fig-
ure 4.1. It is small in size (57mm diameter, 60mm high), light weight with
a smooth cylindrical plan profile, has an on-board 32 bit Motorola 68331
processor, is equipped with eight short range (= 4c¢m) infra-red proximity,
and ambient light sensors (not used here). It has two powered wheels, each
with a feedback controller (P.I.LD) with highly accurate positional encoding

(~ 107 'mm).

Figure 4.1: Khepera with K213 vision turret

The Khepera can run autonomously (for up to 30 minutes), using an
on-board battery, or tethered with power being supplied by an overhead
umbilical cord. Programs can be written in ANSI C using Khepera BIOS

functions, compiled, then down loaded to the Khepera via this cord from a

26

workstation serial line. The line also allows two-way communication with,
and control of the Khepera using a communications package such as Kermit.

Multi-tasking is possible, allowing the behaviour primitives to work in
parallel with the output being selected by arbitration. In practice a serial
implementation is used for reasons of efficiency: Arbitration gives the beha-
viour primitive that has control, this is then evaluated to give the output.
For this project a control program involves a ‘sense — evaluate controller
— send motor commands — wait’ loop with each loop-cycle duration being

200ms.

4.1.1 The Vision Module

The K213 vision module, figure 4.2, plugs into the top of the Khepera. It
contains a one-dimensional 64 pixel line camera'! and an ambient light in-
tensity sensor. Output is a grey scale (256 levels with 0 being black) linear
image: figure 5.3 shows images of background and ball against background.
The view-angle is approximately 36 degrees and the focal range is 5 to 50cm.
The scanning period can be set as fast 50ms; adequate for the 200ms time
slicing used in the project.

The turret will return the brightest and darkest pixel indices if requested.
Capture of sub-sampled images is also possible to give 16 or 32 pixel images.

The light intensity sensor is used to adjust the integration time of the
camera according to the total ambient light level. This simulates an iris,
improving the contrast of images and enabling operation over a wider range
of lighting levels. An additional effect is to remove any cues of absolute light
levels from the image; a white background can appear the same as a black
background due to iris compensation. This was to have repercussions in the
modelling of the vision. The iris functionality is hardwired and cannot be

switched off, though the light intensity sensor can be read.

ITexas Instruments TSL213

27

Side view

l[ll'llﬂl'll ﬁ

Y '

Figure 4.2: Schematic of the K213 vision turret

The vision and IR sensors are noisy with respect to time, given a constant

input. Response characteristics vary over IR sensors and pixels in the camera.

4.2 Robot Football

Robot football is a burgeoning field within Al/robotics. The task of football
has been proposed as a benchmark problem as it ultimately requires techno-
logies of: design principles of autonomous agents, multi-agent collaboration,
strategy acquisition, real-time reasoning and sensor-fusion [Kitano et al. 97].
There is a robot football world cup, the ‘RoboCup’, receiving 100 entrants
this year. The style of football herein is closer to that in the Autonom-
ous Robot Football Tournament with its single player sides and rejection of
over-field cameras (permitted in RoboCup) allowing global position know-
ledge. In the ARFT single robots (invariably Khepera’s with K213 vision
modules because of size regulations) must push a tennis ball to a goal whilst
an opponent is doing the same. Goals are coloured uniform black, the ball
is white, the walls uniform grey and the Khepera’s are dressed in black and
white vertical stripes. The winner of this year’s tournament scored 6 goals

in 20 minutes.

28

For the purposes of this project the opponent is removed; resources did
not allow the whole issue of coevolution that this would necessitate. Given
this simplified interpretation of robot football there are still significant chal-
lenges a successful controller must deal with. It must locate and move to-
wards a ball using a limited (low resolution and one-dimensional) vision
sensor, then push the ball towards the goal which must also be visually
located. Whilst pushing, the ball will tend to slide away laterally from the
Khepera because of the point contact between two circular objects. The roll
of the ball also introduces a natural time scale to the dynamics that the

Khepera must keep up with.

Modifications to the Khepera

A fundamental problem is that the line camera is blinded by the ball when
pushing it; the ball fills the field of view and the goal cannot be seen. Pushing
a ball to goal with a reactive controller given such a situation seems infeasible.
This is overcome by lifting the vision turret; the ball can be looked over
when it is close but comes into view as separation increases because of lens

dispersion in the vertical plane.

4.3 The Pitch (no grass)

This is a 800 x 700mm smooth surface. Walls are used to act as neutral
backgrounds, making the task of identifying ball and goal easier. For this
purpose they are dark green. They are visible up to a range of 40mm by the
IR sensors, making collision avoidance possible. A tennis ball is used, this is
a highly visible fluorescent yellow, it is visible up to a range of approximately
30mm to the IR sensors and the length of the pitch to the vision. The goal
is a black (darker than the walls) and blue (lighter than the walls) vertically

striped region. In an image containing ball, goal and background there is

29

good contrast between the three. The goal stripes provide a potential mech-
anism for discrimination between ball and goal: It should be remembered
that because of the iris, objects can not be reliably distinguished on intens-
ity alone. The stripes are wide enough (15mm) so that the striped region
can be resolved at distances of up to the maximum focal range using 32 or
64 pixel images.

The pitch is in a room that is consistently well lit with diffuse overhead
fluorescent lighting. Steps were taken to remove any dependence on this, see
section 6.4, so that e.g. moving the pitch to another room will not result in

failure.

4.4 Comments

The Khepera is a very convenient desk top research robot, but this is also
a matter for caution: Its small size and desk top nature almost necessitate
construction of special environments which can tend to be unnatural and
simplified. The Pitch used here is a case in point. Success of a technique
in any such environment is diminished by issues of scalability to the ‘real
world’. It is however useful as an initial testing ground for the methods and
the author is sceptical of the capacity of the vision sensor to cope with more
complex environments. If the work is successful, time allowing, realism could

be increased by removing the visual screens (i.e. walls) for instance.

30

Chapter 5

Modelling the Khepera

The infra-red sensor response and dynamics are modelled using the look-up
table approach introduced in section 2.3, above. Such a method can be used
because of the simplicity of each of these aspects for the environment-task-
robot combination used and confers increased realism and less computational
intensity than the mathematical modelling approach. Modelling the vision
proved more of a challenge, so a new approach of a higher-level ‘virtual’ or

‘software sensor’ was used.

5.1 The Simulator

A simulator developed by Wei Po Lee [Lee 97] and integrated with sgpc was
adapted and used for the project. The simulator was ideal for adaptation
and use in the project; being designed for Khepera and circular-box-pushing-
to-a-target. The simulator does not model interaction with walls; collision
with a wall results in termination of the run. This is fine for the football task
as the walls were only introduced to provide a [IR] visible boundary to the
pitch and to act as sight screens. The Khepera should not exploit physical
interaction with the walls when playing.

The IR sensor, vision and dynamics models detailed in the coming sec-

31

tions were implemented. A run-time MATLAB graphical display was added;
figure 8.6 shows a screen shot. This proved invaluable for debugging and can
be run at speeds that allow the evolutionary process to be observed in reas-
onable time. Watching the evolution can help identify how individuals are
exploiting the fitness function to behave in unintended ways. It also became
apparent that such a facility would be very useful for run-time environmental
shaping, with the author frequently wanting to modify parameters to drive
the evolution in the direction that was really wanted. For example, as the
robot comes to master the problem from all the starting positions specified
it sometimes becomes apparent that its control strategy may fail in certain
scenarios. Being able to introduce such scenarios would be extremely useful.
Run time interaction with the evolutionary algorithm would also open up
other shaping possibilities, incrementalness in terms of task/environmental
complexity for instance. The author is not aware of any such research in

evolutionary robotics.

The box kinematics model in the existing simulator treated the box as
moving freely when being pushed by the Khepera: moving along the normal
to the point of contact, and being stationary otherwise. This was extended
to ball-like kinematics by letting the ball roll after it has been pushed; at the
velocity and direction it is pushed in, with deceleration at each time step.
Noise is added to the deceleration, the direction of velocity, the direction
of movement during pushing and the separation of the ball from the Khep-
era after each pushing time-step. These aspects were designed to capture
the irregularities of the tennis ball’s movement and shape, with the last as-
pect approximating the tendency of the ball to rebound or roll away from
the Khepera during pushing. In practice the ball-like aspects of the model
were ‘switched off” by choosing box-like values for the coefficients because
accurately determining these was not possible given the lack of suitable ex-

perimental equipment. Section 8.4.1 details an (unsuccessful) attempt at

32

introducing ball dynamics through choice of coefficients based on rough ob-
servation.

The simulator, with graphics disabled, gives speed up of order 10® over
real world evolution, allowing most runs to be completed in the order of

minutes.

5.2 The Infrared Sensors

Infrared snapshots of the wall and ball are taken starting from the point of
saturation (2mm) and moving backwards in 2mm increments until the object
in question becomes invisible to the sensors (28mm and 48mm for the ball
and wall respectively). At each separation a 360 degree turn in steps of 2 de-
grees is made, with 30 readings being made for each sensor, with the average
and standard deviation being recorded. The positional sampling frequency
is adequate, with the variations due to changes in distance/angle being be-
low the level of noise. Analysis of the standard deviations shows the noise
characteristics to be independent of the IR sensor and object being viewed,
but a strong function of the IR sensor reading, see figure 5.1. The noise is
modelled by calculating the mean standard deviation ! over IR sensor value
‘buckets’ to produce a noise look-up table, indexed by IR sensor reading.
The IR data is used by the simulator to produce a two-dimensional look-
up table, for wall and ball, that can be indexed by distance and angle to
object. The symmetry of the ball and walls requires only sampling over
distance-from-object and angle-to-object. The indexed element is an array
of 8 IR sensor readings to which the empirically derived noise is added. For

distances-to-object outside the range of the look-up table, the values at the

Lit can be seen that for medium band IR readings the distribution of standard deviations
is skewed. This was ignored and it was assumed that using the mean standard deviation

would provide an accurate enough model of the noise.

33

150

sSensor noise

!
. ‘ ‘ ‘ ‘]

0 200 400 600 800 1000 1200
sensor reading

Figure 5.1: Scatter plot of IR sensor noise as a function of sensor value for

data collected

appropriate limit are used.

5.3 The Dynamics

The movement of the Khepera, given a left and right motor command for the
time slice duration, is described by a change in heading and a translation of
the Khepera’s centre.

