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Abstract 
The spatial distribution of DNA base sequence A, C, G and T exhibit selfsimilar 
fractal fluctuations and the corresponding power spectra follow inverse power law 
of the form 1/fα where f is the frequency and α the exponent. Inverse power law 
form for power spectra implies the following: (1) A scale invariant eddy continuum, 
namely, the amplitudes of component eddies are related to each other by a scale 
factor alone. In general, the scale factor is different for different scale ranges and 
indicates a multifractal structure for the spatial distribution of DNA base sequence. 
(2) Scale invariance of eddies also implies long-range spatial correlations of the 
eddy fluctuations. Multifractal structure to space-time fluctuations and the 
associated inverse power law form for power spectra is generic to spatially 
extended dynamical systems in nature and is a signature of self-organized 
criticality. Mathematical models for the simulation and prediction of fractal 
fluctuations of dynamical systems are nonlinear and do not have analytical 
solutions. Finite precision computer realizations of non-linear mathematical 
models of dynamical systems also exhibit self-organized criticality manifested as 
sensitive dependence on initial conditions and give chaotic solutions resulting in 
‘deterministic chaos’. The exact physical mechanism for the observed self-
organized criticality is not yet identified. The author has developed a general 
systems theory where quantum mechanical laws emerge as self-consistent 
explanations for the observed long-range space-time correlations in macro-scale 
dynamical systems, i.e., the apparently chaotic fractal fluctuations are signatures 
of quantum-like chaos in dynamical systems. The model also provides unique 
quantification for the observed inverse power law form for power spectra in terms 
of the statistical normal distribution. In this paper it is shown that the frequency 
distribution of the bases C+G in all available contiguous sequences for Human 
chromosome Y DNA exhibit model predicted quantum-like chaos.  

Keywords: fractals, chaos, self-organized criticality, quasicrystalline structure, 
quantumlike chaos 

1. Introduction 
Long-range space-time correlations, manifested as the selfsimilar 
fractal geometry to the spatial pattern, concomitant with inverse 
power law form for power spectra of space-time fluctuations are 
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generic to spatially extended dynamical systems in nature and are 
identified as signatures of self-organized criticality. A representative 
example is the selfsimilar fractal geometry of His-Purkinje system 
whose electrical impulses govern the interbeat interval of the heart. 
The spectrum of interbeat intervals exhibits a broadband inverse 
power law form fα where f is the frequency and α the exponent. Self-
organized criticality implies non-local connections in space and time, 
i.e., long-term memory of short-term spatial fluctuations in the 
extended dynamical system that acts as a unified whole 
communicating network. 

Finite precision computer realizations of nonlinear 
mathematical models of real world dynamical systems also exhibit 
self-organized criticality manifested as sensitive dependence on 
initial conditions and identified as deterministic chaos. The author 
has developed a general systems theory that predicts the observed 
self-organized criticality in model and real world dynamical systems 
as intrinsic to quantumlike chaos governing the pattern evolution in 
space and time. A summary of the model is presented with 
applications to biological systems. 

‘Nonlinear dynamics and chaos’, a multidisciplinary area of 
intensive research in recent years (since 1980s) has helped identify 
universal characteristics of spatial patterns (forms) and temporal 
fluctuations (functions) of disparate dynamical systems in nature. 
Examples of dynamical systems, i.e., systems which change with 
time include biological (living) neural networks of the human brain 
which responds as a unified whole to a multitude of input signals and 
the non-biological (non-living) atmospheric flow structure which 
exhibits teleconnections, i.e., long-range space-time correlations. 
Spatially extended dynamical systems in nature exhibit selfsimilar 
fractal geometry to the spatial pattern. The sub-units of selfsimilar 
structures resemble the whole in shape. The name ‘fractal’ coined 
by Mandelbrot (1977) indicates non-Euclidean or fractured (broken) 
Euclidean structures. Traditional Euclidean geometry discusses only 
three-, two- and one-dimensional objects, representative examples 
being sphere, rectangle and straight line respectively. Objects in 
nature have irregular non-Euclidean shapes, now identified as 
fractals and the fractal dimension D is given as D=dlogM/dlogR,
where M is the mass contained within a distance R from a point 
within the extended object. A constant value for D indicates uniform 
stretching on logarithmic scale. Objects in nature, in general exhibit 
multifractal structure, i.e., the fractal dimension D varies with length 
scale R. The fractal structure of physiological systems has been 
identified (Goldberger et al., 1990, 2002; West, 1990, 2004). The 
global atmospheric cloud cover pattern also exhibits selfsimilar 
fractal geometry (Lovejoy and Schertzer, 1986). Selfsimilarity implies 
long-range spatial correlations, i.e., the larger scale is a magnified 
version of the smaller scale with enhancement of fine structure. 
Selfsimilar fractal structures in nature support functions, which 
fluctuate on all scales of time. For example, the neural network of 
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the human brain responds to a multitude of sensory inputs on all 
scales of time with long-term memory update and retrieval for 
appropriate global response to local input signals. Fractal 
architecture to the spatial pattern enables integration of a multitude 
of signals of all space-time scales so that the dynamical system 
responds as a unified whole to local stimuli, i.e., short term 
fluctuations are carried as internal structure to long-term fluctuations. 
Fractal networks therefore function as dynamic memory storage 
devices, which integrate short-term fluctuations into long-period 
fluctuations. The irregular (nonlinear) variations of fluctuations in 
dynamical systems are therefore broadband because of coexistence 
of fluctuations of all scales. Power spectral analysis (MacDonald, 
1989) is conventionally used to resolve the periodicities 
(frequencies) and their amplitudes in time series data of fluctuations. 
The power spectrum is plotted on log-log scale as the intensity 
represented by variance (amplitude squared) versus the period 
(frequency) of the component periodicities. Dynamical systems in 
nature exhibit inverse power law form 1/fα where f is the frequency 
(1/period) and α the exponent for the power spectra of space-time 
fluctuations indicating selfsimilar fluctuations on all space-time 
scales, i.e., long-range space-time correlations. The amplitudes of 
short-term and long-term are related by a scale factor alone, i.e., the 
space-time fluctuations exhibit scale invariance or long-range space-
time correlations, which are independent of the exact details of 
dynamical mechanisms underlying the fluctuations at different 
scales. The universal characteristics of spatially extended dynamical 
systems, namely, the fractal structure to the space-time fluctuation 
pattern and inverse power law form for power spectra of space-time 
fluctuations are identified as signatures of self-organized criticality 
(Bak et al., 1988). Self-organized criticality implies non-local 
connections in space and time in real world dynamical systems. 

