
CHAPTER 3 REFLECTIVE TRANSFORMATIONS

Abstract. A reflective transformation is a one-to-one transformation of Qn

such that its inverse is isometrically similar to itself. After basic properties
of reflective transformations are given in Section 3.1, any Boolean isometry is
proved to be reflective through a Boolean isometry of order 2. Then conditions
for reflectiveness are given for [ ]-representations of self-dual transformations.
Next, reflective circular transformations are described in Section 3.4. Finally,
methods of constructing reflective transformations through face copies and
orbit modifications are described.

3.1 Reflective transformations

A self-dual transformation and a circular transformation of Qn discussed in
Chapter 2 are defined as trans- formations F commutative with the complementa-
tion ¬̄ and the rotation ρ respectively, that is

F = (¬̄)−1F ¬̄ and F = ρ−1Fρ

respectively. On the other hand, there is a class of one-to-one transformations F
such that

F−1 = T−1FT (3.1.1)

for some Boolean isometry T , that is, F−1 is isometrically similar to F . Note that
the condition (3.1.1) is equivalent to

FTF = T. (3.1.2)

We call such a transformation reflective through T . For example, a binary-reflected
Gray code for dimension n introduced by Gray (1953) is the graph of a transforma-
tion reflective through n− and also (n− 1)−. One-to-one threshold transformations
constructed in the next two chapters are not only self-dual but also often turn out
to be reflective. In the next section, we prove that any Boolean isometry is reflec-
tive through some Boolean isometry of order 2.

Example 3.1.1 Let f1 = {110}, f2 = {110}, f3 = {111}. Then the graph of
F = [f1, f2, f3] consists of loops and one 4-cycle, that is

110 → 000 → 001 → 111 → 110.

F is reflective through {1, 2}− and also reflective through 3−.

Proposition 3.1.2 Let F be reflective through T . Then (i) if F is commutative
with an isometry S, then F is reflective through ST and TS; (ii) if F is reflective
through S, then F is commutative with ST .

Proof. (i) (ST )−1F (ST ) = T−1S−1FST = T−1(S−1SF )T = T−1FT = F−1.
(TS)−1F (TS) = S−1T−1FTS = S−1F−1S = (FS)−1S = (SF )−1S = F−1S−1S =
F−1. (ii) is similarly proved. ¤
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Corollary 3.1.3 Let N = J ∪K and J ∩K = ∅. If F is self-dual and reflective
through J− then F is reflective through K−.

Proof. Let T = J− and S = ¬̄ in (i) of Proposition 3.1.2. ¤

Corollary 3.1.4 If F is a transformation of Qn, then the set of all T such that
F is commutative with T or reflective through T is a subgroup of O(Qn).

If F is reflective through T , then U−1FU is reflective through U−1TU for any
isometry U . If F and G are reflective through T and FG = GF , then FG is
reflective through T . In particular, if F is reflective through T , then F i is reflective
through T for every positive integer i. Since Qn is a finite set, there exists a positive
integer k such that F k = I. Therefore, F−1 = F k−1, hence, if F is reflective through
T then F−1 is reflective through T . If F is self-dual and reflective through T , then
T−1(¬̄F )T = ¬̄T−1FT = ¬̄F−1 = (¬̄F )−1, so that ¬̄F is reflective through T .

Assume that F is reflective through S, G is reflective through T , F is commu-
tative with G and T , and G is commutative with S. Then by Proposition 3.1.2
(i), F is reflective through ST , and G is reflective through ST . Further, since F
is commutative with G, FG is reflective through ST . Similarly, FG is reflective
through TS. If F is reflective through T , and if S is an isometry of order 2 such
that ST = TS, then SF is reflective through ST .

If F is reflective through T , then (TF )2 = T 2. In particular, if the order of T
is 2, then F is isometrically equivalent to a transformation whose graph consists of
2-cycles and loops. If F is reflective through T then Orb〈F 〉(Tx) = T (Orb〈F 〉x) for
every x.