Experiments showed that the on-board odometry corresponded well to
the absolute movement of the Khepera. This allows high resolution [units of
0.08mm]| on board measurement of the short distances moved by each wheel
for each pair of motor commands. By measuring movement for sequences of
motor commands it was found that it was reasonable to consider each pair
of motor commands in isolation, with the movement being produced being

largely independent of the prior and following commands. This approxim-

34

ation starts to break down with oscillations between full forward and full
backward speed [£10 0.08mm/10ms] where the positional deviation is still
less less than 5%. It is attractive to keep this approximation since the size
of the motor look-up table will cube if the immediate context of the motor

state is considered.

/\ X

Figure 5.2: Movement of Khepera

All of the 8 x 8 combinations of motor commands were executed 10 times,
the average and standard deviation movement of each wheel were recorded.
These wheel movement measurements are transformed into translation and
change-in-heading look-up tables using a model of the khepera following a

circular arc, with a constant angular velocity 2. See figure 5.2 and table 5.1.

Error for each of the quantities is also calculated and stored in look-up

tables, combining the error in the measured quantities using the maximum

2this was introduced to the author by John Hallam and Graham Horn

35

Az and Ay the x and y translation respectively of the Khepera centre

and the change in heading Ah, in radians, are given by:

Az = Rsin(wt)

Ay = R(1 — cos(wt)) from trigonometry, where R is the radius
of the arc followed, w the angular velocity,
t the time slice.

Ah = wt

where wt is given by:

wt = (vt — yt)/D

= (d, — d;)/D where D is the wheel base of the Khepera,
and v, are the over-ground velocities of
the left and right wheels and are related to
the over-ground movements of the left and
right wheels, d;,, as is usual.

and where R is given by:

—_ le+dr
R= 34—
since:
R=% from standard equations of motion, where

w

v is the tangential velocity given by v =
(vi + 1) /2, where vy, are related to d;, in

the usual way

Table 5.1:

36

possible error approach. Translational noise is of order 10 'mm, heading
noise is of order 10° degrees, and in both cases is a function of the relevant
quantity. These tables give movements in the Khepera’s frame of reference.
In simulation the values are indexed according to the motor commands given
by the controller, noise added, and then transformed to global coordinates
to give the absolute movement of the Khepera.

Interaction with walls does not have to be modelled due to the termination
of the run upon contact with them. It was provisionally assumed that the
Khepera’s movement would not be altered when pushing the ball, with a view
to modifying this if this assumption caused problems upon reality transfer.

The accurate P.I.D. controller and positional encoding of the Khepera

greatly simplify modelling the dynamics.

5.4 The Vision Sensor

The initial intention was to use an extended look-up table approach for the
vision modelling — ‘Extended’ because images of lone objects would have to
be fused to give images of scenes containing multiple objects as a result of
the impracticality of capturing a database of images of all scenarios. With a
single object it is possible to do this but with multiple objects the exponential
combinatorics make it totally unscalable. The idea is similar to cinema ‘blue
screen’, where independent foreground and background images are combined
to give a seamless composite image. In the case of this project look-up
tables of images of the wall, goal and ball were to be made, at each time
step the relevant individual images could be extracted and overlaid [with
the wall at the bottom and the ball at the top] with some smoothing at
the seams to avoid false edge artifacts. The pixel values of this composite
image would then be used in the GP as terminals. Such an approach is

potentially scalable, with calculations of occlusion, and false edge artifacts,

37

and the implicit assumption that the appearance of the object is independent
of its position/environment (e.g. what about shadows, changes in lighting)
becoming an issue in the more complex case.

Characterisation of the K213 vision turret revealed some idiosyncracies
that eventually contributed to the rejection of this technique. The scaling
effect of the iris means that it is not a matter of simply superimposing ball on
background. Figure 5.3 shows how the image of a ball against a background
is dependent on the brightness of the background, information that is not
contained in an image of the background-without-ball due the iris’s intensity
normalisation.

A potential solution would be to scale all images according to the iris value
to give absolute intensity images. But, the iris does not normalise the image
in the sense of giving a constant average intensity [or minimum or maximum
intensity|, nor is the average intensity a reliable function of the iris reading:
A simple constant scaling or scaling based on an observable quantity would
not give an absolute value. In the end the iris was ‘paralysed’ by plugging
it with an LED, which went part way to solving the problem, although the
contrasts of ball/goal/wall were greatly reduced.

There were also problems in determining where exactly the ball extremit-
ies were in the ball images® so that the correct section of image could be
projected onto the background images. It was also expected that the GP
representation would not be powerful enough to deal with pixel level input
of the images, perhaps requiring an automatically defined function [Koza 92a]
extension to the GP engine used*. These problems are probably surmount-

able but an alternative approach of ‘virtual sensors’ seemed fruitful...

3positional measurements of the ball and Khepera were not accurate enough to use

geometry reliably
“4a considerable undertaking given the time available

38

image of a background, which could be light or dark image of the ball against light and dark background

250}] 250 ‘ = ‘

200 b 200

150 150
2 =y
(%] 7]
c c
[V Q
E E

100 b 100

50 b 50 R
O Il Il Il 0 Il Il Il
0 20 40 60 0 20 40 60
pixel pixel

Figure 5.3: Image 1, a background, contains no clues as to how an image of

a ball against it would appear (image 2) since the background could be light

or dark

39

40

Chapter 6

Virtual Sensors

This chapter details the vision modelling technique used. The shortcomings

of existing methods have already been discussed in section 5.4.

6.1 A What?

A ‘virtual sensor’ here is a software sensor or detector that returns an object
level description of an image. For example a ball detector that returns TRUE
when a ball is visible, FALSE otherwise, or a goal position sensor that returns
a numerical value correlated to the position of the goal in the image.

These sensors could conceivably be hand crafted if one possessed enough
expertise, however the problem can be posed as one of supervised learning
and hence its solution (hopefully) automated. To synthesise a ball detector
for instance, involves training a detector to output TRUE when presented
with an image containing a ball, FALSE otherwise.

Given such high level sensors, vision at the pixel level need not be simu-
lated, greatly simplifying the modelling of vision. Instead one need only know
the output of the sensor for the particular positional scenario. Accurately
predicting the output of the sensor requires identification of all the factors

affecting its performance, which might be the angular width of the ball in

41

the image or whether or not the ball is overlapping the goal for instance.
With careful characterisation it should be possible to accurately predict the
sensors’ output for purposes of simulation. All parameters that could con-
ceivably be factors were recorded during the collection of the images for
the supervised learning. These were angular width of ball/goal, distance to
ball/goal, angle to ball/goal and class of image with respect to occlusion, of
which there were 30, shown in figure 6.1. The last factor classifies the ball
as ‘partially visible off the left of the scene’, ‘fully visible and occluding the
right edge of the goal’, ‘no ball’, etc. The classification was geometrically
derived, being calculated from the relative position of the Khepera, ball and
goal. A minor complication was the visible width of the ball changing with
distance from the Khepera as a result of the vision turret being set up to
peer over the ball when close: the coefficients of a parametric model of visual
radius as a function of separation were derived empirically. Inspection of
images showed that the geometrical classifier, the labeller of the images for

the supervised learning, was reasonably reliable.

6.2 Genetic Programming

Genetic Programming was chosen, somewhat arbitrarily, as the supervised

1 and, the more estab-

learning method. Alternatives were decision trees
lished, neural nets.

Most of the examples of Genetic Programming image classification use
feature rather than pixel level input. An exception is PADO(parallel Al-
gorithm Discovery and Orchestration) [Teller & Veloso 95] which classifies

256%256 256-level grey scale images. The function set includes arithmetic

lin preliminary tests classifying images containing balls from those containing just
backgrounds genetic programming outperformed the c4.5 decision tree algorithm by 97%

to 90% images classified correctly respectively

42

DO O
HOIIIEN'S

goal left
symmetric:al to goal left
| goal right
M M goal centre
O GIONG
| | goal fill
0 b
visual limits
goal

Figure 6.1: Classes of image with respect to overlapping edges of ball and

goal and visual limits

operations, conditional constructs, pixel access, regional properties (such as
maximum and average), indexed memory and evolveable library, functions.
This is sophisticated (including parallel orchestration of a set of classification
algorithms and “not simply a genetic algorithm” [Teller & Veloso 95]) and
computationally intensive well beyond what is possible here. [Johnson et al. 94]
evolve programs to give the position of a person’s hand on a full body
thresholded image, reporting that evolved routines perform better than those

they were able to write by hand. [Tackett 93] evolves classifiers to distinguish

43

images containing visual targets from those that do not, using a statistical
feature vector of the image as input. The function set is {+,-,*,%,IFLTE}.
GP is compared to multi-layer perceptrons and binary tree classifiers and

found to outperform them.

6.3 The Implementation

Consideration of the Khepera CPU processing power, see appendix 77, shaped
the choice of function set. Arithmetic operators {+,—,*,%} and IFLTE com-
prise the function set, these can be combined to give any vision processing
function one might reasonably require. More powerful operators such as the
regional property functions in PADO are not used. Pixel intensities are used
as input and two methods were implemented: One where each pixel is a
distinct terminal, its value being the pixel’s intensity; One where a PIXEL
function accesses the pixel at an index given by its numerical argument and
returns that pixel’s intensity. In both cases the terminal set includes real con-
stants (randomly generated in the initial population) in the range of pixel
intensities or indices, respectively. The second method is more powerful,
being able to direct attention to pixels depending on the image — the tree
beneath a PIXEL function can contain other PIXEL functions. It is also more
scalable with respect to larger images; a terminal set of size 64, as is required
using the pixel intensities method for the highest resolution K213 images,
is getting to the point where certain pixels may not be well represented in
the initial population. The first method was implemented as a safeguard;
[Reynolds 94a] associated failure of a corridor following robot with the use
of directional attention 2. The terminal set is completed with the maximum
and minimum pixel intensities or indices, depending on the implementation,

to give some global information, and since these are available ‘free’ from the

2Referred to as ‘roving eyes’ in [ibid)

44

Khepera’s on-board vision processing.

The fitness of a detector depends on its performance on the training set:
a database of labelled images. For presence detectors a tree returning a
positive value for an image is interpreted as a positive identification. The
fitness is the proportion of correct outputs over the whole training set, with
1.0 corresponding to a perfect sensor. For the position sensors, a rank based
correlation method was used to avoid constraining the output to being any-
thing more specific than a monotonically increasing/decreasing function of
position. The images in the training set are ranked according to ball posi-
tion and output of detector elicited. The correlation co-efficients of the two
ranked sets are then calculated using the standard r-formula 3. Again, a
fitness of 1.0 corresponds to a perfect sensor.

