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Abstract—Although coordinate-transformation techni
roduce well conditioned mesh

ric mesh generating method, normally p

restrictive mesh generators. This is due mainly to the fact that
of the superelement should be equal [H. Kardestuncer,
the isoparametric method is improved for two- and three-dimensional

York (1987)]. In this paper,
problems,
- method gives much more fexibility
different methods of adaptive mesh
generation by triangulation, double,
Int Conf. Applied Informatic, Inns
blending-function mesh generator.

1. INTRODUCTION

In the curvilinear isoparametric transformation, the
number of nodes on the opposite sides of each
superelements should be equal. In most of the prob-
lems, especially in three-dimensional cases, the sides
of some objects, have a smaller length with respect to
the other sides. Therefore, when the nodes are equal
on opposite sides, the elements would be small on the
smaller side and would be large on the larger one.
This is one of the weak points of isoparametric
transformation which causes less flexibility. The
larger number of superclements means more labor
work and more computer time. This restriction has
made the curvilinear isoparametric transformation
method an uncommon one. Therefore, it has not been
used in new automatic or adaptive mesh generations.
If we are able to use different numbers of nodes on
opposite sides, than the above difficulties would
be solved [3] and this old, but conventional mesh
generation, can be re-used in automatic mesh
generations [2].

’

1.1. General concepts and definitions

Since Zienkiewicz and Phillips [4] have described
the theory and techniques employed in a mesh gener-
ator based on isoparametric mapping concepts, only
essential points will be reiterated herein. A typical
three-dimensional superelement is shown in (Fig. la).
The X-Y-Z coordinates of a typical point within the

such that the opposite sides can have different num
in choosing the number of nodes and looks promising for applying
generation [M. H. Kadiver and A. Korminezhad, Automatic mesh
isoparametric mapping and bisection mapping, Proc. 10th IASTED
bruck, Austria (1992)). A similar method also can be applied in a
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ques, such as conventional curvilinear isoparamet-
es, they are commonly the most
the number of nodes on the opposite sides
Finite Element Handbook, McGraw-Hill, New

ber of nodes. The extended isoparametric

superelement is related to the 20 pairs of nodal
coordinates by

20
X= Z Ni(& n, O)X,
Y=Y N(nY,

20
Z=Y N n 1)z, m

where N, is the shape function associated with node
i [5]. Thus, if the nodal coordinates (X, Y,, Z;) are
known, the Cartesian coordinates of any specified
point, ¢, 7 and { can be easily calculated from eqn (1).

This procedure is shown in Fig. 2 for two-dimen-
sional problems. As can be seen, the number of nodes
on side bc and ad should be equal, though side bc is
smaller than side ad. Therefore, the size of the
elements cannot be uniform (Fig. 2¢). By conven-
tional isoparametric mapping, for uniformity of the
size of elements, one should divide the above super-
element into smaller ones which takes a lot of com-
puter time, and sometimes it is impossible. If the
number of nodes on side bc is reduced, which means
that opposite sides do not have equal number of
nodes, an almost uniform size of elements can be
obtained. For this purpose, a new method is pro-
posed and discussed for two- and three-dimensional
problems.
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Fig. 1. General superelement in the three-dimensional coordinate; (a) a general superelement in the
X-Y-Z coordinate; (b) discretized superelement in the {-—n—{ coordinate.

2. TWO-DIMENSIONAL PROBLEMS

In two-dimensional problems, two different cases
are considered. The first, when the number of nodes
on the opposite sides are different from each other,
and second, when the number of nodes on all four
sides are different. We take a triangular superelement
as a special case of a quadrilateral one where its third
and the fourth sides are coincided.

2.1. Two-dimensional superelement with different
numbers of nodes on two opposite sides

For a superclement with different numbers of
nodes on two opposite sides (Fig. 3a), by curvilinear
isoparametric mapping, the superelement is trans-
ferred into a square in the {—n coordinate (Fig. 3b).
In this coordinate, by dividing each sides into equal
segments corresponding to the number of division of
that side, the position of the nodes on the sides is
assigned. These nodes*are called the primary nodes.
Since the number of nodes are not equal on two
opposite sides, the superelement cannot be discretized
in the &-n coordinate. Therefore, the side with
smaller number of nodes is extended from both sides,
such that the number of nodes on the two opposite

