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Abstract. We present the �rst eÆcient statistical zero-knowledge pro-
tocols to prove statements such as:

{ A committed number is a prime.
{ A committed (or revealed) number is the product of two safe primes,
i.e., primes p and q such that (p� 1)=2 and (q � 1)=2 are prime.

{ A given integer has large multiplicative order modulo a composite
number that consists of two safe prime factors.

The main building blocks of our protocols are statistical zero-knowledge
proofs of knowledge that are of independent interest. We show how to
prove the correct computation of a modular addition, a modular multi-
plication, and a modular exponentiation, where all values including the
modulus are committed to but not publicly known. Apart from the va-
lidity of the equations, no other information about the modulus (e.g., a
generator whose order equals the modulus) or any other operand is ex-
posed. Our techniques can be generalized to prove that any multivariate
modular polynomial equation is satis�ed, where only commitments to
the variables of the polynomial and to the modulus need to be known.
This improves previous results, where the modulus is publicly known.
We show how these building blocks allow to prove statements such as
those listed earlier.

1 Introduction

The problem of proving that a number n is the product of two primes p and q of
special form arises in many recently proposed cryptographic schemes (e.g., [7, 8,
20, 21]) whose security is based on both the infeasibility of computing discrete
logarithms and of computing roots in groups of unknown order. Such schemes
typically involve a designated entity that knows the group's order and hence
is able to compute roots. Although the other involved entities must not learn
the group's order, nevertheless, they want to be assured that it is large and not
smooth, i.e., that computing discrete logarithms is infeasible to the designated
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entity as well. An example of groups used in such schemes are subgroups of Z�n.
Here, it suÆces that the designated entity proves n to be the product of two safe
primes, i.e., primes p and q such that (p � 1)=2 and (q � 1)=2 are prime. More
precisely, if n is the product of two safe primes p and q and a2 6� 1 (mod n)
and gcd(a2 � 1; n) = 1 holds for some a (which the veri�er can check easily),
then a has multiplicative order (p� 1)(q� 1)=4 or (p� 1)(q� 1)=2 [21]. Another
example are elliptic curves over Zn. In this case, n is required to be the product
of two primes p and q such that (p+ 1)=2 and (q + 1)=2 are prime [25]. Finally,
standards such as X9.31 require the modulus to be the product of two primes p
and q, where (p � 1)=2, (p + 1)=2, (q � 1)=2, and (q + 1)=2 have a large prime
factor that is between 100 and 120 bit [39]1. Previously, the only way known
to prove such properties was applying ineÆcient general zero-knowledge proof
techniques (e.g., [23, 5, 16]).

In this paper we describe an eÆcient protocol for proving that a committed
integer is in fact the modular addition of two committed integer modulo another
committed integer without revealing any other information whatsoever. Then,
we provide similar protocols for modular multiplication, modular exponentiation,
and, more general, for any multivariate polynomial equation. Previously known
protocols allow only to prove that algebraic relations modulo a publicly known
integer hold [4, 9, 16, 18]. Furthermore, we present an eÆcient zero-knowledge
argument of primality of a committed number and, as a consequence, a zero-
knowledge argument that an RSA modulus n consists of two safe primes. The
additional advantage of this method is that only a commitment to n but not n
itself must be publicly known. If the number n is publicly known, however, more
eÆcient protocols can be obtained by combining our techniques with known
results which are described in the next paragraph.

A number of protocols for proving properties of composite numbers are found
in literature. Van de Graaf and Peralta [37] provide an eÆcient proof that a given
integer n is of the form n = prqs, where r and s are odd, p and q are primes and
p � q � 3 (mod 4). A protocol due to Boyar et al. [2] allows to prove that a
number n is square-free, i.e., there is no prime p with pjn such that p2jn. Hence,
if both properties are proved, it follows that n is the product of two primes p and
q, where p � q � 3 (mod 4). This result was recently strengthened by Gennaro
et al. [22] who present a proof system for showing that a number n (satisfying
certain side-conditions) is the product of quasi-safe primes, i.e., primes p and
q for which (p � 1)=2 and (q � 1)=2 is a prime power. However, their protocol
can not guarantee that (p� 1)=2 and (q� 1)=2 are indeed primes which is what
we are aiming for. Finally, Chan et al. [11] and Mao [29] provide protocols for

1 However, it is unnecessary to explicitly add this requirement to the RSA key gener-
ation. For randomly chosen large primes, the probability that (p� 1)=2, (p + 1)=2,
(q� 1)=2, and (q+1)=2 have a large prime factor is overwhelming. This is suÆcient
protection against the Pollard p � 1 and Williams p + 1 factoring methods [32, 38].
Moreover, an eÆcient proof that an arbitrarily generated RSA modulus is not weak
without revealing its factors seems to be hard to obtain as various conditions have
to be checked (e.g., see [1]).



showing that a committed number consists of two large factors, and, recently,
Liskov & Silverman describe a proof that a number is a product of two nearly
equal primes [28].