3.2 Boolean isometries are reflective

We prove here that any Boolean isometry is reflective through some Boolean
isometry of order 2. For any isometry T of the real n-space, that is, T ∈ O(Rn),
there exists U ∈ O(Rn) of order 2 such that T−1 = U−1TU . This proposition can
be proved using the Jordan canonical form of a matrix representing T . However,
in a finite subgroup G ⊆ O(Rn), it is not always true that any element and its
inverse are conjugate. For example, both the group of the isometries of Qn and a
group of rotation on R2 are reflection groups (see e.g. Grove & Benson, 1985), but
the latter does not have this property if the order is greater than 2.

Lemma 3.2.1 Let ρ = (1, 2, .., n) and A ⊆ N. Then the equation

X+̇ρX = A. (3.2.1)

for an unknown subset X ⊆ N has a solution iff |A| is even. Further, if X is a
solution, then X and its complement Xc are the only solutions.

Proof. Since X and ρX have the same cardinality, their symmetric difference must
be even (proving the necessity). For the sufficiency, if A = ∅, then clearly X = ∅
and X = N are the only solutions of (3.2.1). Assume |A| is positive and even. If
A = {i, j} with i < j then X = {i, ..., j−1} is a solution. If |A| is even, then A is the
sum (+̇) of pairs, so that by (2.4.5) of Chapter 2 there exists a solution X. Suppose
Y is also a solution. Then X+̇ρX = Y +̇ρY , so that (X+̇ρX)+̇(Y +̇ρY ) = ∅,
i.e. (X+̇Y )+̇ρ(X+̇Y ) = ∅. Therefore, X+̇Y = ∅ or X+̇Y = N, i.e. Y = X or
Y = Xc. ¤
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Theorem 3.2.2 (Ueda,1998) If T is an isometry of Qn, then T is reflective
through some isometry of order 2 of Qn.

Proof. By Proposition 2.1.5 of Chapter 2, any isometry T ∈ O(Qn) can be decom-
posed as the commutative product

T = τ1J
−
1 ¯ ...¯ τkJ−k · ιJ−k+1,

where τi is a cyclic permutation such that Carτi and Carτj are disjoint, Ji ⊆
Carτi for every i = 1, .., k, and Jk+1 ⊆ N\⋃

i Carτi. It suffices to prove for each
component of the disjoint composition. If N\⋃

i Carτi is nonempty, then ιJ−k+1 is
reflective through ιJ−k+1 and ι((N\⋃

i Carτi)\Jk+1)−, and at least one of them is of
order 2. Therefore, it suffices to prove for T = τJ−, where Carτ = N and J ⊆ N.
Therefore, it suffices to prove for T = ρA−, A ⊆ N, since τJ− is a conjugate of
ρA− for some A.

Assume that ξ is an unknown permutation of N and X is an unknown subset of
N such that T is reflective through U = ξX−. Then U−1TU = T−1, i.e. TUT = U ,
i.e., ρξρ = ξ and ρ−1(ξ−1A+̇X)+̇A = X, i.e.

ρξρ = ξ and X+̇ρX = ξ−1A+̇ρA. (3.2.2)

The solutions of the first equation of (3.2.2) are the linear permutations ξ of slope
−1, for any one of which, the second equation has two solutions X and Xc by
Lemma 3.2.1, since |A+̇B| is even for arbitrary sets A and B of same cardinality
modulo 2. Therefore, T is reflective through an isometry U = ξX−. To prove that
U is of order 2, it is sufficient to show that any such U satisfies the equation

ξξ = ι and ξ−1X+̇X = ∅ i.e. ξX = X. (3.2.3)

The first equation of (3.2.3) is satisfied by any linear permutation of slope -1.
Further, ξX+̇ρ(ξX) = ρξρX+̇ρξX = ρξ(ρX+̇X) = ρξ(ξ−1A+̇ρA) = ρA+̇ξA.
Therefore, ξX is also a solution of the second equation of (3.2.3), so that ξX = X
or ξX = Xc. Suppose the second case holds. Then ξ has no fixed point, so that
there exists some i ∈ N such that ξi = ρi = j. Clearly j /∈ ξA+̇ρA. If i ∈ X, then
j ∈ ρX and j ∈ ξX, i.e. j /∈ X. If i /∈ X, then j /∈ ρX and j /∈ ξX i.e. j ∈ X.
Therefore, j ∈ X+̇ρX, which contradicts the fact that X is a solution of the second
equation of (3.2.3). ¤

3.3 Reflectiveness for [ ]-representations

In this section some necessary or sufficient conditions for a self-dual transforma-
tion F to be a reflective transformation are described, when F is represented as
F = [f1, ..., fn] introduced in Chapter 2.3.