Surprisingly, such long-range space-time correlations had 
been earlier identified (Gleick, 1987) as sensitive dependence on 
initial conditions of finite precision computer realizations of nonlinear 
mathematical models of dynamical systems and named 
‘deterministic chaos’. Deterministic chaos is therefore a signature of 
self-organized criticality in computed model solutions. 

It has not been possible to identify the exact mechanism 
underlying the observed universal long-range space-time 
correlations in natural dynamical systems and in computed solutions 
of model dynamical systems. The physical mechanisms responsible 
for self-organized criticality should be independent of the exact 
details (physical, chemical, physiological, biological, computational 
system etc.) of the dynamical system so as to be universally 
applicable to all dynamical systems (real and model). 

Atmospheric flows exhibit self-organized criticality as 
manifested in the fractal geometry to the global cloud cover pattern 
concomitant with inverse power law form for power spectra of 
temporal fluctuations documented and discussed in detail by Tessier 
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et al. (1993). Standard models for atmospheric flow dynamics 
cannot explain the observed self-organized criticality in atmospheric 
flows satisfactorily. The author has developed a general systems 
theory for atmospheric flows (Selvam, 1990; Selvam and Fadnavis, 
1998 and all references therein) that predicts the observed self-
organized criticality as intrinsic to quantumlike chaos governing flow 
dynamics. The model concepts have also been applied to show that 
deterministic chaos in computed solutions of model dynamical 
systems is a direct consequence of roundoff error in finite precision 
iterative computations (Selvam, 1993) incorporated in long-term 
numerical integration schemes used for numerical solutions. 

In the following Section 2, the model for self-organized 
criticality in atmospheric flows is first summarized and model 
concepts are shown to be applicable to all real world and model 
dynamical systems. The concept of self-organized criticality and 
quantumlike chaos in biological and physiological systems in 
particular are discussed. 

2. General systems theory concepts 
In summary (Selvam, 1990; Selvam and Fadnavis, 1998), the model 
is based on Townsend’s concept (Townsend, 1956) that large eddy 
structures form in turbulent flows as envelopes of enclosed turbulent 
eddies. Such a simple concept that space-time averaging of small-
scale structures gives rise to large-scale space-time fluctuations 
leads to the following important model predictions. 

2.1 Quantumlike chaos in turbulent fluid flows 
Since the large eddy is but the integrated mean of enclosed 
turbulent eddies, the eddy energy (kinetic) distribution follows 
statistical normal distribution according to the Central Limit Theorem 
(Ruhla, 1992). Such a result, that the additive amplitudes of the 
eddies, when squared, represent probability distributions is found in 
the subatomic dynamics of quantum systems such as the electron or 
photon. Atmospheric flows, or, in general turbulent fluid flows follow 
quantumlike chaos. 

2.2 Dynamic memory (information) circulation network 
The root mean square (r.m.s.) circulation speeds W and w* of large 
and turbulent eddies of respective radii R and r are related as 

 22 w
R
r2W ∗=π (1) 

Eq.(1) is a statement of the law of conservation of energy for 
eddy growth in fluid flows and implies a two-way ordered energy flow 
between the larger and smaller scales. Microscopic scale 
perturbations are carried permanently as internal circulations of 
progressively larger eddies. Fluid flows therefore act as dynamic 
memory circulation networks with intrinsic long-term memory of 
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short-term fluctuations. Such “memory of water” is reported by 
Davenas et al. (1988). 