2 Tools

In the following we assume a group G = hgi of large known order Q and a second
generator h whose discrete logarithm to the base g is not known. We de�ne the
discrete logarithm of y to the base g to be any integer x such that y = gx holds,
in particular discrete logarithms are allowed to be negative. Computing discrete
logarithms is assumed to be infeasible.

2.1 Commitment Schemes

Our schemes use commitment schemes that allow to prove algebraic properties
of the committed value. There are two kinds of commitment schemes. The �rst
kind hides the committed value information theoretically from the veri�er (un-
conditionally hiding) but is only conditionally binding, i.e., a computationally
unbounded prover can change his mind. The second kind is only computation-
ally hiding but unconditionally binding. Depending on the kind of the commit-
ment scheme employed, our schemes will be statistical zero-knowledge arguments
(proofs of knowledge) or computational zero-knowledge proof systems. Cramer
and Damg�ard [16] describe a class of commitment schemes allowing to prove
algebraic properties of the committed value. It includes RSA-based as well as
discrete-logarithm-based schemes of both kinds. For easier description of our
protocols, we will use a particular commitment scheme which is due to Pedersen
[31]: A value a 2 ZQ is committed to by ca := gahr, where r is randomly chosen
from ZQ. This scheme is unconditionally hiding and computationally binding,
i.e., a prover able to compute logg h can change his mind. Therefore our protocol
will be statistical zero-knowledge proofs of knowledge (or arguments). However,
our protocols can easily be adapted to work for all the commitment scheme
exposed in [16].

2.2 Various Proof-Protocols Found in Literature

We review various zero-knowledge protocols for proving knowledge of and about
discrete logarithms and introduce our notation for such protocols.

Proving the knowledge of a discrete logarithm x of a group element y to a base
g [13, 35]. The prover chooses a random r 2R ZQ and computes t := gr and
sends t to the veri�er. The veri�er picks a random challenge c 2R f0; 1gk and
sends it to the prover. The prover computes s := r � cx (mod Q) and sends
s to the veri�er. The veri�er accepts, if gsyc = t holds. This protocol is an
honest-veri�er zero-knowledge proof of knowledge if k = �(poly(logQ)) and
a zero-knowledge proof of knowledge if k = O(log log(Q)) and when serially



repeated �(poly(logQ)) times. This holds for all other protocols described in
this section (when not mentioned otherwise). Adopting the notation in [8], we
denote this protocol by PKf(�) : y = g�g, where PK stands for \proof of
knowledge".

Proving the knowledge of a representation of an element y to the bases g1; : : : ; gl
[3, 12], i.e., proving the knowledge of integers x1; : : : ; xl such that y =

Ql
i=1 g

xi
i .

This protocol is an extension of the previous one with respect to multiple bases.
The prover chooses random integers r1; : : : ; rl 2R ZQ, computes t :=

Ql
i=1 g

ri
i ,

and sends the veri�er t. The veri�er returns her a randomly picked challenge
c 2R f0; 1gk. The prover computes si := ri � cxi (mod Q) for i = 1; : : : ; l and

sends the veri�er all si's, who accepts, if t = yc
Ql
i=1 g

si
i holds. This protocol

is denoted by PKf(�1; : : : ; �l) : y =
Ql
i=1 g

�i
i g.

Proving the equality of the discrete logarithms of elements y1 and y2 to the bases
g and h, respectively [14]. Let y1 = gx and y2 = hx. The prover chooses a
random r 2 Z�Q, computes t1 := gr; t2 := hr, and sends t1; t2 to the veri�er.

The veri�er picks a random challenge c 2 f0; 1gk and sends it to the prover.
The prover computes s := r � cx (mod Q) and sends s to the veri�er. The
veri�er accepts, if gsyc1 = t1 and h

syc2 = t2 holds. This protocol is denoted by
PK f(�) : y1 = g� ^ y2 = h�g. Note that this method allows also to prove that
one discrete log is the square of another one (modulo the group order), e.g.,
PK f(�) : y1 = g� ^ y2 = y�1 g.

Proving the knowledge of (at least) one out of the discrete logarithms of the ele-
ments y1 and y2 to the base g (proof of OR) [17, 34]. W.l.o.g., we assume that
the prover knows x = logg y1. Then r1; s2 2R Z

�
Q, c2 2R f0; 1gk and computes

t1 := gr1 ; t2 := gs2yc22 and sends t1 and t2 to the veri�er. The veri�er picks a
random challenge c 2 f0; 1gk and sends it to the prover. The prover computes
c1 := c� c2 and s1 := r1 � c1x (mod Q) (where � denotes the bit-wise XOR
operation) and sends s1; s2; c1, and c2 to the veri�er. The veri�er accepts, if
c1 � c2 = c and ti = gsiycii holds for i 2 f1; 2g. This protocol is denoted by
PK f(�; �) : y1 = g� _ y2 = g�g. This approach can be extended to an eÆcient
system for proving arbitrary monotone statements built with ^'s and _'s [17,
34].