Proposition 3.3.1 Let F = [f1, ..., fn] be a self- dual transformation of Qn and
τ be a permutation of N. F is reflective through τ if and only if τFfi ⊆ ¬̄fτi and
τF (fi ∪ ¬̄fi)c ∩ ¬̄fτi = ∅ for every i ∈ N.

Proof. Assume that F is reflective through τ . Then FτF = τ . Let x ∈ fi. Then
xi = 1, (Fx)i = 0. Therefore,

(τFx)τi = (τ−1(τFx))i = (Fx)i = 0

and
(F (τFx))τi = (τx)τi = (τ−1(τx))i = xi = 1,
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so that τFx ∈ ¬̄fτi. Next, let x /∈ fi∪¬̄fi. Then xi = (Fx)i, so that (F (τFx))τi =
(τx)τi = (τFx)τi. Therefore, τFx /∈ ¬̄fτi.

Assume τFfi ⊆ ¬̄fτi and τF (fi ∪ ¬̄fi)c ∩ ¬̄fτi = ∅ for every i ∈ N. To prove
that F is reflective through τ , we will show FτF = τ . Let x ∈ fi for some i. Then
τFx ∈ ¬̄fτi, so that (FτFx)τi = 1. Also, xi = 1, so that (τx)τi = (τ−1τx)i = 1.
Therefore, (FτFx)τi = (τx)τi. If x ∈ ¬̄fj for some j, then by the self-duality of
F and τ , (FτFx)τj = (τx)τj also. Let x /∈ fk ∪ ¬̄fk for some k. Then τFx /∈
¬̄fτk ∪ fτκ, because ¬̄x /∈ fk ∪ ¬̄fk. Therefore,

(FτFx)τk = (τFx)τk = (Fx)k = xk = (τx)τk.

Consequently, (FτF )x = τx for every x ∈ Qn, so that F is reflective through τ . ¤

Proposition 3.3.1 can be generalized into the following proposition.

Proposition 3.3.2 Let F = [f1, ..., fn] be a self- dual transformation of Qn

and T = τJ− be an isometry of Qn. F is reflective through T if and only if
(i) TFfi ⊆ fτi for every i ∈ J , (ii) TFfi ⊆ ¬̄fτi for every i ∈ Jc, and (iii)
TF (fi ∪ ¬̄fi)c ∩ ¬̄fτi = ∅ for every i.

Proof. Assume that F is reflective through T . Then FTF = T . Let x ∈ fi and
i ∈ J . Then xi = 1 and (Fx)i = 0.

(Tfx)τi = (τ−1(TFx))i = (J−Fx)i = 1,

and
(F (TFx))τi = (Tx)τi = (τ−1(Tx))i = (τ−1τJ−x)i = (J−x)i = 0.

Therefore TFx ∈ fτi. Next, let x ∈ fi and i ∈ Jc. Then xi = 1 and (Fx)i = 0.
(Tfx)τi = (J−Fx)i = 0. (F (TFx))τi = (J−x)i = 1. Therefore TFx ∈ ¬̄fτi. Next,
let x /∈ fi ∪ ¬̄fi. Then xi = (Fx)i, so that

(F (TFx))τi = (Tx)τi = (J−x)i = (J−Fx)i = (Tfx)τi.

Therefore, TFx /∈ ¬̄fτi.
Assume the conditions (i), (ii) and (iii). To prove that F is reflective through T ,

we will show that FTF = T . Let x ∈ fi for some i ∈ J . Then TFx ∈ fτi, so that
(FTFx)τi = 0. Also xi = 1, so that

(Tx)τi = (τ−1(Tx))i = (τ−1τJ−x)i = (J−x)i = 0.