2.3 Quasicrystalline structure 
The flow structure consists of an overall logarithmic spiral trajectory 
with Fibonacci winding number and quasiperiodic Penrose tiling 
pattern for internal structure (Fig.1). Primary perturbation ORO
(Fig.1) of time period T generates return circulation OR1RO which, in 
turn, generates successively larger circulations OR1R2, OR2R3,
OR3R4, OR4R5, etc., such that the successive radii form the 
Fibonacci mathematical number series, i.e., OR1/ORO= OR2/OR1 =
…….= τ where τ is the golden mean equal to (1+√5)/2≈1.618. The 
flow structure therefore consists of a nested continuum of vortices, 
i.e., vortices within vortices. 
Figure 1: The quasiperiodic Penrose tiling pattern which forms the internal 

structure at large eddy circulations 

The quasiperiodic Penrose tiling pattern with five-fold 
symmetry has been identified as quasicrystalline structure in 
condensed matter physics (Janssen, 1988). The self-organized large 
eddy growth dynamics, therefore, spontaneously generates an 
internal structure with the five-fold symmetry of the dodecahedron, 
which is referred to as the icosahedral symmetry, e.g., the geodesic 
dome devised by Buckminster Fuller. Incidentally, the pentagonal 
dodecahedron is, after the helix, nature’s second favourite structure 
(Stevens, 1974). Recently the carbon macromolecule C60, formed by 
condensation from a carbon vapour jet, was found to exhibit the 
icosahedral symmetry of the closed soccer ball and has been named 
Buckminsterfullerene or footballene (Curl and Smalley, 1991). Self-
organized quasicrystalline pattern formation therefore exists at the 
molecular level also and may result in condensation of specific 
biochemical structures in biological media. Logarithmic spiral 
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formation with Fibonacci winding number and five-fold symmetry 
possess maximum packing efficiency for component parts and are 
manifested strikingly in Phyllotaxis (Jean, 1992a,b; 1994) and is 
common to nature (Stevens, 1974; Tarasov, 1986). 

Model predicted spiral flow structure is seen vividly in the 
hurricane cloud cover pattern. Spiral waves are observed in many 
dynamical systems. Examples include Belousov-Zhabotinksy 
chemical reaction and also in the electrical activity of heart 
(Steinbock et al., 1993). 

2.4 Dominant periodicities 
Dominant quasi-periodicities Pn corresponding to the internal 
circulations (Fig.1) OROR1, OR1R2, OR2R3, ….. are given as 

 n
n )2(TP ττ+= (2) 

The dominant quasi-periodicities are equal to 2.2T, 3.6T,
5.8T, 9.5T, ……for values of n = -1, 0, 1, 2,…, respectively (Eq.2). 
Space-time integration of turbulent fluctuations results in robust 
broadband dominant periodicities which are functions of the primary 
perturbation time period T alone and are independent of exact 
details (chemical, electrical, physical etc.) of turbulent fluctuations. 
Also, such global scale oscillations in the unified network are not 
affected appreciably by failure of localized microscale circulation 
networks. 

Wavelengths (or periodicities) close to the model predicted 
values have been reported in weather and climate variability 
(Selvam and Fadnavis, 1998), prime number distribution (Selvam, 
2001a), Riemann zeta zeros (non-trivial) distribution (Selvam, 
2001b), Drosophila DNA base sequence (Selvam, 2002), stock 
market economics (Selvam, 2003), Human chromosome 1 DNA 
base sequence (Selvam, 2004). 

Similar unified communication networks may be involved in 
biological and physiological systems such as the brain and heart, 
which continue to perform overall functions satisfactorily in spite of 
localized physical damage. Structurally stable network 
configurations increase insensitivity to parameter changes, noise 
and minor mutations (Kitano, 2002). 

Model predicted dominant quasiperiodicities (years) equal to 
2.2, 3.6, 5.8, 9.5, (Eq.2) generated by the annual cycle (T=1 year in 
Eq.2) of solar heating in atmospheric flows have been identified in 
global atmospheric weather patterns (Burroughs, 1992) as the 
quasibiennial oscillation or QBO (2.2 years), the high frequency (3-4 
years) and low frequency (5.8 years) components of the 3-7 years El 
Nino-Southern Oscillation (ENSO) cycle and decadic scale (>9
years) fluctuations. The ENSO cycle in particular is characterized by 
devastating regional changes in global climate pattern (Philander, 
1990) and is now of public concern. 
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Persistent periodic energy pumping at fixed time intervals 
(period) T in a fluid medium generates self-sustaining continuum of 
eddies and results in apparent nonlinear chaotic fluctuations in the 
fluid medium. Such chaotic optical (laser) emissions are triggered in 
nonlinear optical medium using a laser energy pump (Harrison and 
Biswas, 1986). Self-organized broadband structures may therefore 
be generated in electromagnetic fields also. 