Evolution is allowed to run for a fixed number of generations, or until
a good enough sensor is produced. The true performance of the sensors is
judged by evaluating fitness on an independent validation set. A sensor that
can generalise* past the training set to the distribution from which those
samples were drawn will perform equally well on the validation set. If over-
fitting to the training set is found to be a problem regular testing on the
validation set can be used to stop the evolutionary process when there is a

down turn in performance on the validation set.

6.4 Training Data

The success of any supervised learning is dependent on its training data. A
good data set is one that is representative in some sense. In this case it should

give reasonably dense sampling over the images the robot will encounter with

3the Spearman rank based correlation equation could not be used because it does not

take account of equal rankings
4“The ability to deal with sparse and nonuniform statistical covering of sample space”,

[Tackett 93]

45

the distribution of sampling matching the probability of the image being
encountered. This matching of distributions is important if the learning is
to focus on the important cases, i.e. those that are encountered most often.
Given that we are evolving a detector for a robot whose behaviour can not
be known, such matching is unattainable and an educated guess about the
common/uncommon types of images is the best that can be done.

A program was written to semi-automate the data collection process.
Given relative positional information about the ball and goal the Khepera
can use geometrical calculations to rotate almost past an object — until it
is just visible at the far edge of the field of view, then rotate in 2 degree
increments in the opposite direction until no object is visible. It repeats
this, reversing each time. It was straight forward to sample over all the
possible ball and goal images, the former just requiring reversing away from
the ball, the latter requiring additional repetition over offsets from the centre
of the goal due to the non-symmetry of the goal. Combinatorics of the
images containing ball and goal required more configurations for this class
of image; the procedure for taking pictures of just the goal was repeated,
at a coarser scale, with the ball being moved away from and offset from
the Khepera for each configuration. Images of just the background were also
taken. Whilst the images were being taken changes in lighting were simulated
by intermittently shading the Khepera/ball/goal — the evolved detectors
should now be robust to such changes in lighting. From this database of
images a training and validation set had to be selected to best meet the
criteria outlined above. They were chosen to consist of 30% ball, 30% goal,
20% ball-and-goal, and 20% just background images making 50% of images
contain ball and 50% contain goal. Within the set of ball-and-goal images,
classes were represented in proportion to that in the collected data set. This
was deemed to reflect the likelihood of such images given random movement,

and no better approach was available. The selection of data within these

46

constraints was done randomly, with data going into the training or validation
set, at random also.

Collecting large amounts of data is straightforward and so training and
test sets can be made by simply randomly splitting the data and without
having to invoke methods, such as cross-validation, advisable for small sets
of data. The training and validation sets each contained approximately 1000
images giving a dense sampling of the image space whilst maintaining reas-
onable computational requirements for the evolutionary run.

Chapter 7 details the process involved in evolving the detectors.

6.5 A Good Idea?

The advantage in terms of ease of modelling for simulation of the virtual
sensor approach has been noted. This section discusses other issues on the
efficacy of such an approach.

The problem of evolving sensors becomes a time independent supervised
learning problem. This has advantages in terms of evolving sensors to work
in more general environments: a ball detector could be made to respond to
golf balls as well as tennis balls by inserting suitably labelled images of golf
balls into the training set. General environments can thus be expressed as
a superset of specific environments and each of these specific environments
need only be sub-sampled. Evolving a similar sensor with simulated vis-
ion would require complete capture of each environment in order to build
a comprehensive model, then evaluation in each environment, in turn. By

5

removing the time dimension it is true that dynamic sensors °, combining

movement and sensor readings are not possible. The evolved sensor could,

5There is no ostensible requirement for such a sensor in this project. However, an
example is a distance-to-goal sensor that could conceivably scan the goal by rotating,
measuring the intensity oscillation frequency arising from the stripes moving across the

image. Being a function of distance from goal, this frequency is a depth cue.

47

however, be used by the evolved robot in a dynamic manner.
The main issue is one of active perception versus designer foresight or
know-how when it comes to what should be sensed. Active perception is

used here, following [Floreano & Mondada 94| as meaning:

An autonomous choice of the sensory information extracted from

that available and of the type of pre-processing performed on

it.[ibid]

This extraction and pre-processing, given that primitive sensor information is
available, will emerge during the evolutionary process as agents interact with
their environment, with those individuals that attend to salient® information
— using it in an effective manner, perhaps combining it with other sensory
information, and filtering out irrelevant information — perpetuating their
genetic material [ibid]. Use of the virtual sensor approach prevents such
autonomous extraction by imposing a representation, in this case at the level
of object (ball or goal), and discarding all lower-level raw-measurement in-
formation. Using the virtual sensor approach one might expect there to be
less harmony between sense and action than when sense and action-selection
can co-evolve; adapting to, exploiting and shaping each others functionality.
An example of this was encountered during the collection of the training set
data: With little knowledge about which images would be important to, and
frequently encountered by, the as yet unevolved controller, uniform sampling
and penalty in the fitness function was the best one could do. With coe-
volution the perception” need only perform well in frequently encountered
situations. In both cases the controller can still adapt to the sensors, com-
pensating for deficiencies in certain situations by learning to avoid these.

One can counter that for this task, and perhaps most others, it is fairly

6With respect to performing the declared behaviours
it is perhaps a false dichotomy to be talking of perception and controller modules

when this is the case, but it is done for comparison with the virtual sensor case

48

obvious what the robot needs to sense: in this case it needs to find and push
a ball to a goal so a ball and goal detector will be useful. If the designer
makes a good choice of representation it could be expected that a ‘solution’
controller would be more tractable than the case where one uses low level
sensory information. This potential for increased tractability, the reason
behind most engineering-evolution hybrid approaches, is promising in terms
of scalability: the virtual sensor effectively hides the complexity of the vision
from the controller by putting it in a ‘black box’.

The complex problem of vision is not removed, it is merely being juggled
with. There is still the problem of building the virtual sensor, which lies in
the field of classical machine vision or pattern recognition. And that within
these fields object recognition in noisy dynamic environments is recognised
as a challenging problem [Boyle & Thomas 88]. It may be that the problem
is being phrased in a more difficult way and there is always the possibility
(or maybe certainty) that, by hand selecting what is sensed, one may have
missed out on exploration of simple and more efficient visual mechanism that
will solve the problem.

The experimental results of this project will contribute towards answer-
ing these issues of shaping versus unconstrained evolution: Whether inserting
domain knowledge makes evolution easier by guiding the genetic algorithm in
the right direction, reducing the search space, or whether the designer’s ® pre-
conceptions (perhaps misconceptions) are misguided, pruning simpler, more

efficient solutions from the search space.

8or rather my own

49

50

Chapter 7

Evolving the Virtual Sensors is

Hard

This chapter describes the (lengthy) process involved in evolving the virtual
sensors and the subsequent performance characterisation in preparation for

evolution, in simulation, of the controller.

7.1 Synthesis

Initial results with the GP supervised learning setup detailed in the previous
chapter were not ‘satisfactory’. After a number of strategies were progress-
ively employed, most notably an edge detector addition to the function set
and large population size, a ball detector that correctly classified approxim-
ately 90% of the validation set and a goal detector that correctly classified
approximately 80% of the validation set were synthesised. This poor up-
per limit of goal detector performance was to have repercussions in control-
ler evolution. Preliminary attempts were made at evolving a ball-position
sensor, though this was not used in the controller.

It is difficult to know what level of performance will be sufficient for

effective control; manual characterisation of the evolved sensors is time con-

ol

suming and hinders the use of feedback of evolved controller performance to
determine whether the virtual sensors being evolved are good enough. The
performance striven for was largely a matter of intuition and compromise.
As good as possble virtual sensor performance was deemed important since
the robot must take the sensor values as read; for each sensed property there
is only one sensor, so there is no context on which the robot can base sensor
reliability. Also, being solely reactive, the controller cannot integrate sensor

readings over time to glean a more reliable indication of world-state.

7.1.1 The Ball Detector
Setting Parameters

A search over various parameters was undertaken to ensure the GP was being
used to full effect.

During the data collection process 16, 32 and 64 pixel images were taken.
Inspection shows that 32 pixels give high enough resolution to capture the
goal stripes and ball. With 16 pixels some stripes are missed. The GP was
run on all three image resolutions: In line with the above observation the
performance of the evolved goal detectors on validation sets shows that 32
pixel images are adequate, giving significantly better performance than with
16 pixel images' and no difference to when 64 pixel images are used. 32
pixel images were chosen, being more amenable to any on-board-Khepera
processing that might be required and perhaps improving GP tractability by
removing redundant information.

Using PIXEL function accessing (see section 6.3) gives significantly better

performance than pixel accessing via terminals, and is the chosen method.

'Where comparisons between variants are made, mean performance of the best indi-
vidual in the last population on the validation set is taken over a number of runs (typically 5
because of computation-time constraints). ‘Significance’ in performance difference is used

in the statistical sense and is determined using a t-test with p of 0.05.

52

Training set performance is the same for both approaches; the more powerful
function accessing method is better able to generalise.
A coarse grained search of GP parameters was made, varying each inde-

pendently for the most part:

o Steady-State versus Generational: The GP algorithm described earlier
was generational, having distinct generations where the whole popu-
lation is evaluated and then individuals are selected to form a new
population to replace the previous generation. In the steady-state GP
a single pair of mates is selected from the population one at a time,
their offspring replacing weaker members of the population [through
non-deterministic selection]. There are no discrete generations but it
is convenient to consider a population-size number of such events as
a generation. The steady-state GP gave significantly better perform-
ance and is the chosen variant. The sgpc program requires tournament

selection? to be used with this variant.

e Tree Depth: Trees deeper than 8 and 14 levels give no significant in-
crease in performance for ball and goal detectors respectively. Using
larger trees increases the GP computational requirements and often
increased the evaluations (the product of population size and genera-
tions) required before validation fitness stopped decreasing. Depths of

8 and 14, respectively, were selected for use.

e Genetic Operator Probabilities: The probability that a selected indi-
vidual will undergo crossover at any node, crossover at a function node,
copying and mutation were varied over all combinations of {0.0, 0.2,
0.4},{0.0, 0.2, 0.4} and {0.1, 0.3, 0.5} respectively, with the mutation

rate set so as to make the sum of probabilities 1.0. The performance

2the fittest of N randomly picked individuals is selected

53

was largely insensitive to these and values of 0.2, 0.15, 0.15, 0.5 were

selected.

e Cellular GP: Cellular occupancy of {10,2,50} by {1,5,10} grids with

localised selection gave no significant increase in performance.