Therefore, (FTFx)τi = (Tx)τi. If x ∈ ¬̄fj for some j ∈ J , then by the self-
duality of F and T , (FTFx)τj = (Tx)τj also. Let x ∈ fi for some i ∈ Jc. Then
TFx ∈ ¬̄fτi, so that (FTFx)τi = 1. Also xi = 1, so that (Tx)τi = (J−x)i = 1.
Therefore, (FTFx)τi = (Tx)τi. If x ∈ ¬̄fj for some j ∈ Jc, then by the self-
duality of F and T , (FTFx)τj = (Tx)τj also. Let x /∈ fk ∪ ¬̄fk for some k. Then
TFx /∈ ¬̄fτk ∪ fτκ, because ¬̄x /∈ fk ∪ ¬̄fk. Therefore,

(FTFx)τk = (Tfx)τk = (τJ−Fx)τk = (J−Fx)k = (J−x)k = (Tx)τk.

Consequently, (FTF )x = Tx for every x ∈ Qn, so that F is reflective through
T . ¤

Corollary 3.3.3 Let F = [f1, ..., fn] be a self-dual transformation of Qn and
T = τJ− be an isometry of Qn. If F is reflective through T , then |fτi| = |fi| for
every i.
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3.4 Circular and skew-circular reflective transformations

In this section, we investigate the properties of some circular and skew-circular
reflective transformations. First, let us consider an example of circular reflective
transformation.

Example 3.4.1 Let f = p1 · p2 · p3 · (¬p4) · (¬p5) be the transformation of Q5.
Then the graph of F = 〈f〉 consists of loops and one 10-cycle, that is

11100 → 01100 → 01110 → 00110 → 00111 → 00011
→ 10011 → 10001 → 11001 → 11000 → 11100.

F is reflective through any linear permutation of N5 of slope −1.

The above example illustrates Proposition 3.1.2. In fact, If F is circular and
reflective through a linear permutation τ of coefficients (a, b), then F is reflec-
tive through any linear permutation of slope a, that is, ρjτ whose coefficients are
(a, b + j), since the coefficients of ρj are (1, j).

Notation Let λ and µ ∈ SYM(N) denote the linear permutations of coefficients
(−1, 1) and (−1, 2) respectively, that is,

λ = (1, n)(2, n− 1) · ·(i, n− i + 1)([n/2], n− [n/2] + 1),
µ = (2, n) · (3, n− 1) · ·(i, n− i + 2) · ·([(n− 1)/2] + 1, n + 1− [(n− 1)/2]).

Proposition 3.4.2 Let F = 〈f〉 be a self-dual circular transformation of Qn.
F is reflective through any linear permutation of slope -1, if and only if µFf ⊆ ¬̄f
and µF (f ∪ ¬̄f)c ∩ ¬̄f = ∅.

Proof. F = [f, ρf, .., ρi−1f, .., ρn−1f ] by definition. Assume µFf ⊆ ¬̄f and µF (f ∪
bar¬f)c∩¬̄f = ∅. Let x ∈ ρi−1f . Then ρ−(i−1)x ∈ f . Therefore, µFρ−(i−1)x ∈ ¬̄f .
Therefore,

ρi−1µFx = µρ−(i−1)Fx = µFρ−(i−1)x ∈ ¬̄f,

so that

µFx ∈ ρ−(i−1)¬̄f = ρn−i+1¬̄f = ¬̄ρµi−1f.

