RELIABILITY CALCULATION - EXPONENTIAL FAILURE MODEL
The best way to see how an application might work is to consider
an example. It all depends upon requirements, so what if an MTBF
of 10 years for a TV set is required to give 80% chance of home
viewing in 10 years. The 20% risk of not seeing a TV program is
fullfilled by number 5: 2 set are always on and a third is off
and standing by for operation in the event of TV set failure.
Also, how about a satellite communication channel amplifier.
The same would apply, except an amplifier MTBF would be quite large.
1 y = Function of exp(-x/10) 2 required of 3, 3on
2 y = Function of exp(-x/10) 1 required of 1, 1on
3 y = Function of exp(-x/10) 1 required of 2, 2on
4 y = Function of exp(-x/10) 1 required of 3, 3on
5 y = Function of exp(-x/10) 1 required of 2, 2on, 1sb
Year 2of3 :: 1of1 :: 1of2 :: 1of3 ::1:2on1off
1 0.974556::0.904837::0.990944::0.999138::0.999698
2 0.913337::0.818731::0.967141::0.994044::0.997812
3 0.833296::0.740818::0.932825::0.982589::0.993303
4 0.745598::0.670320::0.891311::0.964167::0.985585
5 0.657378::0.606531::0.845182::0.939084::0.974410
6 0.572985::0.548812::0.796429::0.908151::0.959768
7 0.494878::0.496585::0.746574::0.872421::0.941816
8 0.424254::0.449329::0.696761::0.833015::0.920823
9 0.361486::0.406570::0.647840::0.791018::0.897124
10 0.306432::0.367879::0.600424::0.747420::0.871094
11 0.258643::0.332871::0.554939::0.703087::0.843120
12 0.217506::0.301194::0.511670::0.658753::0.813584
13 0.182337::0.272532::0.470790::0.615017::0.782856
14 0.152439::0.246597::0.432384::0.572356::0.751282
15 0.127143::0.223130::0.396473::0.531138::0.719178
16 0.105827::0.201897::0.363031::0.491633::0.686831
17 0.087926::0.182684::0.331994::0.454028::0.654497
18 0.072938::0.165299::0.303274::0.418442::0.622400
19 0.060420::0.149569::0.276766::0.384940::0.590732
This page hosted by
Get your own Free Home Page