After search and selection of these parameters the upper limit of perform-
ance was approximately 80% correct. An experiment was run to indicate
whether this was a true upper limit: Parameters were configured to give low
selectional pressure and encourage diversity (tournament-size-two selection,
cellular occupancy, Large populations and higher mutation probability) and
no limit was placed on the number of generations before stopping. Large
cpu-time allocation was required because of the the non-aggressive nature of
the search (population size 1500 was used). Configured in this way the GP
is resistant to premature convergence and is closer to truly open-ended evol-
ution, i.e it is more likely to find the ‘solution’ given enough processing time.
Figure 7.1 shows how the performance continued to increase on the training
set but the validation fitness reaches a limit. The continued improvement
on the training set indicates that evolution is continuing, and in conjunction
with the over-fitting to training data suggests that 80% is an a priori limit on
the performance of a ball detector using the tree representation and training

method detailed so far.

Problem Images

It was possible that the bad performance was in part due to ‘anomalous’
images in the training set. Such images, e.g. a background image incorrectly
geometrically classified as a ball, may be few but could have disproportion-
ately adverse effects on the training. To check for this the final population
is run on the training set and the incorrect classifications for each image

are accumulated: anomalous images should be revealed by being incorrectly

54

mean and standard error fitness of best in generation
0.9 T T T T

sk e |

0.8

training set
— validation set

0.75

0.7

proportion of images correctly classified

0.65

1 1 1 1 1
0 20 40 60 80 100 120 140
generation

Figure 7.1: Fitness as a function of generation: Showing over-fitting to the
training data and the upper limit of classification performance on ‘unseen’

data

classified by a high proportion of the population.

Inspection of such images shows the geometrical classification to be re-
liable. Most of the problem images correspond to: Situations where the
view-angle of the ball is comparable to the view-angle of the goal’s stripes;
making identification of ball against goal very difficult (see figure 7.2a). Or
situations where the goal is going off the edge of the image with only one
stripe being visible; being essentially equivalent to a partially visible ball
image. It is doubtful whether such images are classifiable, the author has
trouble doing this visually. There are a subset of background images that
are truly anomalous, see figure 7.2b. The strong peaks could be caused by
the contrast enhancement effects of the iris. It was decided to remove these

from the training set so not as to ‘confuse’ the GP with images that were

%)

similar to ball images but were not. This is bona fide since performance of the
evolved sensors is measured against the validation set, which still contains

such images.

ball [highest peak] against goal anomalous background image
T T T T

50F

Figure 7.2: Problem Images: a) ‘spot the ball’. b)A uniform-background

image!

With the cleaned up training set the performance increased significantly,

but only by a small amount: ~ 2% more correctly classified.

Edge Detection

The next essay at getting decent performance was to increase the power of
the GP function set by adding an edge detector. The number and separation
of edges in an image are strong indicators of the image class and give the
GP a higher level representation to work with. A weighted second order
derivative and first order derivative function were tried. See equations 7.13
and 7.2 respectively, where I(z) is the intensity of pixel . A ball-and-goal

image processed using these functions is shown in 7.3.

3Used in [Smith 97] for Khepera vision processing, this responds to curves.

56

edge(r) = I(x)—(0.25I(x —1)4+0.5I(x) +0.251(x+1)) (7.1)

edge(x) = I(x+1)—I(x) (7.2)
raw image
T
200 B
2
1%}
g
€ 100 B
0 1 1 1 1 1 1
5 10 15 20 25 30
first order derivative
200 T T T T T T
100~ B
of B
-100 B
-200 Il Il Il Il Il Il
5 10 15 20 25 30
second order derivative
40 T T
20 B
0 L -
_20 - -
-40 1 1 1 1 1 1
5 10 15 20 25 30
pixel

Figure 7.3: Edge Detection on an image of the goal and ball (far right)

Adding the first order edge detector to the function set gave significant
improvement in performance; to 87% correct classification at convergence
with population size 1000. Adding the second order edge detector to the
function set gave no significant improvement in performance, perhaps be-
cause of the extra sensitivity to noise inherent in a second order derivative
calculation. Performance with the function set containing the first order de-
rivative edge detector was deemed good enough to work with; a ball detector

evolved at this stage was characterised and used in the controller evolution.

57

7.1.2 Ball-position Sensor

Preliminary experiments evolving a ball-position sensor with a data set con-
taining only just-ball images showed that the GP could essentially make a
ternary classification of position, see figure 7.4. Comparable performance
could probably be achieved by looking at the index of the MAX pixel. The
detector was not developed further; although conducive to a higher perform-

ance controller it was deemed unessential.

Ball-position detector output as a function of angle to ball
250 T T T T T

200 - 8
100 R J
50 . .

. PP T TP B
R I RO e

detector output
o
T

=50 o e i

-100| R : 4

-1s0r R o training set | |
validation set

-200 | . g

250 L L L L L L L
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

angle to ball centre, relative to Khepera heading (rads)

Figure 7.4: Ball-position Sensor: showing essentially 3-way classification

7.1.3 Goal Detector

Using the same approach as with the final ball detector a goal detector with
79% correct classification was evolved. The efficacy of the detector was worse

than this percentage suggests since it tended to give false negatives, result-

58

ing in missing the goal 25% of the time. As a final attempt to get decent
performance a more specialised goal detector was evolved:

It is noted above that images containing ball and goal are potentially
harder to classify *. By removing these from the training and validation set
the learning process can concentrate on the simpler, and most important task
of distinguishing goal from ball and background. This will be detrimental to
the performance on ball-and-goal images but this may not be so bad in terms
of controller performance; a goal made ‘invisible’ by a ball in the field of view
will appear as the Khepera’s viewpoint changes. A training and test set were
compiled that contained 50% just-goal, 30% just-ball, and 20% background
images.

Using this approach performance increases to 82% correct classification,
with 78% performance on just-goal images, at convergence with population
size 1000. This is not ideal but it was decided to work with this in the
controller evolution and see how the controllers could cope with such unreli-

ability.

7.1.4 Why does GP Struggle?

Beyond the fact that it is a vision classification problem with the associated
difficulties of high dimensional complex and noisy input, and that there are
ambiguous images, can reasons for the relatively poor performance of the GP
system be given?

One is the difficulty of acquiring global information given the GP tree
representation: for example a tree version equivalent of the MAX terminal
would require a tree of depth order log, number of pixels, with a highly

regular structure; each node being an IFLTE function taking PIXEL(index,),

430% of ball-and-goal images against 20% of just-goal images were misclassified by the
aforementioned goal detector, although it should be noted that the training set contained

more of the latter so better performance on these could be expected

59

performance with MAX and MIN | without MAX and MIN

0.969 + 0.004 0.85 £ 0.01
0.92 =+ 0.01 0.83 £ 0.04
0.96 = 0.02 0.81 £+ 0.01

Table 7.1: Mean =+ standard error performance. Rows are over different GP

parameter settings

index, PIXEL(indexs), indexy as arguments. The importance of such global
properties to a successful ball detector, and the difficulty GP has in evolving
sub-trees that approximate these was demonstrated by running the GP with
and without the {MIN JMAX} terminals. Table 7.1.4 shows the results for
data sets containing just-ball and background images (simplified from the
general case being evolved for, above) over various other parameters.
Another potential problem is the lack of re-usability of sub-trees. Image
processing algorithms often involve repeated application of a procedure to
groups of pixels in an image. There is no mechanism for this in the mono-
lithic GP tree representation used here. Automatically defined functions
[Koza 94] are such a method for co-evolving sub-routines within GP, their

implementation was not possible given time resources.

7.2 Characterisation

The performance of the virtual sensors must be faithfully reproduced in sim-
ulation if the evolved controllers are to transfer to reality. Behaviours reliant
on non-existent properties of the sensors are likely to fail completely when
using the real sensors.

The method of characterisation is data intensive and in the ethos of the

look-up table approach rather than mathematical modelling: The chosen de-

60

tectors are run on those images collected but not used in the training or
validation set — this will be referred to as the test set, it contains approx-
imately 12000 images — with each classification being recorded as right or
wrong. The data is then divided into ‘buckets’ with respect to the parameters
recorded during data collection, such as angle-to-ball and distance-to-goal,
and the performance of the detector over the data in each bucket calculated.
Analysis of variance is then used to look for buckets over which the perform-
ance differs®. The performance over homogeneous buckets can be represented
simply by the mean performance over such buckets. This gives the empiric-
ally derived probability that an image of the scenario described by the said
range of parameters will be correctly classified. Parametric models were not
fitted.

One-way factorial without repeated measures analysis of variance was
performed on each of the parameters to look for factors that had significant
(at p = 0.01) effects on virtual sensor performance. Using just one-way ana-
lysis when there is more than one effective parameter it is possible to miss
significant parameters because of variance from other factors contributing
to within-bucket variance: such variance can swamp between-bucket vari-
ance of the parameter under consideration, hiding the dependency. To try
and counter this, one-way analysis over all parameters is done for each class
separately; since image class was shown to have the largest effect on perform-
ance. Visualisation techniques were used in conjunction with the analysis of
variance to identify such cases. At the end of the classification each class
has a look-up table, ranging from zero to two dimensions, to be indexed by
the value of the relevant parameters (those that were determined to have an
effect on performance) during simulation.

Figure 7.2 shows the performance (proportion misclassified) of the ball

5 Analysis of variance is a statistical technique used to test for equality of population

means

61

detector as a function of image class. Figure 7.2 shows performance of the
goal detector on a single image type as a function of two paramaters: the

matrix plotted is the look-up table used in simulation.

just=ball images
= - Just-goal
5 0.8 just-background
£ goal and ball
2
£ 0.6 <
E
c
S04
9]
Qo
o
20.2
0 -

image class

Figure 7.5: Misclassification rate as a function of image type for the ball
detector used. The image classes consistently misclassified typically contain

few (< 10) images.

7.3 Comments

Whatever the advantages of the virtual sensor approach, the work chron-
icled in this chapter supports the reservations in section 6.5 about shifting
the problem of perception into the non-temporal object recognition domain:
evolving sensors was a challenge and in some cases the final product was less
than desirable. It remains to be seen whether or not controllers can evolve

to cope with this unreliability...

62

o o o
~ o <)
/ / /

proportion misclassified

o
)
/

angle to goal

view-angle of goal

Figure 7.6: Misclassification rate for images of goal going off-image to the
left as a function of angular width (view-angle) of goal and angle to goal.
(Note that the graph is interpolated; one patch does not correspond to one

‘bucket’ or entry in the look-up table.)

