
Paper AAS 01-176

Web-Based Tools for Spacecraft
Attitude Dynamics and

Control Simulation

Daniel Quock and Jordi Puig-Suari

Aerospace Engineering Department
California Polytechnic State University

11th AAS/AIAA Space
Flight Mechanics Meeting

Santa Barbara, CA 11-15 February 2001

 AAS Publications Office, P.O. Box 28130, San Diego, CA 92129

 1

AAS 01-176

WEB-BASED TOOLS FOR SPACECRAFT ATTITUDE DYNAMICS

AND CONTROL SIMULATION

Daniel Quock∗∗∗∗ and Jordi Puig-SuariÂÂÂÂ

The web-based application presented in this paper provides attitude dynamics
and control simulation tools utilizing the advantages of the World Wide Web. A
user can access the program from the office, classroom, home, or local Internet
cafe without the hassle of single-machine licenses. The program features an
easy-to-use interface, allowing the user to quickly alter spacecraft
characteristics, orbit parameters, and initial conditions. Different levels of
complexity, ranging from rigid-body motion to active control of a spacecraft are
available to the user. A number of output options are also available to the user,
ranging from simple graphs to three-dimensional movies.

INTRODUCTION

The Internet and the World Wide Web have become an integral part of our

society. Recently more and more web tools have become available to the public, ranging
from multimedia to online games. Some experts predict that, in the near future, web-
based application programs will become the primary means to access computer software.
Many such applications are already available to users through the web, providing people
access to word processors, spreadsheets and data storage from anywhere around the
world.

The work presented here investigates the feasibility of using a Java-written web

program, an applet, for mathematically intensive calculations. The primary concerns are
that the program must be both small enough to download quickly and fast enough to
solve the differential equations in reasonable time. Applets can run on any Java-capable
device. Given Java’s increasing popularity and continued growth, soon Palm pilots or
cell phones might have the ability to download and run Java programs, giving a user the
ability to run these simulations from any location without even needing a computer.

The software presents unique opportunities to the application in education.

Professors can allow students access as a check to ensure that their simulations are

∗ Graduate Student, Aerospace Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407; Student
member AIAA
Â Associate Professor, Aerospace Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407;
(805) 756-6479 (voice), (805) 756-2376 (fax); jpuigsua@calpoly.edu; Member AIAA

 2

correct. In addition, the 3D animation feature provides the ability to easily visualize the
vehicle’s motion. This visual representation is a great aid in understanding spacecraft
dynamics.

SOFTWARE DEVELOPMENT

Programming for the Web

 Though Java is a relatively new computer language, it quickly sparked great
interest in the computer world as the World Wide Web became more and more prominent
in the early 1990’s.1 Java’s main feature is its ability to run on multiple computer
platforms. Much of Java’s appeal comes from the fact that special Java-based programs,
called Java applets, can run in web browsers. A user sitting at home on a Macintosh
computer and a student on an IBM machine at school can both run a program developed
on a UNIX workstation without the need for any software beyond their web browser.
Java applets also help make web pages more attractive, animated, and interactive. In
addition, Sun Microsystems, the developer of Java, makes Java development tools free,
allowing users to download a Java compiler and development toolkits from their
website.2

 This portability means that users can run programs directly from their computer at
any location with a connection to the Internet. Note that users download the applet onto
their computer and run it locally. This means that all processes are run on the user’s
machine and do not slow the server down. By running the application locally, users also
have control over the accuracy of the results, spending their personal computational
resources as needed. Having the users download the program with each access to the
web page also allows the software developer to ensure that the most recent version of the
software is being used. In addition, there is no need for users to install other programs
like MatLab or Satellite Tool Kit, which require licenses and are expensive. The
convenience to users is very unique.

 Java has the capability to include different Application Programming Interfaces,
or APIs. These APIs are essentially a set of pre-constructed routines and functions. The
program presented here uses the Java 3D API. Java 3D lets the programmer create a
three-dimensional environment and easily manipulate the rotation and translation of the
objects inside it.

 The web-based tools presented here are the initial developments of a program for
simulating spacecraft attitude dynamics and control. The program lets a user choose
from a number of different scenarios and accepts the appropriate input. The program
then provides graphs of the output. The Java 3D API also provides the groundwork for
an animation of the satellite’s motion. This 3D visualization is invaluable as it provides a
very clear description of how the satellite rotates.

 3

 The program is highly modular making it easy to add more scenarios with a
minimum of effort. Each new scenario merely requires the addition of the appropriate
input/output fields and the new equations of motion.