Similarly, if x /∈ ρi−1f∪¬̄ρi−1f then µFx /∈ ¬̄ρµi−1f . Consequently, by Proposition
3.3.1, F is reflective through µ, so that F is reflective through every linear permu-
tation of slope -1. For the converse, apply Proposition 3.3.1 to µ and f1 = f . ¤

Proposition 3.4.3 (i) A circular transformation expressed by F = (F1, .., ρ
i−1F1, .., ρ

n−1F1)
is reflective through µ, if and only if

F−1 = (µF1, ρµF1, .., ρ
n−1µF1). (3.4.1)

(ii) A self-dual circular transformation 〈f〉 is reflective through µ, if and only if

〈f〉−1 =< µf > . (3.4.2)
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Proof. (i)

µ−1Fµ = µ−1Fµ−1

= µ−1(F1µ
−1, .., (ρi−1F1)µ−1, .., (ρn−1F1)µ−1)

= µ−1(µF1, .., µρi−1F1, .., µρn−1F1)

= µ−1(µF1, .., ρ
−(i−1)µF1, .., ρ

−(n−1)µF1)

= (µF1, .., ρ
−(µi−1)µF1, .., ρ

−(µn−1)µF1)

= (µF1, .., ρ
i−1µF1, .., ρ

n−1µF1).

Therefore, F is reflective through µ, if and only if (3.4.1) holds.
(ii) Note that µ−1Fµ is self-dual if F is self-dual. Further if F = 〈f〉, then

p1 · ¬(µF1) = p1 · ¬̄(µF1) = p1 · (µ¬̄F1) = µ(p1 · (¬̄F1)) = µ(p1 · ¬F1) = µf.

Therefore 〈f〉 is reflective through µ if and only if (3.4.2) holds. ¤

Example 3.4.4 F = 〈〈f〉〉, f = p1···pi···pn. GRAPH(F ) consists of one 2n-cycle
and loops. As seen from the graph given in Example 2.5.5, F is reflective through λ.

If F is skew-circular and reflective through λ, then F is reflective through
(ρn−)jλ for every j, particularly through ρn−λ = µ1−, since F is commutative
with ρn−.

We used the equation (1.2.4) ρµ = µρ−1 in the proof of Proposition 3.4.2. Sim-
ilarly we need

(ρn−)λ = λ(ρn−)−1 (3.4.3)
in the proof of the next Proposition. In fact,

(ρn−)λ(x1, ..., xn) = ρn−(xn, .., x1)
= ρ(xn, .., x2,¬x1)
= (¬x1, xn, .., x2)
= λ(x2, ..xn,¬x1)
= λn−(x2, ...xn, x1)
= λn−ρ−1(x1, ..., xn)
= λ(ρn−)−1(x1, ..., xn).

Proposition 3.4.5 Let F = 〈〈f〉〉 be a self-dual skew-circular transformation of
Qn. F is reflective through (ρn−)jλ for every j, if and only if λFf ⊆ ¬̄(ρn−)n−1f
and λF (f ∪ ¬̄f)c ∩ ¬̄(ρn−)n−1f = ∅.
Proof. F = [f, ρn−f, .., (ρn−)i−1f, .., (ρn−)n−1f ] by Proposition 2.5.4. Assume
λFf ⊆ ¬̄(ρn−)n−1f and λF (f ∪ ¬̄f)c ∩ ¬̄(ρn−)n−1f = ∅. Let x ∈ (ρn−)i−1f .
Then (ρn−)−(i−1)x ∈ f . Therefore, λF (ρn−)−(i−1)x ∈ ¬̄(ρn−)n−1f . Therefore,

(ρn−)i−1λFx = λ(ρn−)−(i−1)Fx = λF (ρn−)−(i−1)x ∈ ¬̄(ρn−)n−1f,

so that

λFx ∈ (ρn−)−(i−1)¬̄(ρn−)n−1f = ¬̄(ρn−)n−if = ¬̄(ρn−)λi−1f.

Similarly, if x /∈ ρi−1f∪¬̄ρi−1f then λFx /∈ ¬̄ρλi−1f . Consequently, by Proposition
3.3.1, F is reflective through λ, so that F is reflective through (ρn−)jλ for every j.
For the converse, apply Proposition 3.3.1 to λ and f1 = f . ¤
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Proposition 3.4.6 (i) A skew-circular transformation expressed by

F = (F1, .., (ρn−)i−1F1, .., (ρn−)n−1F1)

is reflective through T = µ1−, if and only if

F−1 = (¬̄TF1, ρn−¬̄TF1, .., (ρn−)n−1¬̄TF1). (3.4.3)