Proving the knowledge of a discrete logarithm that lies in a given range, that is,
2`1 � 2`2 < logg y < 2`1 + 2`2 , for some parameters `1 and `2. (The parameter

2`1 acts as an o�set and can also chosen to be zero.) In principle, this statement
can be proved by �rst committing to every bit of x = logg y and then showing
that the committed values are either a 0 or a 1 and constitute the binary
representation of x. This method is linear in the number of bits of x. A more
eÆcient but only statistical zero-knowledge protocol can be obtained from the
basic protocol proving the knowledge of logg y by restricting the veri�er to

binary challenges and by requiring the prover's response s to satisfy 2`1 �
2�`2+1 < s < 2`1 + 2�`2+1, where � > 1 is a security parameter. Now, when
considering how the knowledge extractor can compute an x = logg y from two
accepting protocol views with the same �rst message, it can be concluded that
the prover must know an x = logg y such that 2`1 � 2�`2+2 < x < 2`1 + 2�`2+2



holds [11]. We denote this protocol by

PKf(�) : y = g� ^ 2`1 � 2
�̀
2 < � < 2`1 + 2

�̀
2g;

where �̀2 denotes �`2+2 (we will stick to that notation for the rest of the paper).
For more details on this protocol we refer to [6, 11]. Finally, the restriction to
binary challenges can be dropped if the order of the group is not known to
the prover (e.g., if a subgroup of an RSA-ring is used) and when believing in
the non-standard strong RSA-assumption2 [18, 19]. Although we describe our
protocols in the following in the setting where the group's order is known to
the prover, all protocols can easily be adapted to the case where the prover
does not know the group's order using the techniques from [18, 19].

All described protocols can be combined in natural ways. First of all, one can use
multiple bases instead of a single one in any of the preceding protocols. Then,
executing any number of instances of these protocols in parallel and choosing the
same challenges for all of them in each round corresponds to the ^-composition
of the statements the single protocols prove. Using this approach, it is even
possible to compose instances according to any monotone formula [17, 34]. In
the following we will use of such compositions without having explained the
technical details involved for which we refer to [4, 9, 10, 17, 34].

3 Secret Computations with a Secret Modulus

The goal of this section is to provide an eÆcient protocol to prove that ab � d
(mod n) holds for some committed integers without revealing the veri�er any
further information (i.e., the protocol is zero-knowledge). A step towards this
goal are protocols to prove that a committed integer is the addition or the
multiplication of two other committed integers modulo a third committed integer
n.

The algebraic setting is as follows. Let ` be an integer such that �2` <
a; b; d; n < 2` holds and � > 1 be security parameter (cf. Section 2). Furthermore,

we assume that a group G of order Q > 22�`+5 (= 22
�̀+1) and two generators g

and h are available such that logg h is not known. This group could for instance
be chosen by the prover in which case she would have to prove that she has
chosen it correctly. Finally, let the prover's commitments to a, b, d, and n be
ca := gahr1 , cb := gbhr2 , cd := gdhr3 , and cn := gnhr4 , where r1, r2, r3, and r4
are randomly chosen elements of ZQ.

3.1 Secret Modular Addition and Multiplication

We assume that the veri�er already obtained the commitments ca, cb, cd, and
cn. Then the prover can convince the veri�er that a + b � d (mod n) holds by

2 The strong RSA assumption states that there exists a probabilistic polynomial-time
algorithm G that on input 1jnj outputs an RSA-modulus n and an element z 2 Z�

n

such that it is infeasible to �nd integers e 62 f�1; 1g and u such that z � ue (mod n).



sequentially running the protocol denoted3 by

S+ := PK
�
(�; �; 
; Æ; "; �; �; #; �; �) : ca = g�h� ^ (�2

�̀
< � < 2

�̀
) ^

cb = g
hÆ ^ (�2
�̀
< 
 < 2

�̀
) ^ cd = g"h� ^ (�2

�̀
< " < 2

�̀
) ^

cn = g�h# ^ (�2
�̀
< � < 2

�̀
) ^

cd
cacb

= c�nh
� ^ (�2

�̀
< � < 2

�̀
)
	

k times. Alternatively, she can convince the veri�er that ab � d (mod n) holds
by running the protocol

S� := PK
�
(�; �; 
; Æ; "; �; �; #; %; &) : ca = g�h� ^ (�2

�̀
< � < 2

�̀
) ^

cb = g
hÆ ^ (�2
�̀
< 
 < 2

�̀
) ^ cd = g"h� ^ (�2

�̀
< " < 2

�̀
) ^

cn = g�h# ^ (�2
�̀
< � < 2

�̀
) ^ cd = c�b c

%
nh

& ^ (�2
�̀
< % < 2

�̀
)
	

k times with him.

Remark. In some applications the prover might be required to show that n has

some minimal size. This can by showing that � lies in the range 2`1 � 2
�̀
2 < � <

2`1 + 2
�̀
2 instead of �2

�̀
< � < 2

�̀
for some appropriate values of `1 and `2 (cf.