Macroscale coherent structures emerge by space-time 
integration of microscopic domain fluctuations in fluid flows. Such a 
concept of the autonomous growth of atmospheric eddy continuum 
with ordered energy flow between the scales is analogous to 
Prigogine’s (Prigogine and Stengers, 1988) concept of the 
spontaneous emergence of order and organization out of apparent 
disorder and chaos through a process of self-organization. 

2.4.1 Emergence of order and coherence in biology 
The problem of emergence of macroscopic variables out of 
microscopic dynamics is of crucial relevance in biology (Vitiello, 
1992). In atmospheric flows turbulent fluctuations self-organize to 
form large eddies which give rise to cloud formations in updraft 
regions where moisture condenses. Similarly, in biological systems 
collective microscopic scale behaviour, e.g., self-organization of 
local information flow in neural networks may initiate global response 
in the human brain. Biological systems rely on a combination of 
network and the specific elements involved (Kitano, 2002). The 
notion that membership in a network could confer stability emerged 
from Ludwig von Bertalanffy’s description of general systems theory 
in the 1930s and Norbert Wieners description of cybernetics in the 
1940s. General systems theory focused in part on the notion of flow, 
postulating the existence and significance of flow equilibria. In 
contrast to Cannon’s concept that mechanisms should yield 
homeostasis, general systems theory invited biologists to consider 
an alternative model of homeodynamics in which nonlinear, non-
equilibrium processes could provide stability, if not constancy 
(Buchman, 2002).  

The cell dynamical system model for coherent pattern 
formation in turbulent flows summarized earlier (Section 2) may 
provide a general systems theory for biological complexity. General 
systems theory is a logical-mathematical field, the subject matter of 
which is the formulation and deduction of those principles which are 
valid for ‘systems’ in general, whatever the nature of their 
component elements or the relations or ‘forces’ between them 
(Bertalanffy, 1968; Peacocke, 1989; Klir, 1993). 

More than 25 years ago Frohlich (1968, 1970, 1975, 1980) 
introduced the concept of cooperative vibrational modes between 
proteins in biological cells. Coherent oscillations in the range of 1010-
1012 Hz involving cell membranes, DNA and cellular proteins could 
be generated by interaction between vibrating electric dipoles 
contained in the proteins as a result of nonlinear properties of the 
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system. Through long-range effects proper to Frohlich nonlinear 
electrodynamics a temporospatial link, is in fact, established 
between all molecules constituting the system. Single molecules 
may thus act in a synchronized fashion and can no longer be 
considered as individual. New unexpected features arise from such 
a dynamic system, reacting as a unified whole entity (Insinnia, 
1992). Coherent Frohlich oscillations may be associated with the 
dynamical pattern formation of intracellular cytoskeletal architecture 
consisting of networks of filamentous protein polymers, which 
coordinate and integrate information flow in the biological cell 
(Dayhoff et al., 1994; Hameroff et al., 1984, 1986,1989; Hotani et al., 
1992). Grundler and Kaiser (1992), Kaiser (1992), Tabony and Job 
(1992) have also discussed biological autoorganization and pattern 
formation in the context of such coherent oscillations. 

2.5 Long-range spatiotemporal correlations (coherence) 
The logarithmic spiral flow pattern enclosing the vortices OROR1,
OR1R2, … may be visualized as a continuous smooth rotation of the 
phase angle θ (ROOR1, ROOR2, … etc.) with increase in period. The 
phase angle θ for each stage of growth is equal to r/R and is 
proportional to the variance W2 (Eq.1), the variance representing the 
intensity of fluctuations. 

The phase angle gives a measure of coherence or correlation 
in space-time fluctuations. The model predicted continuous smooth 
rotation of phase angle with increase in period length associated 
with logarithmic spiral flow structure is analogous to Berry’s phase 
(Berry, 1988; Kepler et al., 1991) in quantum systems. 

2.6 Universal spectrum of fluctuations 
Conventional power spectral analysis will resolve such a logarithmic 
spiral flow trajectory as a continuum of eddies (broadband spectrum) 
with a progressive increase in phase angle. 

The power spectrum, plotted on log-log scale as variance 
versus frequency (period) will represent the probability density 
corresponding to normalized standard deviation t equal to 
(logL/logT50) –1 where L is the period in years and T50 is the period 
up to which the cumulative percentage contribution to total variance 
is equal to 50. The above expression for normalized standard 
deviation t follows from model prediction of logarithmic spiral flow 
structure and model concept of successive growth structures by 
space-time averaging. Fluctuations of all scales therefore self-
organize to form the universal inverse power law form of the 
statistical normal distribution. Since the phase angle θ equal to r/R 
represents the variance W2 (Section 2.5, Eq.1), the phase spectrum 
plotted similar to variance spectrum will also follow the statistical 
normal distribution. 