(ii) A skew-circular transformation 〈〈f〉〉 is reflective through T = µ1−, if and only
if

〈〈f〉〉−1 = 〈〈¬̄Tf〉〉. (3.4.4)

Proof. (i) T−1FT = T−1FT−1

= T−1(F1T
−1, .., ((ρn−)i−1F1)T−1, .., ((ρn−)n−1F1)T−1)

= T−1(TF1, .., T ((ρn−)i−1F1), .., T ((ρn−)n−1F1))

= T−1(TF1, .., (ρ−11−)i−1TF1, .., (ρ−11−)n−1TF1)

= T−1(TF1, .., ρ
−(i−1){1, .., i− 1}−TF1, .., ρ

−(n−1){1, .., n− 1}−TF1)

= (¬TF1, .., ρ
−(µi−1){1, .., µi− 1}−TF1, .., ρ

−11−TF1)

= (¬TF1, .., ρ
i−1{1, .., n− i + 1}−TF1, .., ρ

−11−TF1)

= (¬̄TF1, .., ρ
i−1{n− i + 2, .., n}−¬̄TF1, .., ρ

−1{2, .., n}−¬̄TF1)

= (¬̄TF1, .., (ρn−)i−1¬̄TF1, .., (ρn−)n−1¬̄TF1).

Therefore, F is reflective through T , if and only if (3.4.3) holds. (ii) If F = 〈〈f〉〉,
then

p1 · ¬(¬̄TF1) = (¬̄Tp1) · (¬̄T (¬F1)) = ¬̄T (p1 · ¬F1) = ¬̄Tf.

Therefore 〈〈f〉〉 is reflective through T if and only if (3.4.4) holds. ¤
Theorem 3.4.7 Let F be circular and self-dual. If F is reflective through a linear

permutation τ of slope −1, then F is isometrically equivalent to a transformation
which is minimal, circular, self-dual, and reflective through τ . If F is not reflective
through a linear permutation τ of slope −1, then F is isometrically equivalent to a
transformation which is minimal, circular, self-dual, and not reflective through τ .

Proof. If F is circular, and self-dual, then F is isometrically equivalent to a min-
imal circular self-dual transformation G by Theorem 2.5.2 of Chapter 2. More
specifically, in the proof of that theorem, it was shown that there exists a Boolean
isometry T such that G = TF , and T is a product of transformations selected from
ρ and ¬̄, so that T and F are commutative. Therefore, if F is reflective through a
linear permutation τ of slope −1, then G is also reflective through τ ; and if F is
not reflective through a linear permutation τ of slope −1, then G is not reflective
through τ . ¤

3.5 Reflectiveness of orbit modifications

Let F be a transformation of Qn, M = {n + 1, n + 2, .., n + m}, and C ⊆ QM .
Then the direct product F ×I|C can be extended to the transformation (F ×I|C)∼

of QNn+m by defining

(F × I|C)∼x =
{

(F × I|C)x if PMx ∈ C,
x if PMx /∈ C.

(F × I|C)∼ is the disjoint composition of |C| transformations (F × I|{c})∼ for
c ∈ C. As in Chapter 2.3, a subset C of QM is called complete if ¬̄C = C. If
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C ⊆ QM is complete, the restriction ¯neg | C to C is a transformation of C. If F is
self-dual and represented as F = [f1, ..., fn], and C is complete, then (F × I | C)∼

is self-dual and can be expressed as

(F × I | C)∼ = [f1 · 1C , .., fn · 1C , ∅, .., ∅],
where 1Cx = 1 if and only if x ∈ C. If C = QM , we call F×I the (n+1, ..., n+m)th
face copies of F .

The following propositions are easily proved using the basic properties of reflec-
tive transformations described in Section 3.1. In particular, the method of con-
structing a new Boolean transformation G from F as shown in Propositions 3.5.3
and 3.5.4 is called orbit modification.

Proposition 3.5.1 Let F be a reflective transformation of Qn through T , and
let C ⊆ QM , where M = {n+1, n+2, .., n+m}. Then, (i) (F × I|C)∼ is reflective
through T × I; (ii) (F × I|C)∼ is reflective through T × ¬̄, if C is complete.