Section 2.2).

Theorem 1. Let a, b, d, and n be integers that are committed to by the prover
as described above and assume computing discrete logarithms in G is infeasible.
Then the protocol S+ is a statistical zero-knowledge argument that a + b � d
(mod n) holds. Furthermore, the protocol S� is a statistical zero-knowledge ar-
gument that ab � d (mod n) holds. The soundness error probability for both
protocols is 2�k.

Proof. The statistical zero-knowledge claims follows from the statistical zero-
knowledgeness of the building blocks.

Let us argue why the modular relations among the committed integers hold.
First, we consider what the clauses prove that S+ and S� have in common.
Running the prover with either protocol (and using standard techniques), the

knowledge extractor can compute integers â, b̂, d̂, n̂, r̂1, r̂2, r̂3, and r̂4 such

that ca = gâhr̂1 , cb = gb̂hr̂2 , cd = gb̂hr̂3 , and cn = gn̂hr̂4 holds. Moreover,

�2
�̀
< â < 2

�̀
, �2

�̀
< b̂ < 2

�̀
, �2

�̀
< d̂ < 2

�̀
, and �2

�̀
< n̂ < 2

�̀
holds for these

integers.
When running the prover with S+, the knowledge extractor can further com-

pute integers r̂5 2 ZQ and û with �2
�̀
< û < 2

�̀
such that cd=(cacb) = cûnh

r̂5

holds. Therefore, we have gd̂�â�b̂hr̂3�r̂1�r̂2 = gn̂ûhûr̂4+r̂5 and hence, provided
logg h is not known, we must have d̂ � â + b̂ + ûn̂ (mod Q). Thus we have

d̂ = â+ b̂+ ûn̂ + �wQ for some integer �w. Since 22
�̀+1 < Q and due to the con-

straints on â, b̂, d̂, n̂, and û, we can conclude that the integer �w must be 0 and
so d̂ � â+ b̂ (mod n̂) must hold.

3 Recall that �̀ denotes �`+ 2.



Now consider the case when running the prover with S�. In this case the
knowledge-extractor can additionally compute integers r̂6 2 ZQ and v̂ with

�2
�̀
< v̂ < 2

�̀
such that cd = câb c

v̂
nh

r̂6 and thus gd̂hr̂3 = gâb̂+v̂n̂hâr̂2+v̂r̂4+r̂6

holds. Again, assuming that logg h is not known, we have d̂ � âb̂+ v̂n̂ (mod Q).

As before, due to 22
�̀+1 < Q and the constraints on â, b̂, d̂, n̂, and v̂ we can

conclude that d̂ � âb̂ (mod n̂) must hold for the committed values. ut

3.2 Secret Modular Exponentiation

We now extend the ideas from the previous paragraph to a method for proving
that ab � d (mod n) holds. Using the same approach as above, i.e., having the
prover to provide a commitment to an integer ~a that equals ab (in Z) and proving
this, would required that G has order about 2b` and thus such a protocol would
become rather ineÆcient. A more eÆcient protocol is obtained by constructing ab

(mod n) step by step according to the square & multiply algorithm4, committing
to all intermediary results, and then prove that everything is consistent. This
protocol is exposed in the following. We assume that an upper-bound `b � ` on
the length of b is publicly known.

1. Apart from her commitments ca, cb, cd, and cn to a, b =
P`b�1
i=0 bi2

i, d, and
n, the prover must commit to all the bits of b: let cbi := gbih~ri with ~ri 2R
ZQ for i 2 f0; : : : ; `b � 1g. Furthermore she needs to provide commitments
to the intermediary results of the square & multiply algorithm: let cvi :=

g(a
2
i
(mod n))hr̂i , (i = 1; : : : ; `b�1), be her commitments to the powers of a,

i.e., a2
i

(mod n), where r̂i 2R ZQ, and let cui := guih�ri ; (i = 0; : : : ; `b � 2),

where ui := ui�1(a
2i)bi (mod n), (i = 1; : : : ; `b� 2), u0 = ab0 (mod n), and

�ri 2R ZQ. The prover sends the veri�er all these commitments.
2. To prove that ab � d (mod n) holds, they carry out the following protocol
k times.

S" :=PK
n�
�; �; �; �; 
; Æ; "; �; �; (�i; �i; �i; �i; &i; �i; #i; 'i;  i)

`b�1
i=1 ; (�i; %i)

`b�2
i=1

�
:

ca = g�h� ^ �2
�̀
< � < 2

�̀
^ (1)

cd = g
hÆ ^ �2
�̀
< 
 < 2

�̀
^ (2)

cn = g"h� ^ �2
�̀
< " < 2

�̀
^ (3)

�`b�1Y
i=0

c2
i

bi

�
=cb = h� ^ (4)

cv1 = g�1h�1 ^ : : : ^ cv`b�1 = g�`b�1h�`b�1 ^ (5)

cv1 = c�a c
�1
n h

�1 ^ cv2 = c�1v1 c
�2
n h

�2 ^ : : : ^ cv`b�1 = c
�`b�2
v`b�2

c
�`b�1
n h�`b�1 ^ (6)

4 In practice a more enhanced exponentiation algorithm might be used (see, e.g., [15]),
but one should keep in mind that it must not leak additional information about the
exponent.