Numerical Integrator

In order to solve the differential equations of motion, a numerical integration
algorithm had to be implemented in Java. The numerical integrator is based on the
fourth-order Runge-Kutta-Fehlberg method. This algorithm uses six evaluations for each
time step and provides an estimated error at each step. However, instead of using
Fehlberg’s constants, the program uses parameters developed by Cash-Karp which are
found to be more efficient3. The integration routine includes a time varying step
algorithm. If the error of the numerically integrated step is larger than the user supplied
error tolerance, the program can decrease the time step and re-run the integration. The
algorithm can also increase the time step to speed up the integration.

Satellite Animations

 The Java 3D API provides the groundwork to create animations of the
spacecraft’s motion. The animation window, shown in Figure 1, creates a box-shaped
representation of the satellite. Originally, the satellite’s shape was to be based on the
ellipsoid of inertia but was discarded because the rotation of smooth surfaces is more
difficult to visualize. The lengths of the box are determined using the moments of inertia
equations (Eqs. 1 - 3) for a rectangular prism:

()22

12
1 cbmI xx += (1)

()22

12
1 camI yy += (2)

()22

12
1 bamI zz += (3)

The m/12 is dropped from each equation, which results in three equations and

three unknowns. The values a, b and c are found and normalized to a length appropriate
to fit in the animation window.

The body and inertia axes are color-coordinated to aid in the visualization of the
orientation of the satellite. The user can use the mouse buttons to rotate, translate and
zoom the scene. The reset axes button returns the orientation and zoom level to their
original values. Additional buttons and a slider give the user control to start and stop the

 4

animation, alter the animation speed, and move to a desired time step. A counter displays
the time for each frame.

Running the Applet

 The applet is accessed through a java-capable web browser. The user goes to the
appropriate website and enters (if necessary) a password. The web page loads with the
applet in the browser window. The first step is to select a scenario from a pull-down
menu. The user is then prompted for required inputs and is presented with a choice of
possible outputs, graphs and animation, as shown in Figure 2. When the user is satisfied
with the input values and numerical constraints, clicking on the calculate button executes
the applet. After the simulation is completed, the requested outputs appear in additional
windows.

SAMPLE SCENARIOS

Rigid Body

 One of the simplest simulations is a rigid-body spacecraft with constant body-
fixed torques. The rigid body equations of motion implemented in principal axes are well
known4:

Figure 1 Satellite Animation Window

 5

Figure 2 Rigid Body Scenario Interface

()
xx

zzyy

I
MII

dt
d 1321 +−

=
ωωω (4)

()

yy

xxzz

I
MII

dt
d 2312 +−= ωωω

 (5)

()

zz

yyxx

I
MII

dt
d 3213 +−

=
ωωω (6)

 6

where the ω’s are the angular velocities, the I’s the principal moments of inertia, and the
M’s the body-fixed torques.

 Quaternions, ε, are chosen as kinematic variables due to the lack of singularities.
The differential equations for the quaternions are:

()413223
1 5.0 εωεωεωε −+−−=

dt
d (7)

()423113
2 5.0 εωεωεωε −−−=

dt
d (8)

()432112
3 5.0 εωεωεωε

−+−−=
dt

d
 (9)

()332211
4 5.0 εωεωεωε ++−=

dt
d (10)

 The applet interface for the rigid body simulation (as shown in Figure 2) requires
the input of the spacecraft principal moments of inertia and initial conditions (ω’s and
ε’s). The user also inputs the simulation time, animation frame time steps, error tolerance
and the maximum number of steps allowed in the numerical simulation. If the maximum
number of steps is exceeded, the program notifies the user, stops the simulation, and
produces results to that point. If desired, the user can increase the number of steps and
re-run the program. Finally, the user can select the desired outputs. Graphs for the
angular velocities and quaternions are available. The user can also choose to display a
3D animation. Note that creating the animation requires the Java 3D API plug-in and
significantly increases computation time.

Sample output graphs for the simulation inputs in Figure 2 are shown in Figures
3-4. These graphs appear as new windows on the user’s screen and can be easily printed.

 7

Figure 3 Rigid Body - 1st Quaternion Value

Figure 4 Rigid Body - Angular Velocity About X-Axis

If the user is short on memory or time, then they can reduce the number of steps

taken in the numerical integration by lowering the error tolerance. A sample output of
the angular velocity in the x-body frame of the same simulations shows the solution if an
error greater than 1x10-3 is acceptable (see Figure 5).

 8

Figure 5 Rigid Body Angular Velocity About X-Axis with 1x10-3 Error Tolerance

Active Control

 A more complex simulation is the active control of a satellite’s attitude. This
scenario involves three reaction wheels with inertias Ja, Jb, and Jc aligned with each of the
principal axes of the satellite. (The program can be easily modified to include four wheel
configurations.) The reaction wheels are used to orient the satellite from an initial
quaternion vector set to a commanded (target) quaternion vector. The feedback law is
given by5:

M = kI εεεεe + Cω (11)
where M is the input torque vector generated by the reaction wheels, k is the proportional
feedback gain, I is the identity matrix, C is a diagonal matrix with three derivative gains,
and εεεεe is the vector of quaternion errors given by:

413223141 εεεεεεεεε cccce −−+= (12)

423124132 εεεεεεεεε cccce −−+−= (13)

433421123 εεεεεεεεε cccce −+−= (14)

where εc are the quaternions for the target orientation.