Signatures of quantumlike chaos, namely universal inverse 
power law form for atmospheric eddy energy spectrum and also 
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model predicted quasiperiodicities associated with quasicrystalline 
Penrose tiling pattern for internal flow structure (Fig.1) have been 
identified in meteorological parameters (Selvam and Fadnavis, 
1998). 

2.7 Quantum mechanics for subatomic dynamics: apparent 
paradoxes 

The following apparent paradoxes found in the subatomic dynamics 
of quantum systems (Maddox, 1988) are consistent in the context of 
atmospheric flows as explained in the following. 

2.7.1 Wave-particle duality 
A quantum system behaves as a wave on some occasions and as a 
particle at other times. Wave-particle duality is consistent in the 
context of atmospheric waves, which generate particle-like clouds in 
a row because of formation of clouds in updrafts and dissipation of 
clouds in adjacent downdrafts characterizing wave motion (Fig.2). 
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Figure 2: Illustration of wave-particle duality as physically consistent for 
quantumlike mechanics in atmospheric flows. Particlelike clouds form 
in a row because of condensation of water vapour in updrafts and 
evaporation of condensed water in adjacent downdrafts associated 
with eddy circulations in atmospheric flows. Wave-particle duality in 
macroscale real world dynamical systems may be associated with 
bimodal (formation and dissipation) phenomenological form for 
manifestation of energy associated with bidirectional energy flow 
intrinsic to eddy (wave) circulations in the medium of propagation. 

2.7.2 Non-local connection 
The separated parts of a quantum system respond as a unified 
whole to local perturbations. Non-local connection is implicit to 
atmospheric flow structure quantified in Eq.(1) as ordered two-way 
energy flow between larger and smaller scales and seen as long-
range space-time correlations, namely self-organized criticality. 
Atmospheric flows self-organize to form a unified network with the 
quasiperiodic Penrose tiling pattern for internal structure (Fig.1), 
which provide long-range (non-local) space-time connections. 

3. Self-organized criticality and quantum-like chaos in 
computed model dynamical systems 

3.1 Deterministic chaos 
Traditional deterministic mathematical models of dynamical systems 
based on Newtonian continuum dynamics are nonlinear and do not 
have analytical solutions. Finite precision computer realizations of 
nonlinear model dynamical systems are sensitively dependent on 
initial conditions and give chaotic solutions. Computed solutions 
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therefore exhibit ‘deterministic chaos’ since deterministic equations 
give chaotic solutions. Such deterministic chaos was identified 
nearly a century ago by Poincare (1892) in his study of the three-
body problem. Availability of computers with graphical display 
facilities in late 1950s facilitated numerical solutions and in 1963 
Lorenz (1963) identified deterministic chaos in a simple model of 
atmospheric flows. Ruelle and Takens (1971) were the first to 
identify deterministic chaos as similar to turbulence in fluid flows. 
The computed trajectory traces the selfsimilar fractal pattern of the 
‘strange attractor’ so named because of its strange convoluted 
shape being the final destination of all possible trajectories. ‘Chaos 
Science’ is now (since 1980s) an area of intensive research in all 
branches of science and other areas of human interest (Gleick, 
1987). The physics of deterministic chaos is not yet identified. 
Deterministic chaos is a direct consequence of numerical solutions 
of error sensitive dynamical systems such as Xn+1=F(Xn) where Xn+1,
the value of the variable X at the (n+1)th instant is a function F of Xn.
Error-feedback loop inherent to such iterative computations magnify 
exponentially with time the following errors inherent to numerical 
computations: (1) The continuous dynamical system is computed as 
a discrete dynamical system because of discretization of space and 
time in numerical computations with implicit assumption of sub-grid 
scale homogeneity. (2) Binary computer arithmetic precludes exact 
number representation at the data input stage itself. (3) Model 
approximations and assumptions. (4) Roundoff error of finite 
precision computer arithmetic magnifies exponentially with time the 
above errors and gives chaotic solutions in iterative computations 
such as that used in long-term numerical integration schemes in 
numerical solutions. 

Sensitive dependence on initial conditions of computed 
solutions indicates long-range space-time correlations and is a 
signature of self-organized criticality as explained earlier. 

3.2 Universal quantification for deterministic chaos in 
dynamical systems 

Selvam (1993) has shown that round-off error in finite precision 
computations is analogous to yardstick-length in length 
measurements. The computed domain at any stage of computation 
may be resolved as the product WR of the number of units of 
computation W of yardstick-length R and wr represents the initial 
uncertainty domain where w is the number of units of computation of 
precision r to begin with. Iterative computations may be visualized as 
spatial integration of enclosed higher precision uncertainty domain 
wr resulting in the larger uncertainty domain WR. The above concept 
is similar to the growth of large eddy structures from turbulent 
fluctuations. The concepts of cell dynamical system model for 
growth of large eddy structures in turbulent flows may therefore be 
applied for the growth of selfsimilar structures in the computed 
domain. The computed domain when resolved as a function of 
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computational precision is shown (Selvam, 1993) to have an overall 
logarithmic spiral envelope with the quasiperiodic Penrose tiling 
pattern for the internal structure. 