�2
�̀
< �1 < 2

�̀
^ : : : ^ �2

�̀
< �`b�1 < 2

�̀
^ (7)

�2
�̀
< �1 < 2

�̀
^ : : : ^ �2

�̀
< �`b�1 < 2

�̀
^ (8)

cu1 = g�1h%1 ^ : : : ^ cu`b�2 = g�`b�2h%`b�2 ^ (9)

�2
�̀
< �1 < 2

�̀
^ : : : ^ �2

�̀
< �`b�2 < 2

�̀
^ (10)��

cb0 = h&0 ^ cu0=g = h�0
�
_
�
cb0=g = h#0 ^ cu0=ca = h 0

��
^ (11)

��
cb1 = h&1 ^ cu1=cu0 = h�1

�
_ (12)

�
cb1=g = h#1 ^ cu1 = c�1u0c

'1
n h 1 ^ �2

�̀
< '1 < 2

�̀��
^ : : : ^

��
cb`b�2 = h&`b�2 ^ cu`b�2=cu`b�3 = h�i

�
_ (13)

�
cb`b�2=g = h#`b�2 ^ cu`b�2 = c

�`b�2
u`b�3

c
'`b�2

n h `b�2 ^ �2
�̀
< '`b�2 < 2

�̀��
^

��
cb`b�1 = h&`b�1 ^ cd=cu`b�2 = h�i

�
_ (14)

�
cb`b�1=g = h#`b�1 ^ cd = c

�`b�1
u`b�2

c
'`b�1

n h `b�1 ^ �2
�̀
< '`b�1 < 2

�̀��o

Let us now explain why this protocol proves that ab � d (mod n) holds and
consider the clauses of sub-protocol S". What the Clauses 1{3 prove should be
clear. The Clause 4 shows that the cbi 's indeed commit to the bits of the integer
committed to in cb (that these are indeed bits is shown in the Clauses 11{14).
From this it can further be concluded that cb commits to a value smaller than 2`b .
The Clauses 5{8 prove that the cvi 's indeed contain a

2i (mod n) (cf. Section 3.1).
Finally, the Clauses 9{14 show that cui 's commit to the intermediary results of
the square & multiply algorithm and that cd commits to the result: The Clauses 9

and 10 show that the cui 's commit to integers that lie in f�2
�̀
+1; : : : ; 2

�̀
�1g (for

cu0 this follows from Clause 11). Then, Clause 11 proves that either cb0 commits
to a 0 and cu0 commits to a 1 or cb0 commits to a 1 and cu0 commits to the same
integer as ca. The Clauses 12 and 13 show that for each i = 1; : : : ; `b � 2 either
cbi commits to a 0 and cui commits to same integer as cui�1 or cbi commits to
a 1 and cui commits to the modular product of the value cui�1 commits to and

of a2
i

(mod n) (which cvi commits to). Finally, Clause 14 proves (in a similar
manner as the Clauses 12 and 13) that cd commits to the result of the square &
multiply algorithm and thus to ab (mod n).

Theorem 2. Let ca, cb, cd, and cn be commitments to integers a, b, d, and n
and let cb0 ; : : : ; cb`�1 ; cv1 ; : : : ; cv`b�1 ; cu0 ; : : : ; cu`b�2 be auxiliary commitments.
Then, assuming computing discrete logarithms in G is infeasible, the protocol S"
is a statistical zero-knowledge argument that the equation ab � d (mod n) holds.
The soundness error probability is 2�k.

Proof. The proof is straight forward from Theorem 1 and the explanations given
above that cb0 ; : : : ; cb`�1 ; cv1 ; : : : ; cv`b�1 ; cu0 ; : : : ; cu`b�2 , S implement the square
& multiply algorithm step by step. ut



In the following, when denoting a protocol, we refer to the protocol S" by
adding a clause like

�
�� � 
 (mod Æ)

�
to the statement that is proven and

assume that the prover sends the veri�er all necessary commitments; e.g.,

PK
n
(�; �; 
; Æ; ~�; ~�; ~
; ~Æ) : ca = g�h~� ^ cb = g�h

~� ^ cd = g
h~
 ^

cn = gÆh
~Æ ^

�
�� � 
 (mod Æ)

�o
:

3.3 EÆciency Analysis

We assume that G is chosen such that group elements can be represented with
about logQ bits. For both S+ and S� the prover and the veri�er both need
to compute 5 multi-exponentiations per round. The communication per round
is about 10 logQ + 5�` bits in case of S+ and S�. In case of S", the prover
and the veri�er need to compute about 7`b multi-exponentiations per round.
Additionally, the prover needs to compute about 3`b multi-exponentiations in
advance of the protocol (these are the computations of the commitments to the
intermediary results of the square & multiply algorithm). The communication
cost per round is about 14`b logQ+ 4`b�` bits and an initial 3`b group element
which are the commitments to the intermediary results of the square & multiply
algorithm.