63

64

Chapter 8
Controller Evolution

Virtual sensors have been synthesised and the sensory and dynamical aspects
of the Khepera and environment characterised and simulated. Now the con-
troller is to be evolved and successfully transferred to reality (or not) on the

strength of these.

8.1 Evolution Preliminaries

Fitness functions are all scaled to be in the range {0..7}, where 7" is the
maximum number of time-steps for a single trial, following the convention
of increasing fitness with numerical value. Sensor values are normalised and

I are in the range {0..1}. The best of run indi-

consequently the constants
vidual is defined as the fittest controller in the last generation.

The number of runs for each starting position is chosen as a function
of the noise of the sensors in the terminal set — assuming this to be the
principal source of statistical variation in fitness. Choice and number of
starting positions is guided by the same issues of representative-ness as in

chapter 6, but with the constraint of much smaller training sets; necessary

!'Randomly generated in the initial population

65

with the increased computation of evaluating performance on a single training
instance, or in this case a run. Subset selection was found to inject a lot of
noise into the evolutionary process — effectively producing varying fitness
functions, according to the particular sub-set selected, across generations.
The degree to which this is detrimental to the selectional process is not
known, however applications of dynamic subset selection in [Gathercole 98|
use sub-sets of order 10? training instances, where statistical fluctuations will
be at a minimum. In any case, the speed of the simulator meant that sub-set
selection was obsolete as a means of reducing run-time. Preliminary runs,
taking the mean fitness over multiple trials produced controllers that worked
well over all the starting positions, and this is method of fitness combination

used.

8.2 The Decomposition

The hierarchical structure of the controller, whose modules are to be evolved,
is shown in figure 8.1. It is similar to that used in [Lee et al. 97]. The
complete task of scoring goals is decomposed into homing in on the ball
and pushing the ball towards the goal. The root node will switch between
these two behaviours, requiring the ball detector and IR sensors to determine
when the ball is contiguous and so start pushing-to-goal behaviour. Homing
behaviour comprises moving within close vicinity of the ball as quickly as
possible and the sensors to be used for this are the ball detector and the
IR s (for any collision avoidance that might be required). Pushing-to-goal
behaviour is decomposed in to ball-pushing and ball-spiraling. The intention
being that the arbitrator will switch between pushing the ball when it is
aligned with the goal along the Khpera’s line of sight, and search for such
an alignment otherwise. Hence it requires the goal detector. In this context

ball-pushing comprises fast pushing of the ball in a straight line; IR s are

66

Goal Scoring

{R IR B}

Ball Homing Push to Goal
{RIR B} {R G

Push Ball
{R IR

Ball Spiraling
{R IR

O primitive
C\ arbitrator

{- -} termina set: R- Rea numbers
B - Ball Detector
G - Goal Detector

Figure 8.1: The hierarchical decomposition of the task showing the arbitrat-

ors, primitives and relevant terminal sets.

used for the proximal sensing this demands. Ball-spiraling is a behaviour
that will bring the Khepera, ball, and goal into alignment quickly, allowing
for detection of this by the arbitrator. IR sensors are used, for the same
demands.

The choice of decomposition arises from expectations of tractability, per-
ception of ‘natural’ division of behaviours, and ease of fitness function design.

It is a highly unscientific design process!

67

8.3 Ball Homing

The fitness function expressing the requirement to get within close vicinity

of the ball as quickly as possible is shown in equation 8.1.

if (centre to centre Khepera-ball separation < 7)
then fitness = time steps remaining; (8.1)

terminate trial;

else fitness =0

Having a single term it has no parameters to tweak. Unlike the fitness
functions in sections 8.4 and 8.5, it contains no sensor readings — it is said
to be an external fitness function — because the inherent noisiness of the ball
detector was deemed a bad parameter to base the fitness on. A 7 of 66mm
is used to get the Khepera in the vicinity of being able to see over the ball
to spot the goal, whilst still being able to sense the ball with the IRs.

Six Khepera starting states were chosen for the evolution, tending to be
distanced from the ball rather than random. Three runs of each starting
state were made because of the noisy nature of the ball detector being used.
Each run lasted a maximum of 200 time steps. GP parameters are shown in
table 8.1 and were chosen to be similar to those in [Lee et al. 97]. They did
not have to be tweaked.

Eight evolutionary runs were made. Figure 8.2 shows the progression
of fitness during these, the asymptotic best of run fitness corresponds to
reaching the ball in approximately five seconds.

All of the best of run individuals could successfully home in on the ball in
simulation and displayed qualitatively identical behaviour: Moving towards
the ball at full speed when it is seen and circling-search for the ball when it is

not, see figure 8.3a. Occasionally the Khepera is deceived by the goal, moving

68

generations 20

population size 30

Steady State ON

max depth for new trees | 5

max depth after crossover | 8

max mutation depth 3

selection Tournament, size 2
crossover probability 0.4

copied probability 0.15

mutation probability 0.55

parsimony factor 0.00000

Table 8.1: GP parameters for Ball-homing evolution

mean and standard error fitness as a function of generation
160 T T T T T T T

fitness

J P
o = best of gen individual,
L --- average over population
20 *bl b
0 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50
generation

Figure 8.2: Fitness as a function of generation for ball homing.

69

a substantial distance towards it, or loses the ball whilst heading towards it
— in which case it circles until it picks it up again: see figure 8.3b. Both of
these are a result of the unreliability of the ball detector.

It was noted that the circling-search radius corresponded to just less than
the closest Khepera-wall separation in the training set. Such a strategy had
avoided the need for collision avoidance but is an example of over-fitting
— when the Khepera was placed nearer to a wall it circled into the wall
and exhibited dysfunctional behaviour (going off on a wall following tour!),
having not evolved behaviour for such a situation. The original behaviour
was perfectly valid (perhaps optimal) given the training set but illustrates
how the fitness function and the training set interact to define the evolved
behaviour. The run was repeated with two extra starting positions 5¢m from
a wall with the Khepera facing a wall and corner respectively. Figures 8.4a,b
show that the subsequently evolved controllers included collision avoidance
components.

It is arguable that ball homing behaviour is trivial given the high level
sensor used — just moving forward when the ball is visible, turning to search
otherwise, would work. The behaviour evolved even appears sub-optimal at
first glance — wouldn’t spinning on the spot to search for the ball be faster?
In fact, the controllers are found to be behaviourally more advanced than
at first glance and the strategy evolved performs better than the obvious
approach: Inspection of the sensor and motor values shows that when the
ball is seen the controller switches between moving forward at full speed
and intermittently slowing one of the motors so as to turn in the opposite
direction to the circling-search. This behaviour compensates for the turning
behaviour, required when the ball is not in the field of view, activating when
the ball momentarily disappears, and produces approximately straight line
movement to a ball once it has been ‘locked on’ to even though it is not always

detected. Evolution has found a way to cope with the unreliability of the

70

Khepera
framt

Khepera
front

Figure 8.3: Aspects of a single Ball-homing controller’s behaviour: a) circle

— locate — move to ball. b) ball ’disappears’ — circling to relocate.

virtual sensor. If one considers the obvious approach again then it becomes

apparent that whilst moving towards the ball the Khepera will continually

71

Khepera
framt

Khepera
front

Figure 8.4: A Ball Homer with collision avoidance skills: a) during circling

search. b) escaping from a corner.

be stopping as the ball intermittently ‘disappears’.
The way this behaviour is produced, by exploiting the noise of the IR

72

sensors, is interesting too: Analysis of one of the controller trees shows the
switching, in this particular case, to be dependent on whether IR detector six
is reading larger or equal to IR detector one. Whilst the Khepera is moving
towards a ball it is generally in the open and its IRs will be returning noise
about the zero level. The IR6>=IR1 is thus equivalent to a uniform {1, 0}
random number generator, and the controller is using this to overcome the
deterministic nature of the tree evaluation and provide stochastic switching
between behaviours. A reactive controller that produces different behaviours

given the same perceptual cues has been evolved!

8.3.1 Reality Transfer

A single controller was transferred to reality and tested over the eight starting
positions used in training, three times each. The behaviour was qualitatively
the same (the noise compensation behaviour was observed). The behaviour
was found to be quantitatively the same too: The fitness of each run was
recorded and the mean over all trials did not differ ? from identical trials in

simulation:

fitness in reality | in simulation

156+19 1667

The success of the reality transfer validates the modelling of the ball

detector.

8.4 Ball Pushing

The fitness function expresses ball pushing as moving forward fast, in a
straight line with the ball to the front of the Khepera; having a compon-

ent for each 3. See equation 8.2

2a t test gave pmeans dif ferent < 0.7 (d.o.f. = 12)
3as used by [Lee et al. 97]

73

T

fitness = Z)+ B b(t) +v (1 —c(t)) (8.2)

=1
a(t) is the average of the front two normalised IR readings

v + Uy

b(t) is the normalised average wheel speed:
Uma:l:

v
¢(t) is the normalised difference in wheel speeds: —
Uma:l:

The weightings used were o« = 0.6, # = 0.2, v = 0.2, as in [ibid/. Initial
runs indicated the need for an extension to the function: terminating the
run upon collision with a wall was preventing further fitness accumulation,
effectively penalising straight line pushing and hence was in conflict with
the latter two components in the fitness function. Evolved controllers would
push the ball in a circle of diameter approximately equal to arena size. The
simple solution was to add a perfect fitness score for each time step left if
the ball was pushed into contact with the wall. In fact it was found that the
rest of the fitness function is now unnecessary* — such a monolithic fitness
function does not have the disadvantage of the need for parameter tuning.

Six Khepera starting states were chosen for the evolution, each within 7°
of the ball centre. Only one run of each starting point was made because
of the relatively low noise in the IR sensors. A trial lasted for up to 200
time steps. The GP parameters were as in section 8.3. A ball-as-box model
was used, given the lack of ball dynamics characterisation, with a view to
augmenting this if it was detrimental to reality transfer. Seven runs were
made, the graph of the evolutionary process is shown in figure 8.5.

Six of the seven best of run controllers were high performance ball push-

ers ®; turning to meet the ball then pushing at maximum forward speed for

4 Although the results are for the original fitness function
Sthe distance used in section 8.3, for compatibility
6the other pushing backwards, more slowly

74

mean and standard error fithess as afunction of generation

fitness

20y — best of generation individual |
§’ - average over population
0 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

generation

Figure 8.5: Fitness as a function of generation for ball homing.

the most part with occasional switching of one motor to the next fastest

speed to keep the ball centred. Figure 8.6 shows a typical push.