The computed dynamical system follows quantumlike 
mechanical laws with long-range space-time correlations manifested 
as the universal inverse power law form for power spectrum 
concomitant with fractal geometry to the spatial pattern. 
Deterministic chaos in computed dynamical systems is a 
manifestation of quantumlike mechanical laws governing roundoff 
error flow dynamics with intrinsic non-local space-time connections, 
now identified as self-organized criticality. 

3.3 Universal algorithm for quasicrystalline structure formation 
in real world and computed model dynamical systems 

Observed self-organized criticality in macroscale real world 
dynamical systems is a signature of quantumlike mechanics 
implemented in unified fractal structures which coordinate the 
cooperative existence of fluctuations of all space-time scales in the 
dynamical system. 

Self-organized criticality in computed model dynamical 
systems, also is a result of quantumlike mechanical laws with 
ordered growth of roundoff error structure similar to growth of large 
eddies from turbulent fluctuations in fluid flows. Such a concept may 
explain the surprising qualitative resemblance of patterns generated 
by computed dynamical systems to patterns in nature (Jurgen et al., 
1990; Stewart, 1992) with underlying universality quantified by the 
Fibonacci mathematical number series. 

Generation of selfsimilar patterns by space-time integration of 
microscopic scale fluctuations underlie observed self-organized 
criticality in real world and computed dynamical systems. 

The universal algorithm for self-organized criticality is 
identified as Eq.(1), which is the law of conservation of energy for 
space-time fluctuations. Eq.(1) may be expressed in terms of 
universal Feigenbaum’s constants a and d as (Selvam, 1993). 

 da2 2 π= (3) 

Computed solutions of disparate dynamical systems exhibit 
period doublings which are quantified by two universal constants a=-
2.5029 and d=4.6692 named Feigenbaum’s constants (Feigenbaum, 
1980). 

Eq.(3) states that the fractional volume intermittency of 
occurrence (πd) of fractal structures contributes to the total variance 
(2a2) of the fluctuations (Selvam, 1993). 

The physical mechanism underlying observed self-organized 
criticality in real world and computed model dynamical systems is 
quantified by Eq.(3), which is independent of the exact details 
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(physical, chemical, biological, physiological, etc.), of dynamical 
systems and therefore applicable to all dynamical systems.  

3.3 Applications of the general systems theory concepts to 
genomic DNA base sequence structure 

DNA sequences, the blueprint of all essential genetic information, 
are polymers consisting of two complementary strands of four types 
of bases: adenine (A), cytosine (C), guanine (G) and thymine (T). 
Among the four bases, the presence of A on one strand is always 
paired with T on the opposite strand, forming a “base pair” with 2 
hydrogen bonds. Similarly, G and C are complementary to one 
another, while forming a base pair with 3 hydrogen bonds. 
Consequently, one may characterize AT base-pairs as weak bases 
and GC base-pairs as strong bases. In addition, the frequency of 
A(G) on a single strand is approximately equal to the frequency of 
T(C) on the same strand, a phenomenon that has been termed 
“strand symmetry” or “Chargaff’s second parity”. Therefore, DNA 
sequences can be transformed into sequences of weak W (A or T) 
and strong S (G or C) bases (Li and Holste, 2001). The SW mapping 
rule is particularly appropriate to analyze genome-wide correlations; 
this rule corresponds to the most fundamental partitioning of the four 
bases into their natural pairs in the double helix (G+C, A+T). The 
composition of base pairs, or GC level, is thus a strand-independent 
property of a DNA molecule and is related to important physico-
chemical properties of the chain (Bernaola-Galvan et al., 2002). The 
full story of how DNA really functions is not merely what is written on 
the sequence of base-pairs; The DNA functions involve information 
transmission over many length scales ranging from a few to several 
hundred nanometers (Ball, 2003). 

One of the major goals in DNA sequence analysis is to gain 
an understanding of the overall organization of the genome, in 
particular, to analyze the properties of the DNA string itself. Long-
range correlations in DNA base sequence structure, which give rise 
to 1/f spectra have been identified (Azad et al., 2002). Such long-
range correlations in space-time fluctuations is very common in 
nature and Li (2004) has given an extensive and informative 
bibliography of the observed 1/f noise or 1/f spectra, where f is the 
frequency, in biological, physical, chemical and other dynamical 
systems.  

The long-range correlations in nucleotide sequence could in 
principle be explained by the coexistence of many different length 
scales. The advantage of spectral analysis is to reveal patterns 
hidden in a direct correlation function. The quality of the 1/f spectra 
differs greatly among sequences. Different DNA sequences do not 
exhibit the same power spectrum. The concentration of genes is 
correlated with the C+G density. The spatial distribution of C+G 
density can be used to give an indication of the location of genes. 
The final goal is to eventually learn the ‘genome organization 
principles’ (Li, 1997). The coding sequences of most vertebrate 
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genes are split into segments (exons) which are separated by 
noncoding intervening sequences (introns). A very small minority of 
human genes lack noncoding introns and are very small genes 
(Strachan and Read, 1996). 