3.4 Extension to a General Multivariate Polynomial

Let us outline how the correct computation of a general multivariate polynomial
equation of form

f(x1; : : : ; xt; a1; : : : ; al; b1;1; : : : ; bl;t; n) =

lX
i=1

ai

tY
j=1

x
bi;j
j � 0 (mod n)

can be shown, where all integers x1; : : : ; xt; a1; : : : ; al; b1;1; : : : ; bl;t, and n might
only given as commitments: The prover commits to all the summands s1 :=

a1
Qt
j=1 x

b1;j
j (mod n); : : : ; sl := al

Qt
j=1 x

bl;j
j (mod n) and shows that the sum

of these summands is indeed zero modulo n. Then, she commits to all the product

terms p1;1 := x
b1;1
1 (mod n); : : : ; pt;l := x

bl;t
t (mod n) of the product and shows

that si � ai
Qt
j=1 pi;j (mod n). Finally, she shows that pi;j � x

bi;j
j (mod n)

(using the protocol S") and that for all i the same xj is in pi;j . This extends
easily to several polynomial equations, where some variables appear in more
than one equation.

4 A Proof that a Secret Number is a Prime

In this section we describe how a prover and a veri�er can carry out a pri-
mality test for an integer hidden in a commitment. Some primality tests reveal



information about the structure of the prime and are hence not suited unless
one is willing to expose this information. Examples of such tests are the Miller-
Rabin test [30, 33] or the one based on Pocklington's theorem. A test that does
not reveal such information is due to Lehmann [27] and described in the next
subsection.

4.1 Lehmann's Primality Test

Lehmann's test is variation of the Solovay-Strassen [36] primality test and based
on the following theorem [26]:

Theorem 3. An odd integer n > 1 is prime if and only if

8a 2 Z�n : a
(n�1)=2 � �1 (mod n) and 9a 2 Z�n : a

(n�1)=2 � �1 (mod n) :

This theorem suggest the following probabilistic primality test [27]:

{ Choose k random bases a1; : : : ; ak 2 Z
�
n,

{ check whether a
(n�1)=2
i � �1 (mod n) holds for all i's, and

{ check whether a
(n�1)=2
i � �1 (mod n) if true for at least one i 2 f1; : : : ; kg.

The probability that a non-prime n passes this test is at most 2�k, and that a
prime n does not pass this test is at most 2�k as well. Note that in case n and

(n� 1)=2 are both odd, the condition that a
(n�1)=2
i � �1 (mod n) holds for at

least one i can be omitted. In this special case of Lehmann's test is equivalent
to the Miller-Rabin test [33] and the failure probability is at most 4�k.

4.2 Proving the Primality of a Committed Number

We now show how the prover and the veri�er can apply Lehmann's primality
test to a number committed to by the prover such that the veri�er is convinced
that the test was correctly done but does not learn any other information. The
general idea is that the prover commits to t random bases ai (of course, the
veri�er must be assured that the ai's are chosen at random) and then proves

that for these bases a
(n�1)=2
i � �1 (mod n) holds. Furthermore, to conform with

the second condition in Theorem 3, the prover must commit to a base, say ~a,
such that ~a(n�1)=2 � �1 (mod n) holds.

Let ` be an integer such that n < 2` holds and let � > 1 be a security param-
eter. As in the previous section, a group G of prime order Q > 22�`+5 and two
generators g and h are chosen, such that logg h is not known. Let cn := gnhrn

with rn 2R ZQ be the prover's commitment to the integer on which the primal-
ity test should be performed.

The following four steps constitute the protocol.

1. The prover picks random âi 2R Zn for i = 1; : : : ; t and commits to them as
câi := gâihrâi with râi 2R ZQ for i = 1; : : : ; t. She sends câ1 ; : : : ; cât to the
veri�er.



2. The veri�er picks random integers �2` < �ai < 2` for i = 1; : : : ; t and sends
them to the prover.

3. The prover computes ai := âi + �ai (mod n), cai := gaihrai with rai 2R ZQ,

di := a
(n�1)=2
i (mod n), and cdi := gdihrdi with rdi 2R ZQ for all i =

1; : : : ; t. Moreover, the prover commits to (n � 1)=2 by cb := g(n�1)=2hrb

with rb 2R ZQ. Then the prover searches a base ~a such that ~a(n�1)=2 � �1
(mod n) holds and commits to ~a by c~a := g~ahr~a with r~a 2R ZQ.

4. The prover sends cb; c~a; ca1 ; : : : ; cat ; cd1 ; : : : ; cdt to the veri�er and then they
carry out the following (sub-)protocol k times.