8.4.1 Reality Transfer

The ball pushing transferred qualitatively to reality, but with a performance
decrease; perhaps inevitable given the approximations of the ball model. As
in simulation the Khepera makes a tight turn to meet the ball then com-
mences pushing. The path taken by the ball veers more than in simulation,
and the Khepera spends more time making heading corrections.

An attempt was made at improving the reality transfer by evolving using
heading and pushing-direction noise (section 5.1, above) in the ball model
with magnitudes of 15.0° and 5.0° respectively. The evolved controllers
moved more slowly and exhibited spinning behaviour when the ball devi-

ated sharply, see figure 8.7. Transferred to the Khepera the performance was

75

File Window Help

poph: 0 gen: O incividual: 0

—=— Khepera
framt

I T

goal

Figure 8.6: Typical ball pushing. Ball-as-box model.

noticeably worse than with the ball-as-box model controllers. [Nolfi et al. 94]
mention the importance of modelling noise at the real world levels — this
is a case in point; the values chosen were based on rough observation and
probably give a model as inaccurate as the original one.

The near-success of the reality transfer shows the dynamical modelling

to be adequate but incomplete’.

8.5 Ball Spiraling

The Khepera line of sight being at a tangent to the direction of motion
requires the Khepera to periodically face the ball as it circles, e.g. helical
orbiting of the ball, it if it is to be able to align the ball between itself and the

goal. The fitness function expressing this behaviour is shown in equation 8.3:

"which was always appreciated

76

File Window Help

poph: 0 gen: O incividual: 0

5

r
L
K
¥
“i —=— Khepera
&t b + front
v SO Bl
.
1
L3
K}

goal

Figure 8.7: Typical ball pushing — Unvalidated ball model. Closer spacing
of tracer dashes than in figure 8.6 shows slower movement.

the first term rewards facing the ball from different directions, and the second
term rewards doing this quickly.

fitness =

— 057 % + 0.5 (T = terminate)

(8.3)
S is the number of sectors the direction [0° to 360°] from
ball centre is divided in to.

S, 1s the number of sectors visited — one in which the

front IR activation was larger than the [imit threshold.

tierminate 1S the time at which the trial is terminated:
when s, =Sort=T

77

The starting state, number-of-run parameters, and maximum time steps
were as for the ball pushing. Initial runs showed that satisfaction of the
fitness function was not unique to the desired behaviour; pushing the box
off-centre, causing it to follow a circular path, resulted in procession of the
Khepera around the ball with the IR s above the limit threshold. An environ-
mental modification was made to remove this as a solution — by making the
kinematics of the ball random and sensitive, ball pushing was no longer feas-
ible. Before the desired behaviour was consistently evolved the power of the
GP had to be turned up. Eight runs of population size 40 on a 4x1 cellular
occupancy grid, run for 50 generations were made. Figure 8.8 describes the
run. The average best of run fitness corresponds to approximately visiting

all the sectors surrounding the ball in 40 seconds.

mean and standard error fitness as a function of generation
80 T T T T T T T

A = best of generation individugl
-- average over population
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

generation

Figure 8.8: Fitness as a function of generation for ball homing.

Six of the eight runs evolved successful controllers, achieving the task us-
ing qualitatively different behaviours, three of which are in figure 8.9. During

each of these orbits the Khepera is frequently ‘looking up’ to allow for check-

78

ing of alignment with the ball and goal.

Figure 8.9: Behaviours to allow search for alignment of the ball and goal in
the direction of the Khepera: a) helical orbiting, b) circling of the ball with

periodical spinning on the spot, c¢) saw-tooth orbit.

8.5.1 Reality Transfer

The controller from figure 8.9b was chosen for reality transfer; this was suc-
cessful. Placed within 7 of the ball it would settle into the same circling and
spinning behaviour. A quantitative comparison was made at the behavioural
level by recording the box revolution rate and the number of on-the-spot
spins per revolution. This was done for a single trial of ten revolutions in
reality and multiple trials in simulation. The results are shown in table 8.5.1,
a Z-test confirms the quantities are significantly different. There has been a
degradation of performance upon reality transfer.

The solely qualitative transfer of the behaviour has shown the sensor and

Khepera-dynamics modelling to be adequate, but imperfect.

8.6 Pushing to Goal

This module arbitrates between the already evolved ball-pushing and ball-

spiraling primitives. The fitness function expressing fast pushing of the ball

79

in simulation | in reality

spins per ball revolution 19 10+ 1
time steps per ball revolution 326 230 £ 40

Table 8.2: Degradation of Ball spiraling upon reality transfer

to the goal is shown in equation 8.4. It provides an incremental path for the
evolution: encouraging first closer and closer movement of the ball to the

goal, then faster scoring of goals once this behaviour is acquired.

f’it?’L@SS = 0.5 (T - ttermination) + 05T (1 - Dt_termination) (84)
where tiermination 15 1', or the time step at which a goal is
scored, should this happen. D is the scaled

(x1/500) centre to centre goal-Khepera separation.

The ball is always placed on the centre spot of the pitch, requiring a
‘dribble’ of 40cm to score. Khepera starting positions and runs per starting
position were as in section 8.5. The maximum-time-steps, T, was set to 500
as an approximation of the time a reasonable attempt on goal might take
given the spiraling velocity, etc. Forty generations were run with tournament
size 4, cellular occupancy and other-parameters as in section 8.4 8. The
evolved, intended, behaviour of spiraling for alignment, then pushing forward
is shown in figure 8.10. It can be seen that two helical orbits are made during
the push to goal, as a result of goal detector unreliability causing the goal
to ‘disappear’. This is an uncharacteristically efficient push to goal; most

involved 5 or 6 helical orbits of the ball and correspondingly approximately

8increasing selective pressure (tournament size 4) to give more aggressive search whilst

maintaining diversity (cellular occupancy)

80

three minutes to score.

File Window Help

poph: 0 gen: O incividual: 0
T T T T oozl seeh

—=— Khepera
framt

v
I T

Figure 8.10: Hierarchical goal scoring behaviour — spiraling to align ball,

goal and Khepera, then pushing to goal.

8.6.1 Reality Transfer

The evolved behaviour does not work on the the real robot because the goal is
never detected whilst spiraling. This anomaly can be traced to the rotating
motion of the Khepera whilst ball-spiraling and is presumably caused by
motion blurring of the goal. Such an effect was never considered® during
the vision modelling stage and the evolved controller has relied upon an
approximation (or rather oversight) that is not valid. This failure highlights
the implicit assumptions in, and approximate nature of any model. Such

‘quirks’ of real world systems are bad news for the simulation approach to

evolutionary robotics.

quite understandably!

81

8.7 A Monolithic Push-to-goal Controller

Having traced the cause of reality-transfer failure, it would be possible to re-
evolve ball spiraling with an additional constraint on the rotational velocity
of the ball-spiraling Khepera. However, the behaviour in simulation showed
the approach to be rather inefficient, suggesting that the decomposition of
pushing to goal, at least in this manner, is not a good idea; perhaps having
no ‘natural’ sub-modularity and best left as a monolithic behaviour.

An attempt at evolving a pushing-to-goal primitive, to address this hy-
pothesis, was made. The terminal set comprised real constants, IR and goal
detector sensors. The fitness function was as in section 8.6 and the power of
the GP was turned up to cope with the expected decrease in tractability of
the problem: population size 400, 100 generations, cellular occupancy and
maximum tree depth 10 were used. The evolution was successful and the
behaviour of the evolved controller is shown in figure 8.11. Its strategy is
to push the ball in a circle to the right when the goal is not visible, then
when the goal comes into view spin away and back in to contact with the
ball so that the goal is out of sight and the ball is pushed in an arc to the left.
The motion of the Khepera brings the goal into view again and the process
is repeated: the aggregate effect is movement of the ball in a straight line
towards the goal. It can consistently score from all starting positions.

Its scoring rate is approximately five times that of the hierarchical control-
ler in section 8.6, which could be a result of the more powerful evolutionary
run used. The setup in section 8.6 was run using the same GP parameters to
show that the better performance was not due to this. Figure 8.12 describes
averages over runs of both approaches. It can be seen that the hierarchical
controller fitness has already converged in the initial population but to a
lower fitness than the monolithic controller; this represents the upper limit

of performance using the constraints conferred by the designer’s decomposi-

82

Khepera
framt

Khepera
front

Figure 8.11: Monolithic goal-scoring controller behaviour — circling with
ball to locate goal then pushing to goal: a) starting facing way from the

goal, b) starting facing perpendicular to the goal.

83

tion. It should also be noted that the fittest hierarchical controllers did not
combine the ball-spiraling and pushing in the way intended, spiraling and
pushing quasi-continuously to goal. Comparison of the number of controller
tree evaluations'® before convergence, considering the evolution required for
the arbitrator’s primitives also, gives approximately 10% against 10° in favour

of the hierarchical approach.

Mean and standard error fitness of best in generation individual
450 T T T T

400

350

300

fitness

250

200

v - hierarchical controller
150 == monolithic controller 7

100 I I I I I I
0 10 20 30 40 50 60 70

generation

Figure 8.12: Fitness as a function of generation for pushing-to-goal: Mono-

lithic and hierarchical controller.

Reality transfer of the monolithic controller is successful in part. The
Khepera can score when up to approximately a quadrant of the circular
search path has to be made to achieve alignment of the Khepera, goal and
ball; in which case it proceeds to push the ball to the goal in the manner
seen in simulation. This means that the Khepera can start facing up to

90° from the goal (40cm away) and be able to score. Full circling happens

19The product of population size,generations and time steps

84

occasionally but the diameter of orbit is usually larger than the size of the
stadium. The failure of transfer of the circling behaviour can be attributed
to the unmodelled complexity of the ball, compared with box, motion; the
reliability of the ball dynamics in simulation allow behaviour that is not
possible with the less reliable, and systematically different, ball dynamics in
the real world.

An arbitrator between ball-homing and pushing-to-goal behaviours, giv-
ing the complete goal-scoring behaviour, was not evolved because of time

limitations.

8.8 Discussion

Successful, consistent, evolution of all controllers in simulation is shown. A
common feature of the (hierarchical controllers) synthesis is the low popula-
tional requirements of the GP runs necessary for evolution: the population-
size, generations product is typically order(s) of magnitude smaller than other
work in the field, evolving comparative behaviours for Kheperas. The GP
populational requirements agree with [Lee et al. 97|, the basis of this work,
and strongly suggest that Lee’s controller architecture is particularly efficient
and suitable for genetic programming. The inclusion of a high-bandwidth
vision sense has not increased the populational requirements necessary for
controller evolution. The controllers have coped with the unreliable virtual
sensors evolved, in some cases exhibiting novel behaviours and methods to
do this; the quasi-nondeterministic reactive controller in section 8.3 in par-
ticular.