Li (2002) reports that spectral analysis shows that there are 
GC content fluctuations at different length scales in isochore 
(relatively homogeneous) sequences. Fluctuations of all size scales 
coexist in a hierarchy of domains within domains (Li et al., 2003). Li 
and Holste (2004) have recently identified universal 1/f spectra and 
diverse correlation structures in Guanine (G) and Cytosine (C) 
content of all human chromosomes. 

In the following it is shown that the frequency distribution of 
Human chromosome Y DNA bases C+G concentration per 10bp 
(non-overlapping) follows the model prediction (Section 2) of self-
organized criticality or quantumlike chaos implying long-range 
spatial correlations in the distribution of bases C+G along the DNA 
base sequence. 

4. Data and Analysis 

4.1 Data 
The Human chromosome Y DNA base sequence was obtained from 
the entrez Databases, Homo sapiens Genome (build 34 Version 2) 
at http://www.ncbi.nlm.nih.gov/entrez. The ten contiguous data sets 
containing a minimum of 70 000 base pairs chosen for the study are 
given in Table 1. 
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Table 1: Data sets used for analyses 

Base pairs 
Set no Accession number

from to 

1 NT_079581.1 1 86563 

2 NT_079582.1 1 766173 

3 NT_079583.1 1 623707 

4 NT_079584.1 1 381207 

5 NT_011896.8 1 6323261

6 NT_011878.8 1 1089938

7 NT_011875.10 1 9938763

8 NT_011903.10 1 4945747

9 NT_025975.2 1 98295 

10 NT_079585.1 1 330271 

4.2 Power spectral analyses: variance and phase spectra 
The number of times base C and also base G, i.e., (C+G), occur in 
successive blocks of 10 bases were determined in successive length 
sections of 70000 base pairs giving a C+G frequency distribution 
series of 7000 values for each data set. The power spectra of 
frequency distribution of C+G bases in the data sets were computed 
accurately by an elementary, but very powerful method of analysis 
developed by Jenkinson (1977) which provides a quasi-continuous 
form of the classical periodogram allowing systematic allocation of 
the total variance and degrees of freedom of the data series to 
logarithmically spaced elements of the frequency range (0.5, 0). The 
cumulative percentage contribution to total variance was computed 
starting from the high frequency side of the spectrum. The power 
spectra were plotted as cumulative percentage contribution to total 
variance versus the normalized standard deviation t. The 
corresponding phase spectra were computed as the cumulative 
percentage contribution to total rotation (Section 2.6). The statistical 
chi-square test (Spiegel, 1961) was applied to determine the 
‘goodness of fit’ of variance and phase spectra with statistical normal 
distribution. Details of data sets and results of power spectral 
analyses are given in Table 2. The average variance and phase 
spectra for each of the ten contiguous data sets (Table 1) are given 
in Figure 3.  
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Table 2: Results of power spectral analyses 

Base pairs used 
for analysis 

Set 
no 

from to 

Number 
of data 

sets 

Mean C+G 
concentration 

per 10bp 

Mean 
T50 

Variance 
spectra 

following 
normal 

distribution 
(%) 

Phase 
spectra 

following 
normal 

distribution 
(%) 

1 1 70000 1 5.47 6.75 100 100 

2 1 700000 10 4.79 10.20 100 90 

3 1 560000 8 4.87 8.71 100 100 

4 1 350000 5 4.61 7.36 100 100 

5 1 6300000 90 3.82 6.22 96.7 78.9 

6 1 1050000 15 4.13 7.98 66.7 73.3 

7 1 9870000 141 3.68 6.34 98.6 83.7 

8 1 4900000 70 3.95 6.58 95.7 68.6 

9 1 70000 1 3.89 3.48 100 0 

10 1 280000 4 3.86 5.94 100 50.0 
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Figure 3: The average variance and phase spectra of frequency distribution of 
bases C+G in Human chromosome Y 

4.3 Power spectral analyses: dominant periodicities 
The general systems theory predicts the broadband power spectrum 
of fractal fluctuations will have embedded dominant wavebands, the 
bandwidth increasing with wavelength, and the wavelengths being 
functions of the golden mean (Section 2.4, Eq.2). The first 13 values 
of the model predicted (selvam, 1990; selvam and Fadnavis, 1998) 
dominant peak wavelengths are 2.2, 3.6, 5.8, 9.5, 15.3, 24.8, 40.1, 
64.9, 105.0, 167.0, 275, 445.0 and 720 in units of the block length 
10bp (base pairs) in the present study. The dominant peak 
wavelengths were grouped into 13 class intervals 2 - 3, 3 - 4, 4 - 6, 6 
- 12, 12 - 20, 20 - 30, 30 - 50, 50 - 80, 80 – 120, 120 – 200, 200 – 
300, 300 – 600, 600 - 1000 (in units of 10bp block lengths) to include 
the model predicted dominant peak length scales mentioned above. 
The class intervals increase in size progressively to accommodate 
model predicted increase in bandwidth associated with increasing 
wavelength. Average class interval-wise percentage frequencies of 
occurrence of dominant wavelengths are shown in Fig. 4 along with 
the percentage contribution to total variance in each class interval 
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corresponding to the normalised standard deviation t (Section 2.6) 
computed from the average T50 (Table 2) for the ten data sets. 
Figure 4: Average class interval-wise percentage distribution of dominant 