Sp := PK
n�
�; �; 
; �; �; %; !; (Æi; "i; �i; �i; #i; �i; %i; �i; �i;  i)

t
i=1

�
:

cb = g�h� ^ �2
�̀
< � < 2

�̀
^ (15)

cn = g�h� ^ �2
�̀
< � < 2

�̀
^ (16)

c2bg=cn = h
 ^ (17)

c~a = g%h! ^ (%� � �1 (mod �)) ^ (18)

câ1 = gÆ1h"1 ^ : : : ^ cât = gÆth"t ^ (19)

ca1=g
�a1 = gÆ1c�1n h

�1 ^ : : : ^ cat=g
�at = gÆtc�tn h

�t ^ (20)

�2
�̀
< Æ1 < 2

�̀
^ : : : ^ �2

�̀
< Æt < 2

�̀
^ (21)

�2
�̀
< �1 < 2

�̀
^ : : : ^ �2

�̀
< �t < 2

�̀
^ (22)

ca1 = g%1h�1 ^ : : : ^ cat = g%th�t ^ (23)�
cd1=g = h#1 _ cd1g = h#1

�
^ : : : ^

�
cdt=g = h#t _ cdtg = h#t

�
^ (24)

cd1 = g�1h 1 ^ : : : ^ cdt = g�th t ^ (25)

(%�1 � �1 (mod �)) ^ : : : ^ (%�t � �t (mod �))
o

(26)

Let us analyze the protocol. In Step 1 and 2 of the protocol, the prover
and the veri�er together choose the random bases a1; : : : ; at for the primality
test. Each base is the sum (modulo n) of the random integer the veri�er chose
and the one the prover chose. Hence, both parties are ensured that the bases
are random, although the veri�er does not get any information about the bases
�nally used in the primality test. That the bases are indeed chosen according
to this procedure is shown in the Clauses 19{23 of the sub-protocol Sp, where
the correct generation of the random values ai, committed in cai , is proved.
The Clauses 16{17 prove that indeed (n � 1)=2 is committed in cb and the
Clause 18 shows that there exists a base ~a such that ~a(n�1)=2 � �1 (mod n). In
the Clause 24 it is shown that the values committed in cdi are either equal to
�1 or to 1. Finally, in Clause 26 (together with the Clauses 15, 16, 23, and 25)

it is proved that a
(n�1)=2
i � di (mod n), i.e., a

(n�1)=2
i (mod n) 2 f�1; 1g and

thus the conditions that n is a prime with error-probability 2�t are met.
Note that all modular exponentiations in Clause 26 have the same b and n

and hence the proofs for these parts can be optimized. In particular, this is the
case for the Clauses 3, 4, and 11{14 in S".



Theorem 4. Assume computing discrete logarithms in G is infeasible. Then,
the above protocol is a statistical zero-knowledge argument that the integer com-
mitted to by cn is a prime. The soundness error probability is at most 2�k+2�t.

Proof. The proof is straight forward from the Theorems 1, 2, and 3. ut

In the sequel, we abbreviate the above protocol by adding a clause such as
� 2 primes(t) to the statement that is proven, where t denotes the number of
bases used in the primality test.

Remark. If (n � 1)=2 is odd and the prover is willing to reveal this, she can

additionally prove that she knows � and  such that cb=g = (g2)�h and �2
�̀
<

� < 2
�̀
holds and skip the Clause 18. This results in a statistical zero-knowledge

proof that n of form n = 2w+1 is prime and w is odd with error-probability at
most 2�2t.

4.3 EÆciency Analysis

Assume that the commitment to the prime n is given. Altogether t+1 protocols
that a modular exponentiation holds are carried out where the exponents are
about logn bits. Thus, prover and veri�er need to compute about 7t logn multi-
exponentiations per round each. Additionally, the prover needs to compute about
2t logn multi-exponentiations for the commitments to the intermediary results
of the square & multiply algorithm. (Note that the exponents in Clause 26 is the
same in all relations and hence the commitments to its bits need to be computed
only once.) The communication cost per round is about 14t logn logQ+4t logn�`
bits and an initial 2t logn group elements which are the commitments to the
intermediary results of the square & multiply algorithm and the commitments
to the bases of the primality test.

5 Proving that an RSA Modulus Consists of Two Safe

Primes

We �nally present protocols for proving that an RSA modulus consists of two
safe primes. First, we restrict ourselves to the case where not the modulus but
only a commitment to it is not known to the veri�er. Later, we will discuss
improvements for cases when the RSA modulus is known to the veri�er.

5.1 A Protocol For a Secret RSA Modulus

Let 2` be an upper-bound on the length of the largest factor of the modulus
and let � > 1 be a security parameter. Furthermore, a group G of prime order
Q > 22�`+5 and two generators g and h are chosen, such that logg h is not known
and computing discrete logarithms is infeasible. Let cn := gnhrn be the prover's
commitment to an integer n, where she has chosen rn 2R ZQ, and let p and q
denote the two prime factors of n. The following is a protocol that allows her to
convince the veri�er that cn commits to the product of two safe primes.