sides become equal to each other (Fig. 3b). The new
quadrilateral, which has the same number of nodes
on two opposite sides, is transferred to the ¢'—n’
coordinate (Fig. 3c), and in the new coordinate, it is
discretized as usual (Fig. 3d). This discretized square
in the £ ‘—n’ coordinate is transferred back to the {—#
coordinate. In the £-n coordinate (Fig. 3b), the added
part should be canceled out by transferring all the
nodes which are outside of the original square to the
nodes which are on the sides of the square (Fig. 3c).
It is clear that for compatibility between the elements,
these nodes should be transferred to the correspond-
ing primary nodes. After transformation, the new
discretized square in the £ coordinate is ready for
it’s final transformation to the Cartesian coordinate.
In the final transformation (Fig. 3d), the elimination
of the extra parts in the ¢-n coordinate, may create
elements with very large aspect ratio. Then, the
special refinement should be used to modify the
aspect ratio. This will be discussed in the next
sections.

For elements with a smaller number of nodes, one
can extend it in one direction, instead of two direc-
tions. This will cause distortion in the elements. In
other words, all elements will be inclined into that
direction which generally is not appropriate.

(a) (b)

(c)

Fig. 2. General superelement in the two-dimensional coordinate; (a) a general superclement in the X-Y
coordinate; (b) discretized superelement in the &-n coordinate; (c) discretized superelement in the X-Y
coordinate.
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Fig. 3. Procedure of discretization when only two parts have
a different number of nodes; (a) the superelement in the X-Y
coordinate; (b) the superelement in the -5 coordinate with
added parts; (c) the superelement in the £ —n coordinate with
added parts cancelled out; (d) discretized superelement.

2.2. Two-dimensional superelement with different
number of nodes on all sides

When all sides have different number of nodes,
after transformation to the £-n coordinate, the two
- sides which have the smallest number of nodes will be
extended from both sides, such that a quadrilateral
with equal number of nodes comes into existence
(Fig. 4c). As can be seen, when the differences
between the number of nodes on all sides are more
than specific values (it depends on the number of
nodes on both sides), the angle dab becomes greater
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Fig. 5. Procedure of canceling added parts.

than 180° and the transformation is not possible. In
this case, depending on the number of nodes on
the two opposite sides and the difference between the
nodes on these two sides, as soon the angle dab
becomes equal to 180°, the side with smaller number
of nodes is extended from the other direction to
prevent the increase of this angle (Fig. 4d). After
transformation to the &’-n’ coordinate and dis-
cretization, it is transferred back to the &~y coordi-
nate and the added part is canceled out (Fig. 5). The
final discretization in the Cartesian coordinate is
obtained by another transformation. As it can be seen
in Fig. 5, some of the elements along the sides have
a big aspect ratio, which require specific attention and
refinement.

n
d c
¢
a ***p
(b)
c
—
a
e 1
¢
a
b
(d)

Fig. 4. Procedure of cancelling added parts; (a) the superelement in the X-Y coordinate; (b) the
superclement in the {-n coordinate; (c) when the internal angle is more than 180°; (d) expanding the side
from other direction. -
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(c)
Fig. 6.

3. REFINING THE GENERATED MESH

As was mentioned, while in the £-n coordinate the
added parts are canceled out, one may get some
element with a big aspect ratio. If we get such

elements, all the nodes which are too

sides, which usually cause elements with a very big
aspect ratio, should be canceled out. In fact, they

Super element

m=1/6

Fig. 7. Refining the generated mesh with different tangent

coefficients.

m=1/2
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(d)

Refinement procedure of the element.

should be transferred to the primary nodes on the
sides. :

The closeness can be defined as the distance be-
tween the sides and a specific line. This line can be
defined in different ways. For example, this line can
be defined as a line which passes through 1/3 of the
length between the nodes on the corner and its
adjacent nodes on two connected sides (which we call
relative tangent). Therefore, all the nodes between
this line and the corresponding side would be trans-
ferred to the primary nodes. Figure 6 illustrates this
procedure, whereas Fig. 7 shows the refinement for a
general superelement when the relevant tangent co-
efficients are equal to 1/6 and 1/2, compared to the
nonrefined superelement.