The crux of any approach to evolutionary robotics is its ability to ‘cross
the reality gap’. The approaches used can be seen to be a success in this re-
spect, with qualitative and occasional quantitative transfer for the most part.

The results show that with careful capture and representation of actual sense

85

and action it is likely that evolved controllers will transfer to reality. Con-
versely, the partial transfer of behaviours involving motion of the ball show
that without sufficient modelling reality transfer should not be expected.
The quantitative reality transfer of ball-homing shows that it is possible to
sufficiently accurately predict virtual sensor output, through empirical char-
acterisation on a set of test images, for purposes of simulation. The complete
failure of goal-pushing upon reality transfer, due to motion-blur, highlights
a caveat to simulatory evolutionary robotics: that there will always be un-
modelled and unknown aspects of the real robot and environment, and that
these can significantly effect performance.

The chronicle of getting the behaviours to evolve should make apparent
that fitness function design is not just about the fitness function! In practice
achieving the desired behaviour is a balance between environmental proper-
ties, training set, and fitness function, with all of these interacting to define
the true ‘fitness landscape’ and ‘solution’ behaviour: Section 8.4 shows how
an environmental property (of contact with the walls giving termination) can
reduce a necessarily componential fitness function to a monolithic one. Sec-
tion 8.3 shows the importance of a representative training set to evolving the
general, rather than a specific!’ sub-set of, desired behaviour. Section 8.5
shows how artificial properties of the environment, in this case the ‘impossi-
ball’ modelling of the ball, can be introduced to shape the behaviours evolved.

Decomposition has been shown to have advantages in terms of increasing
tractability: the task of goal-scoring has been partially solved requiring evol-
utionary resources linear to to the number of modules. Through decomposi-
tion individual evolutionary runs have been no more demanding than that of
simple behaviours such as collision avoidance and light following, seen in early
evolutionary robotics work. In these terms decomposition seems a candidate

for overcoming the barrier of tractability to solving real world, rather than

Hand often optimised to the exact situation evolved for

86

‘toy’, problems. However, an experiment with a monolithic controller shows
that decomposition may impose sub-optimal strategies upon the controller.
For the task of pushing-to-goal a monolithic controller was far superior to a
hierarchical one.

The decomposition chosen was not a good one, highlighting the diffi-
culties of decompositional design, with the fittest hierarchical controllers in
section 8.7 combining the behaviour primitives in an unintended way; since
the behaviour primitives were as they were because of this intended use the
decomposition has failed at the level of design. It is noted that the searching,
circling behaviour used by the monolithic push-to-goal controller was evolved
in initial attempts at ball spiraling but was rejected as not being of the de-
sired behaviour. The fitness function was further constrained to remove such
a strategy as a solution. This shows that the initial implementation, specify-
ing what should be done — looking towards the ball from different directions,
rather than trying to constrain how it should be done — ball spiraling, was
the way to proceed. The project has only begun to touch upon the issue of
decompositional design, factors effecting choice were listed in section 8.2 but
much work would need to be done to establish if, when, and how decomposi-
tion should proceed. Work on this project has led the author to the following

two, rather vague, guidelines:

e Check for tractability of the task; if it’s evolvable then fine. If not,
or fitness function design is a problem then recursively sub-divide the

problem according to these two heuristics.

e In isolation the components of decomposition should be behaviours
that a monolithic controller should, or ideally must, do. Defining how
the behaviours should be produced, in the example of box-spiraling
for instance, may be indicative of an inefficient or over-constrained

decomposition.

87

An example of a decomposition meeting the second heuristic is goal-
scoring being divided into ball-homing and pushing-to-goal: to score the

robot must move to the goal and push the ball to goal'?

. Here the designer
is imparting true domain knowledge to the evolution instead of a, possibly
flawed, intuition — as in the case of assuming ball-spiraling and ball-pushing

to be a good/best strategy for scoring.

12Unfortunately lack of time prevented evaluation of the efficacy of this decomposition

88

Chapter 9

Conclusion

Successful simulation, evolution and transfer to reality of a goal-scoring

Khepera using visual perception has been shown. This was done through:

e Implementation of vision at an object level, removing the need for
pixel-level modelling in simulation, and allowing insertion of domain
knowledge in the form of useful perceptual constructs into the evolu-

tionary algorithm.

e Careful representation of the virtual sensor, IRs and Khepera dynamics
through sampling of real world responses and recalling these in simu-

lation, recreating a ‘virtual reality’.

e Using a monolithic controller, which was seen to perform considerably

better than a hierarchical one.

The results are relevant to issues of combining engineering design and
evolution. Experiments on decomposition showed that there are potential
gains in tractability to be had at the risk of restricting the search space
to sub-optimal regions of the fitness landscape; some guidelines for when

and how to decompose behaviours are given. The virtual sensor approach

89

showed that it is possible for designers to determine useful perceptual con-
structs. Work on simulation and reality transfer showed that with thoughtful
modelling it is likely that the reality gap will be crossed: a failure to cross the
reality gap highlighted the inescapable possibility that a significant quirk of
reality may have been overlooked. The novel technique of virtual sensors was
developed and was seen to be advantageous in most aspects assuming one
has these virtual sensors, further discussion is given below. The independent
evolution of these proved time-consuming and it is unclear whether or not
the problem of vision was moved in to a more difficult domain; given that a
comparison was not possible with limitations of time. The work is relevant
in that behaviours were evolved at the current limit of behavioural complex-
ity in evolutionary robotics. The techniques used show promise in terms of
scalability, partially validated in this respect by working on a complex task.
Further work on task decomposition and virtual sensors is needed to assess
their true worth.

Genetic programming of controllers at the behavioural level through the
fitness function, environment and training set was interesting to work with.
As evolutionary run-time approaches standard compiler times this starts to
resemble a behavioural-level language. The desired results are not always
achieved first time but the required parameter adjustments are usually obvi-

ous from observation of the deviant behaviour.

9.1 Virtual Sensors

Once the virtual sensors had been evolved they were a success — with evol-
ution of controllers using vision sensors requiring the same populational re-
sources as for the lower bandwidth IR sensors. The ease of evolution and
fairly optimal behaviour of evolved controllers shows the evolution could

cope with the perceptual constructs imposed by the designer and discredits

90

the arguments for active perception in such a problem domain; where it is
seemingly fairly obvious what the robot should sense. Their use greatly sim-
plified the modelling of vision and allowed the look-up table approach to be
used, offering considerable speed-up over the ray tracing methods required
in mathematical modelling.

If one considers the computation required to evolve the virtual sensors
then the approach is probably not such a success in terms of increasing tract-
ability. However the lack of comparison with a pixel-level vision simulation
prevents any conclusions being drawn; the problem of visual perception for
this task may just be very hard. The application of the approach to more
complex visual environments/tasks is reliant on the synthesis of sensors for
such environments/tasks. It is tempting to assume that by applying more
sophisticated techniques from the vast body of machine vision or supervised
learning techniques this will always be possible. This may be presumptuous
but there is no evidence to suggest such methods are less powerful than the

alternative approach of evolving active perception.

9.2 Further Work

The project has touched on a lot of issues and most of these remain open
issues. Task decomposition and its generic technique of hybrid approaches
demand attention and systematic work, e.g. [Perkins & Hayes 97], is only
just starting in this area. A more systematic study, ideally comparative, of
virtual sensors would be welcome.

The techniques used could be extended to more complicated tasks and
environments, removing the sight screens would be an initial step in this
direction. Generalisation to multiple or varied environments is another.

The promising controller architecture of [Lee et al. 97] could be exten-

ded beyond being solely reactive. Recurrency through side-effect memory

91

read-and-write functions was considered, with time constraints preventing
implementation.

The look-up table approach, with its faithful reproduction of the envir-
onment, has implications for a new simulator and robot design methodology.
Coupled with automatic data collection techniques, robots could be evolved
in situ, capturing their environment then evolving controllers specifically for
this. Such highly specific controllers are likely to be easier to evolve than
for the generic environment and can be highly optimised to the environment.

This may be some time off!

92

Bibliography

[Angeline 94]

[Boyle & Thomas 88]

[Brooks 85]

[Brooks 90]

[Brooks 91a]

[Brooks 91b]

[Brooks 92]

Peter John Angeline. Genetic programming and
emergent intelligence. In Kenneth E. Kinnear,
Jr., editor, Advances in Genetic Programming,

chapter 4, pages 75-98. MIT Press, 1994.

R. Boyle and R. Thomas. Computer Vision: A
first Course, chapter Perception. Blackwell Sci-
entific Publications, 1988.

Rodney A. Brooks. A robust layered control sys-
tem for a mobile robot. Lab memo 864, MIT Al
Lab, September 1985.

Rodney A. Brooks. Elephants don’t play chess.
Robotics and Autonomous Systems, 6:3—15, 1990.

R. A. Brooks. Intelligence without reason. A.lL
Memo No. 1293, April 1991.

Rodney A. Brooks. Intelligence without repres-
entation. Artificial Intelligence, 47:139-159, 1991.

Rodney A. Brooks. Artificial life and real robots.
In F. J. Varela and P. Bourgine, editors, Toward a

Practice of Autonomous Systems: Proceedings of

93

[Bryant 92]

[Clark 97]

[Cliff et al. 92]

[Cliff et al. 93]

[Floreano & Mondada 94]

[Floreano & Mondada 96]

the First European Conference on Artificial Life,
pages 3-10. MIT Press, 1992.

Randal E. Bryant. Symbolic boolean manipula-
tion with ordered binary decision diagrams. Tech-
nical Report CS-92-160, Carnegie Mellon Univer-
sity, School of Computer Science, July 1992.

A Clark. Being There. The MIT Press, 1997.

D. Cliff, P. Husbands, and I[. Harvey. Evolving
visually guided robots. Technical Report Cognit-
ive Science Research Paper CSRP220, School of
Cognitive and Computing Sciences, University of

Sussex, Brighton BN1 9QH, England, UK, 1992.

Dave Cliff, Inman Harvey, and Phil Husbands.
Explorations in evolutionary robotics. Adaptive

Behaviour, 2:73-110, 1993.

D. Floreano and F. Mondada. Active percep-
tion, navigation, homing, and grasping: An
autonomous perspective. In Ph. Gaussier and
J.-D. Nicoud, editors, From Perception to Action
Conference, Los Alamos. IEE Computer Society
Press, 1994.