(normalized variance greater than 1) wavelengths is given by line + 
star. The corresponding computed percentage contribution to the total 
variance for each class interval is given by line + open circle.
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5. Discussions 
In summary, a majority of the data sets (Table 2 and Figure 3) 
exhibit the model predicted quantumlike chaos for fractal fluctuations 
since the variance and phase spectra follow each other closely and 
also follow the universal inverse power law form of the statistical 
normal distribution signifying long-range correlations or coherence in 
the overall frequency distribution pattern of the bases C+G in 
Human chromosome Y DNA. Such non-local connections or 
‘memory’ in the spatial pattern is a natural consequence of the 
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model predicted Fibonacci spiral enclosing the space filling 
quasicrystalline structure of the quasiperiodic Penrose tiling pattern 
for fractal fluctuations of dynamical systems. Further, the broadband 
power spectra exhibit dominant wavelengths closely corresponding 
to the model predicted (Fig.1 and Eq.2) nested continuum of eddies. 
The apparently chaotic fluctuations of the frequency distribution of 
the bases C+G per 10bp in the Human chromosome Y DNA self-
organize to form an ordered hierarchy of spirals or loops. 
Quasicrystalline structure of the quasiperiodic Penrose tiling pattern 
has maximum packing efficiency as displayed in plant phyllotaxis 
(Selvam, 1998) and may be the geometrical structure underlying the 
packing of 103 to 105 micrometer of DNA in a eukaryotic (higher 
organism) chromosome into a metaphase structure a few microns 
long as explained in the following. A length of DNA equal to 2πL
when coiled in a loop of radius L has a packing efficiency 
(lengthwise) equal to 2πL/2L=π since the linear length 2πL is now 
accommodated in a length equal to the diameter 2L of the loop. 
Since each stage of looping gives a packing efficiency equal to π,
ten stages of such successive looping will result in a packing 
efficiency equal to π10 approximately equal to 105.

6. Conclusions 
Real world and model dynamical systems exhibit long-range space-
time correlations, i.e., coherence, recently identified as self-
organized criticality. Macroscale coherent functions in biological 
systems develop from self-organization of microscopic scale 
information flow and control such as in the neural networks of the 
human brain and in the His-Purkinje fibers of human heart, which 
govern vital physiological functions. 

A recently developed cell dynamical system model for 
turbulent flows predicts self-organized criticality as intrinsic to 
quantumlike mechanics governing flow dynamics. The model 
concepts are independent of exact details (physical, chemical, 
biological etc.) of the dynamical system and are universally 
applicable. The model is based on the simple concept that space-
time integration of microscopic domain fluctuations occur on 
selfsimilar fractal structures and give rise to the observed space-time 
coherent behaviour pattern with implicit long-term memory. 
Selfsimilar fractal structures to the spatial pattern for dynamical 
systems function as dynamic memory storage device with memory 
recall and update at all time scales. 

Overall logarithmic spiral trajectory with quasiperiodic 
Penrose tiling pattern are intrinsic to dynamical systems. Such spiral 
architecture with Fibonacci winding number and five-fold symmetry 
are ubiquitous in plant kingdom (Jean, 1988, 1989, 1992a,b, 1994) 
and are signatures of quantumlike chaos in macroscale dynamical 
systems. Simple laws underlie the exquisite varied patterns 
observed in nature. 
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The important conclusions of this study are as follows: (1) the 
frequency distribution of bases C+G per 10bp in chromosome Y 
DNA exhibit selfsimilar fractal fluctuations which follow the universal 
inverse power law form of the statistical normal distribution (Fig.3), a 
signature of quantumlike chaos. (2) Quantumlike chaos indicates 
long-range spatial correlations or ‘memory’ inherent to the self-
organized fuzzy logic network of the quasiperiodic Penrose tiling 
pattern (Eq.1 and Fig.1). (3) Such non-local connections indicate 
that coding exons together with non-coding introns contribute to the 
effective functioning of the DNA molecule as a unified whole. Recent 
studies indicate that mutations in introns introduce adverse genetic 
defects (Cohen, 2002). (4) The space filling quasiperiodic Penrose 
tiling pattern provides maximum packing efficiency for the DNA 
molecule inside the chromosome.  
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