close to the

4. THREE-DIMENSIONAL MESH GENERATION

In three-dimensional cases, by curvilinear isopara-
metric mapping, the superelement is transferred into
a cube in the {-n—{ coordinate (Fig. 1). When the
number of nodes are equal on opposite sides, dis-
cretization is carried out by £, # and { constants. Then
it is transferred to the X—Y-Z coordinate by eqn (1).
When the number of nodes are different on the sides,
the above procedure is not applicable. For a different
number of nodes two general cases would occur.
First, when all the number of nodes on the sides of
one plane, i.e. base plane, are different, while the
number of nodes on the four sides are equal, knowing
that the opposite plane to the base plane has the
same number of nodes as the base plane. The other
case is when all the nodes of the four sides are also
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Fig. 8. Procedure of discretization when the number of nodes on the base plane are different.

different from each other. For compatibility between
the superelements, only two opposite planes of the
superelement should have equal number of nodes. It
means that, while the number of nodes on opposite
sides of the base plane are different, the plane which
is opposite to the base plane has the same number of
nodes as the base plane.

(d)

X

4.1. The number of nodes on the sides of one plane are
different

Suppose that the number of nodes on all the sides
of one plane are different (we call this plane the base
plane), and the opposite to the base plane has the
same number of nodes as the base plane (Fig. 8a),

(8

Fig. 9. Procedure of discretization when the number of nodes on all sides are different.
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Fig. 10. Discretization of objects contacted at a point.

because all the sides which are parallgl to the coordi-
nates have the same number of nodes, by applying a
method similar to the one discussed in two-dimen-
sional case, the base plane and the plane which is
opposite to it is discretized. It means that, first, they
are extended in the &-n-{ coordinate, then they
would be transferred to a cube in the &’'-n'-{’
coordinate (Fig. 8d). Because all the sides have the
same number of nodes, discretization is applied. This
procedure is shown in (Fig. 8a-f). The cube is
transferred back to the £{-n—{ coordinate and after
refinement, the final transformation to X-Y-Z co-
ordinate is carried out.
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4.2. Base plane and all the other sides have different
number of nodes

When all sides have a different number of nodes
(Fig. 9), as before, by ignoring the number of nodes
on all the four sides (suppose all the four sides have
only two nodes), the base plane is discretized. After
discretization of the base plane, the number of nodes
on the sides should be considered. Then in the {-—n—{
coordinate, the side with the smaller number of nodes
is extended such that the number of nodes on all sides
become equal. The new hexahedron in the ¢{—n-{
coordinate is transferred to the ¢ '’ coordinate.
In this coordinate, all the sides which are parallel to
the n’ axis have the same number of nodes, and by
n’ =const., the discretization would be completed.
After discretization, the cube is transferred to a prism
in £-n— coordinate. In this coordinate, the added
part would be canceled out and refinement is com-
pleted. Refinement is the same as in two-dimensional
case with the exception that the tangent line is
changed to a plane.

5. COMPUTER PROGRAM

Based on the above method, a computer program
is developed. A mesh of superelement is defined by
the user in the same way as in ordinary isoparametric
methods, with one exception that the user is not to be
worried about the number of nodes on the opposite
sides of the superelements. A typical superelement
mesh is shown in Figs 10 and 11 for two- and
three-dimensional cases. As can be seen, superele-
ments 2 and 5 in Fig. 10 have a different number of
nodes on their opposite sides. Superelements 1 and 2
are contacted in one point and superelements 4 and
6 are contacted at part of their sides. Superelement 1
in Fig. 11 has a different number of nodes on opposite
sides of a plane, and superelements 3 and 4 are in
contact with superelements 1 and 2 at part of plate.
In Fig. 12 the number of nodes on all sides of the
tetrahedron are equal while the number of elements are
different. This is a unique property of this program
which by defining a hypothesis side or plane enable one
to have a different number of nodes while keeping the
number of nodes on the sides equal.

Fig. 11. Discretization of a general three-dimensional object; (a) coarse mesh; (b) fine mesh.
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Fig. 12. A general triangular tetrahedron superelement.

Based on the work of Collins [6], the program is
furnished with an automatic bandwidth reduction
which can work for contacted objects too[7]
(Fig. 10).

6. CONCLUSION

With a simple and effective method, a new two-
and three-dimensional mesh generation algorithm is
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proposed. This method is general and applicable
for any two- and three-dimensional objects. The
method is applicable even for objects which are
contacted at just one point. This new approach
looks promising, and can be applicable in different
algorithms.
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