The equations of motion for the angular velocities of the reaction wheels are also

computed and are given by:

 9

()
a

cbbba

J
JJM

dt
d ωωωωω 231 +−−= (15)

()

b

ccaab

J
JJM

dt
d ωωωωω 132 +−−= (16)

()

c

bbaac

J
JJM

dt
d ωωωωω 123 +−−= (17)

The equations of motion for the angular velocities and quaternions are the same

used in the rigid body scenario. (Eqs. 4 – 10)

 Since this scenario requires more inputs, the interface for this scenario includes
the reaction wheel inertias, reaction wheel gain, derivative gains, and the commanded
quaternions as shown in Figure 6.

Figure 6 Three Reaction Wheel Scenario Interface

 10

Sample output graphs from the scenario in Figure 6 are shown in Figures 7 and 8.

Note that the angular velocity shown in Figure 7 has the satellite starting and ending at
rest. Modifications to the program can allow for final, user-defined, angular velocities.

Figure 7 3-Reaction Wheel Active Control - Angular Velocity About X-Axis

The sample quaternion graphs in Figure 8 shows how ε1 starts from 0.5 to the

commanded value 0.

Figure 8 3-Reaction Wheel Active Control - 1st Quaternion Value

 Figures 9 and 10 show the screen captures of the 3D animation at the beginning
and the end of the scenario.

CO

sat
abi
sof
fea
sho
mo
and

ver
sce
out

sim
sof

Figure 9 3-RW Active Control –
Sat Orientation at t = 0 seconds
11

NCLUSIONS AND FUTURE DEVELOP

The purpose of the work presented here
ellite attitude simulation tool which takes ad
lity for a user to access the applet from virtu
tware installation. Even the required Java 3
ture of web browsers in the near future. The
wn here, is less than 30 kilobytes, which do
dem. The applet also runs quickly: requirin
 construct the animation on a Celeron 800 M

Now that the feasibility of a Java apple
ified, more scenarios can be added. Additio
narios, such as the option to superimpose se
put reaction wheel velocities in the attitude

This software presents a unique opportu
ulation from any computer with Internet acc
tware. Professors can use the applet as a su
Figure 10 3-RW Active Control –
Sat Orientation at t = 200 seconds
MENT

 is to provide a convenient web-based
vantage of Java features, including the
ally any location with minimal to no
D API is expected to become a standard
 applet’s current size, with the 2 scenarios
wnloads in less than 15 seconds on a 56k
g less than 10 seconds to output the graphs

Hz machine.

t for spacecraft simulation has been
nal output options can be included for all
ts of graphs into one plot or the option to
control scenario.

nity in education. Students can access the
ess and are not required to purchase any

pplement for assignments, allowing

 12

students to check their results or run additional scenarios not covered in class. In
addition, the Java 3D based animation provides a great visualization tool to assist with
the understanding of spacecraft dynamics.

ACKNOWLEDGMENT

This work is funded by the CSU/Lockheed Martin Grant program, (Grant #50920)
under the direction of John Nelson and Jeff Fisher. The authors would like to express
their sincere appreciation to both of them for helping make this project become a reality.

REFERENCES

1. Patrick Niemeyer and Joshua Peck, Exploring Java, 2nd ed., O’Reilly & Associates,
Inc., Sebastopol, 1996, pp. 1-4.

2. “java.sun.com – The Source for Java™ Technology”, January 2001,
<http://java.sun.com>.

3. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
Numerical Recipes in C. The Art of Scientific Computing, 2nd ed., Cambridge University
Press, New York, 1992, pp.714-717.

4. William Tyrrell Thomson, Introduction to Space Dynamics, Dover Publications, Inc.,
New York, 1986, pp. 195.

5. Bong Wie, Space Vehicle Dynamics and Control, AIAA Education Series, Reston,
1998, pp. 436-444.

	Paper AAS 01-176
	Aerospace Engineering Department
	California Polytechnic State University
	AAS Publications Office, P.O. Box 28130, San Diego, CA 92129

	INTRODUCTION
	SOFTWARE DEVELOPMENT
	Programming for the Web
	Satellite Animations
	Running the Applet
	SAMPLE SCENARIOS
	Rigid Body
	Active Control
	ACKNOWLEDGMENT
	REFERENCES