D. Floreano and F. Mondada. Evolution and
mobile autonomous robotics. In E. Sanchz
and M. Tomassini, editors, Towards Evolvable
Hardware. Lecture Notes in Computer Science.

Berlin:Springer-Verlag, 1996.

94

[Floreano & Mondada 97] D. Floreano and F. Mondada. Evolution of hom-

[Floreano & Nolfi 97]

[Floreano 97]

[Gathercole 98]

[Gomi & Griffith 96]

[Harvey 92]

ing navigation in a real mobile robot. I[FEE
Transactions on Systems, Man, and Cybernetics—

Part B: Cybernetics, 26(3):396-407, 1997.

D. Floreano and S. Nolfi. Adaptive behavior
in competing co-evolving species. In P. Hus-
bands and I. Harvey, editors, Proceedings of the

4th European Conference on Artificial Life, pages
378-387. MIT Press, 1997.

Dario Floreano. Reducing human design and in-
creasing adaptability in evolutionary robotics. In
Takashi Gomi, editor, Fvolutionary Robotics. AAI
Books, Ontario (Canada), 1997.

C. Gathercole. An Investigation of Supervised
Learning in Genetic Programming. Unpublished
PhD thesis, Dept. of Artificial Intelligence, Uni-
versity of Edinburgh, 1998.

Takashi Gomi and Ann Griffith. Evolutionary ro-
botics — an overview. In Proceedings of IEEE In-

ternational Conference on Evolutionary Compu-

tation, 1996.

Inman Harvey. Species adaptation genetic al-
gorithms: A basis for a continuing saga. In
F.J. Varela and P. Bourgine, editors, Toward
a Practice of Autonomous Systems: Proceedings

of the First European Conference on Artificial

95

[Harvey et al. 93]

[Hautop-Lund et al. 97]

[I. Harvey 97]

[Jakobi 94a]

[Jakobi 94b]

[Jakobi 97a]

Life, pages 346-354, Cambridge, MA, 1992. MIT
Press/Bradford Books.

[. Harvey, P. Husbands, and D. Cliff. Issues in
evolutionary robotics. In H. Roitblat J.-A. Meyer
and S. Wilson, editors, From Animals to Animats
2: Proc. of the Second Intl. Conf. on Simula-
tion of Adaptive Behavior, (SAB92), pages 364
373, Cambridge MA, 1993. MIT Press/Bradford
Books.

Henrik Hautop-Lund, John Hallam, and Wei-Po
Lee. Evolving robot morphology. invited paper.
In Proceedings of the 4th International Conference

on Evolutionary Computation. IEEE Press, 1997.

D. Cliff A. Thompson N. Jakobi I. Harvey,
P. Husbands. Evolutionary robotics: the sus-

sex approach. Robotics and Autonomous Systems,

20:205-224, 1997.

N. Jakobi. Evolving sensorimotor control archi-
tectures in simulation for a real robot. Unpub-
lished M.Sc. thesis, School of Cognitive and Com-

puting Sciences, University of Sussex, 1994.

N. Jakobi. Evolving sensorimotor control archi-
tectures in simulation for a real robot. Unpub-

lished M.Sc. thesis, University of Sussex, 1994.

N. Jakobi. Evolutionary robotics and the radical
envelope of noise hypothesis. Journal of Adaptive

Behaviour, 6, 1997.

96

[Jakobi 97b]

[Jakobi 98|

[Jakobi et al. 95]

[Jakobi ng]

[Johnson et al. 94]

N. Jakobi. Half-baked, ad-hoc and noisy: Minimal
simulations for evolutionary robotics. In P. Hus-
bands and I. Harvey, editors, Proceedings of the

4th European Conference on Artificial Life, pages
378-387. MIT Press, 1997.

Nick Jakobi. Evolving motion-tracking behaviour
for a panning camera head. In Proceedings of

the 5th International Conference on Simulation

of Adaptive Behaviour. MIT Press, 1998.

Nick Jakobi, Phil Husbands, and Inman Harvey.
Noise and the reality gap: The use of simula-
tion in evolutionary robotics. In In Proceedings

of 3.rd FEuropean Conference on Artificial Life
(ECAL’95). Springer-Verlag, 1995.

N. Jakobi. Half-baked, ad-hoc and noisy: Min-
imal simulations for evolutionary robotics. In Phil
Husbands and Inman Harvey, editors, Advances
in Artificial Life: Proc. 4th European Conference
on Artificial Life. MIT press (1997 forthcoming),
(1997 forthcoming).

Michael Patrick Johnson, Pattie Maes, and Tre-
vor Darrell. Evolving visual routines. In Rod-
ney A. Brooks and Pattie Maes, editors, ARTI-
FICIAL LIFE IV, Proceedings of the fourth In-
ternational Workshop on the Synthesis and Sim-
ulation of Living Systems, pages 198-209, MIT,
Cambridge, MA, USA, 6-8 July 1994. MIT Press.

97

[Kitano et al. 97]

[Koza 92al

[Koza 92b]

[Koza 94]

[Lee 97]

[Lee et al. 97]

H. Kitano, M. Asada, Y. Kunyoshi, I. Noda, and
E. Osawa. Robocup: The robot world cup initi-
ative. In Proceedings of The First International
Conference on Autonomous Agent (Agents-97)).
The ACM Press, 1997.

John R. Koza. Evolution of subsumption architec-
ture using genetic programming. In F. J. Varela
and P. Bourgine, editors, Toward a Practice of
Autonomous Systems: Proceedings of the First
FEuropean Conference on Artificial Life, pages

110-119. MIT Press, 1992.

John R. Koza. Genetic Programming: On the
Programming of Computers by Natural Selection.

MIT Press, Cambridge: MA, 1992.

John R. Koza. Genetic Programming I1: Auto-
matic Discovery of Reusable Programs. MIT

Press, Cambridge Massachusetts, May 1994.

W-P. Lee. Ewvolving Robots: from Simple Beha-
viours to Complete Systems. Unpublished PhD

thesis, Dept. of Artificial Intelligence, University
of Edinburgh, 1997.

Wei-Po Lee, John Hallam, and Henrik Hautop-
Lund. Applying genetic programming to evolve
behavior primitives and arbitrators for mobile ro-
bots. In In Proceedings of IEEE jth Interna-

tional Conference on Evolutionary Computation.

98

[Matari¢ & CIliff 95|

[Matari¢ 90]

[Miller & Cliff 94]

[Montana 93]

[Nolfi et al. 94]

[Nolfi ss]

IEEE 4th International Conference on Evolution-

ary Computation, IEEE Press, 1997.

Maja J. Matari¢ and Dave Cliff. Challenges in
evolving controllers for physical robots. Technical
Report CS-95-184, Brandeis University Computer

Science, November 1995.

Maja J Matari¢. A distributed model for mobile
robot environment-learning and navigation. Al

Lab technical report 1228, MIT, May 1990.

Geoffrey F. Miller and Dave Cliff. Co-evolution
of pursuit and evasion i: Biological and game-

theoretic foundation. Adaptive Behavior, 1994.

David J. Montana. Strongly typed genetic pro-
gramming. BBN Technical Report #7866, Bolt
Beranek and Newman, Inc., 10 Moulton Street,

Cambridge, MA 02138, USA, 7 May 1993.

S. Nolfi, D. Floreano, O. Miglino, and
F'. Mondada. How to evolve autonomous robots:
Different approaches in evolutionary robotics. In
R. A. Brooks and P. Maes, editors, Proceedings of
the IV International Workshop on Artificial Life,
pages 190-197, Cambridge, MA, 1994. MIT Press.

Stefano Nolfi. Evolving non-trivial behaviors on
real robots: a garbage collecting robot. Journal of
Robotics and Autonomous System, ”Robot learn-

ing: The new wave “ special issue, (in press).

99

[Perkins & Hayes 96|

[Perkins & Hayes 97]

[Pollack & Ringuette 90]

[Resnick 97]

[Reynolds 94a)

[Reynolds 94b]

[Reynolds 94c]

Simon Perkins and Gillian Hayes. Robot shaping
- principles, methods and architectures. Technical
report, Department of Artificial Intelligence, Uni-
versity of Edinburgh, March 1996.

Simon Perkins and Gillian Hayes. Incremental ac-
quisition od complex behaviour using structured
evolution. In International Conference on Neural

Networks and Genetic Algorithms, Norwich, 1997.

Martha E. Pollack and Marc Ringuette. In-
trodcing the tileworld: Experimentally evaluating
agent architectures. In AAAI-90, pages 183-1809,
1990.

Mitchel Resnick. Turtles, Termites, and Traffic
Jams: Ezxplorations in Massively Parallel Micro-

worlds. The MIT Press, 1997.

Craig W. Reynolds. The difficulty of roving eyes.
In Proceedings of the 1994 IEEE World Con-
gress on Computational Intelligence, pages 262
267, Orlando, Florida, USA, 27-29 June 1994.
IEEE Press.

Craig W. Reynolds. Evolution of corridor follow-
ing behavior in a noisy world. In Simulation of

Adaptive Behaviour (SAB-94), 1994.

Craig W. Reynolds. An evolved, vision-based be-
havioral model of obstacle avoidance behaviour.

In Christopher G. Langton, editor, Artificial Life

100

[Smith 97]

[Smith 98]

[Tackett 93]

[Teller & Veloso 95]

111, volume XVII of SFI Studies in the Sciences
of Complezity, pages 327-346. Addison-Wesley,
Santa Fe Institute, New Mexico, USA, 15-19 June
1992 1994.

T. Smith. Adding vision to khepera: An
autonomous robot footballer. Unpublished M.Sc.
thesis, School of Cognitive and Computing Sci-

ences, University of Sussex, 1997.

T. Smith. Blurred vision: Simulation-reality
transfer of a visually guided robot. In J.-A.
Meyer and P. Husbands, editors, Proceedings of
EvoRob’98. Springer-Verlag, 1998.

Walter Alden Tackett. Genetic generation of
“dendritic” trees for image classification. In Pro-
ceedings of WCNN93, pages IV 646-649. IEEE
Press, July 1993.

Astro Teller and Manuela Veloso. A controlled
experiment: Evolution for learning difficult image
classification. In Seventh Portuguese Conference
On Artificial Intelligence, volume 990 of Lecture
Notes in Computer Science, pages 165176, Fun-
chal, Madeira Island, Portugal, October 3-6 1995.
Springer-Verlag.

101