1. The prover computes the commitments cp := gphrp , c~p := g(p�1)=2hr~p , cq :=
gqhrb , and c~q := g(q�1)=2hr~p with rp; r~p; rq ; r~q 2R ZQ and sends all these
commitments to the veri�er.

2. The two parties sequentially carry out the following protocol k times.

S51 := PKf(�; �; 
; Æ; %; �; �; �; "; �; �) :

c~p = g�h� ^ c~q = g
hÆ ^ cp = g%h� ^ cq = g�h� ^ (27)

cp=(c
2
~pg) = h" ^ cq=(c

2
~qg) = h� ^ cn = c�ph

� ^ (28)

� 2 primes(t) ^ 
 2 primes(t) ^ (29)

% 2 primes(t) ^ � 2 primes(t)g ; (30)

where t denotes the number of bases used in Lehmann's primality tests. (The
length conditions on �; 
; %, and � are shown in the primes(t)-parts of the
protocol.)

Theorem 5. Assume computing discrete logarithms in G is infeasible. Then,
the above protocol is a statistical zero-knowledge argument that the integer com-
mitted to by cn is the product of product of two integers p and q and p, q, (p�1)=2
and (q� 1)=2 are primes. The soundness error probability is at most 2�k +2�t.

Proof. The proof is straight forward from the Theorems 1, 2, and 4. ut

The computational and communication costs of this protocol are reigned
by the primality-protocols and thus about four times as high as for a single
primality-protocol (cf. Subsection 4.3).

5.2 A Protocol For a Publicly Known RSA Modulus

In cases the number n is publicly known and ful�lls some side-conditions (see
below), much less rounds of the Lehmann test will be suÆcient if the prover
and the veri�er �rst run the protocol due to Gennaro et al. [22] (which includes
the protocols proposed by Peralta & van de Graaf [37] and by Boyar et al. [2]).
This protocol is a statistical zero-knowledge proof system that there exist two
integers a; b � 1 such that n consists of two primes p = 2~pa + 1 and q = 2~qb + 1
with p; q; ~p; ~q 6� 1 (mod 8), p 6� q (mod 8), ~p 6� ~q (mod 8) and ~p; ~q are primes.
Given the fact that (p�1)=2 is a prime power, and assuming that it is not prime,
the probability that it passes a single round of Lehmann's primality test for any
a > 1 is at most ~p1�a �

p
2=(p� 1) (for q the corresponding statement hold).

Hence, if p and q are suÆciently large, a single round of Lehmann's primality
test on (p � 1)=2 and (q � 1)=2 will be suÆcient to prove their primality with
overwhelming probability. Thus, the resulting protocol to prove that n is the
product of two safe primes is as follows.

1. First the prover computes cp := gphrp , c~p := g(p�1)=2hr~p , cq := gqhrb , and
c~q := g(q�1)=2hr~p with rp; r~p; rq ; r~q 2R ZQ and sends these commitments
together with n to the veri�er.



2. The prover and the veri�er carry out the protocol by Gennaro et al. [22]
3. and then k times the protocol denoted by

S52 := PKf(�; �; 
; Æ; %; �; �; �; "; �; �) :

c~p = g�h� ^ c~q = g
hÆ ^ cp = g%h� ^ cq = g�h� ^ (31)

cp=(c
2
~pg) = h" ^ cq=(c

2
~qg) = h� ^ gn = c�ph

� ^ (32)

� 2 primes(1) ^ 
 2 primes(1)g ; (33)

where the length conditions on � and 
 are hidden within in the sub-protocols
primes(1).

Theorem 6. Let n be the product of two primes p and q such that p = 2~pa + 1
and q = 2~qb + 1 with p; q; ~p; ~q 6� 1 (mod 8), p 6� q (mod 8), ~p 6� ~q (mod 8),
a; b � 1 and ~p; ~q are primes. Assume computing discrete logarithms in G is
infeasible. Then, the protocol S52 is a statistical zero-knowledge argument that
n is the product of two integers p and q and that p, q, (p� 1)=2, and (q � 1)=2
are primes. Assume p > q. Then the soundness error probability is at most
2�k +

p
2=(q � 1).

The computational and communication costs of this protocol is dominated
by the costs of a single round (i.e., t = 1) of the primality protocol described in
the previous section and the costs of protocol of Gennaro et al. [22].

It is obvious how to apply our techniques to get a protocol for proving that n
is the product of two strong primes [24] (i.e., (p� 1)=2, (q� 1)=2, (p+1)=2 and
(q+1)=2 are primes or have a large prime factor) or, more general, two primes p
and q such that �k(p) and �k(q) are not smooth, where �k is the k-th cyclotomic
polynomial. (Recall that smoothness of �k(p) or �k(q) for any integer k > 0,
k = O(log n) allows to factor n eÆciently [1]). Lower bounds on p, q, and on n
might also be shown. Also, factors r other than 2 in (p � 1)=r could easily be
incorporated.
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