Proposition 3.5.2 Let F be any transformation of Qn, and let C ⊆ QM , such
that C ∩ ¬̄C = ∅, where M = {n + 1, n + 2, .., n + m}. Then, (F × I|C)∼¯ (F−1×
I|¬̄C)∼ is reflective through M−.

Proposition 3.5.3 Let F be a reflective transformation of Qn through T of
order 2. Assume that F has two cycles C and D such that TC = D. Let c ∈ C
and d ∈ D. Define the transformation G by

c → Tc → FTc → F 2Tc → ...

→ d → Td → FTd → F 2Td → ... → c,

Gx = x for any other points x ∈ C ∪D,

Gx = Fx for any points x ∈ (C ∪D)c.

Then G is reflective through T .

Proposition 3.5.4 Let a transformation F of Qn be reflective through T of
order 2. Assume that F has two cycles C and D such that TC = C and TD = D.
Let c ∈ C and d ∈ D. Define the transformation G by

c → d → Fd → F 2d → ...

→ Td → Tc → FTc → F 2Tc → ... → c,

Gx = x for any other points x ∈ C ∪D,

Gx = Fx for any points x ∈ (C ∪D)c.

Then G is reflective through T .

Example 3.5.5 The transformation F (1) : 1 → 0 → 1 for Q1 is reflective
through IQ1 . Therefoe, the 2nd face copies F (1)′ of F (1):

11 → 01 → 11, 10 → 00 → 10

are reflective through 2− by Proposition 3.5.1 (ii). Let c = 11, and define F (2) by
orbit modification as

c = 11 → 2−c = 10 → F (1)′2−c = 00 = {1, 2}−c

→ 2−({1, 2}−c) = 01 → F (1)′2−({1, 2}−c) = 11.
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Then F (2) is reflective through 2− by proposition 3.5.3. Then the 3rd face copies
of F (2):

111 → 101 → 001 → 011 → 111, 110 → 100 → 000 → 010 → 110

are reflective through {2, 3}− by Proposition 3.5.1 (ii). Define F (3) by orbit modi-
fication as

111 → {2, 3}−(111) = 100 → 000 → {2, 3}−(000) = 011 → 111,

101 → 101, 001 → 001, 110 → 110, 010 → 010.

In this way, for Qn, we obtain a reflective transformation F (n) through {2, 3, ..., n}−.
GRAPH(F (n)) consists of loops and one 4-cycle, that is,

11 · · · 1 → 100 · · · 0 → 00 · · · 0 → 011 · · · 1 → 11 · · · 1.

Example 3.5.6 (Binary-reflected Gray code. Gray, 1953) (i)

G(1) : 0 → 1 → 0.

(ii) Construct G(n) from the face copies

G(n−1) × I{0} : 00 · · · 00 → ... → 00 · · · 010 → 00 · · · 00

(G(n−1))−1 × I{1} : 00 · · · 01 ← ... ← 00 · · · 011 ← 00 · · · 01

by orbit modification as

G(n) :
00 · · · 00 → ... → 00 · · · 010

↑ ↓
00 · · · 01 ← ... ← 00 · · · 011

From Proposition 3.5.2, (G(n−1)×I{0})∼¯((G(n−1))−1×I{1})∼ is reflective through
n− for every n. Therefore, G(n) is reflective through n− for every n by Proposition
3.5.3.

Therefore, G(n−1) is reflective through (n−1)− for every n, and hence (G(n−1))−1

is also reflective through (n−1)−. Therefore, both (G(n−1)×I{0})∼ and ((G(n−1))−1×
I{1})∼ are reflective through (n−1)−. Therefore, (G(n−1)×I{0})∼¯ ((G(n−1))−1×
I{1}) is reflective through (n−1)−. Therefore, G(n) is reflective through (n−1)− for
every n by Proposition 3.5.4. Consequently, G(n) is commutative with {n− 1, n}−
by Proposition 3.1.2 (ii). GRAPH(G(n)) consists of one 2n-cycle, i.e. a Hamiltonian
cycle.


