
COLLOCATION METHODS FOR CONTINUATION
PROBLEMS IN NONLINEAR ELLIPTIC PDEs

Eusebius Doedel and Hamid Shari�

Department of Computer Science Concordia University Montreal, Canada

Summary

A new class of collocation methods for nonlinear elliptic partial di�erential

equations is described in the context of numerical continuation studies. It is

shown how the methods are well-suited for a nested dissection solution algo-

rithm, thereby reducing computational complexity. Numerical results are given

to illustrate the accuracy of the methods.

1 Introduction

Piecewise polynomial collocation is widely used for solving boundary value prob-

lems in ordinary di�erential equations (ODEs). For example, it is the basic dis-

cretization in the software packages COLSYS [2], COLDAE [3] , and AUTO [8].

Its advantages are high accuracy [7], known mesh adaption strategies [14] , and

e�cient solution procedures for the associated linear systems [1]. For di�cult

problems, collocation has been the method of choice; see [9] for some represen-

tative applications.

Use of piecewise polynomial collocation has not been very widespread for

partial di�erential equations (PDEs). A direct extension to elliptic PDEs was

given in [13] ; see also [4, 5, 6, 11, 15, 16].

In this paper we describe an extended class of collocation methods, which we

have implemented in an experimental software, written in C++, for the numerical

continuation of solutions to systems of nonlinear elliptic partial di�erential equa-

tions on the unit square in R2. For simplicity of presentation, we here consider

the scalar parameter-dependent nonlinear elliptic PDE

Nu(x) � �u(x) + f(u(x); �) = 0; for x 2
; (1.1)

u(x) = 0; for x 2 @
; (1.2)

where � is the Laplace operator,
 the unit square in R2, � 2 R, and x =

(x1; x2)
�, where � denotes transpose.

Figure 1 The domain
 and its recursive subdivision.

Our main interest is continuation software for parameter-dependent problems.

Therefore, in addition to u(�), we also treat � as unknown, and we add an integral

constraint Z

q(x; u(x); �) = 0; (1.3)

where q(�) 2 R. This problem formulation makes it possible to use Keller's

pseudo-arclength continuation method [12].

In Section 2 we describe the collocation method in detail for the equations

above. In Section 3 it is shown how the discrete set of linear equations that

arise from Newton's method can be solved by nested dissection, which reduces

computational cost. Numerical results that illustrate the accuracy of the methods

are given in Section 5.

The collocation methods and nested dissection algorithm generalize to prob-

lems with x 2 Rn. Furthermore, the domain need not be a square, and more

general elements are possible. More general boundary conditions and multiple

integral constraints can also be treated and have, in fact, been implemented in

our experimental software. However, in order to keep the technical presentation

simple, we restrict attention in this paper to the problem (1.1-1.3) above.

2 A New Class of Collocation Methods

2.1 Description of the methods

Recursively subdivide the square
 into 2M \�nite elements", as in Figure 1.

To each �nite element associate appropriate boundary matching points xi, i =

2

x

x x

x

z

zz

n

m

1 2

3

1 2

Figure 2 A �nite element of
.

1; � � � ; n and interior collocation points zi, i = 1; � � � ;m. See Figure 2 for an exam-

ple of the choice of these points. (The two sets of matching points on the common

boundary of two adjacent elements must coincide.) Also associate a polynomial

p(x) 2 Pn+m to each element. Here Pn+m is an appropriate (n+m)-dimensional

polynomial space. At the matching points the values of the neighboring poly-

nomials (ui) are required to match. The normal derivatives of the neighboring

polynomials (vi) are also required to match at these points. Further require each

polynomial to satisfy the collocation equations

Np(zi) � �p(zi) + f
�
p(zi); �

�
= 0; i = 1; � � � ;m: (2.4)

(For notational simplicity we suppress indices that denote the element.) Finally,

discrete, boundary conditions are imposed at matching points xi on the do-

main boundary @
. For each �nite element the local polynomial has the form

p(x) =
P

n+m

i=1
ci�i(x), where Span

n
�1; � � � ; �n+m

o
= Pn+m. Then the colloca-

tion equations are

Np(zk) �

n+mX
i=1

ci��i(zk) + f
�n+mX
i=1

ci�i(zk); �
�
= 0; k = 1; � � � ;m: (2.5)

To impose the continuity requirements, associate unique variables ui and vi to

each matching point xi, and require that p(xi) = ui and rp(xi)
��i = vi. Let

u = (u1; � � � ; un)
�, v = (v1; � � � ; vn)

�, and

� =

0
@ �1(x1) � � � �1(xn)

: :

�n+m(x1) � � � �n+m(xn)

1
A ;

3

R� =

0
@ r�1(x1)

��1 � � � r�1(xn)
��n

: :

r�n+m(x1)
��1 � � � r�n+m(xn)

��n

1
A :

Then we can write

u���c = 0; (2.6)

v �R��c = 0: (2.7)

The integral constraint (1.3) is applied to the union of all local polynomials.

This gives

2
MX

`=1

Z

`

q
�
x; p(x); �

�
dx = 0;

where
` denotes the `th �nite element of
. Integrate over each element by an

appropriate quadrature formula that uses the collocation points zk, with weights

!k :

2
MX

`=1

mX
k=1

!kq
�
zk; p(zk); �

�
= 0: (2.8)

2.2 Newton's Method

The equations (2.5), (2.6), (2.7) and (2.8), together with the discrete boundary

conditions, constitute the discretization. The unknowns are c 2 Rn+m for each

�nite element, the ui and vi associated with the points xi on the inter-element

boundaries, and �. To solve these equations we use Newton's method. Omitting

iteration indices, it can be written as

L�� �c+ �� f� = �rN ; (2.9)

�u����c = �ru; (2.10)

�v �R���c = �rv: (2.11)

and

2
MX

`=1

n
q�
u
�c
o
+ �� q� = �rq : (2.12)

Above

L�� =

0
B@

L
h
p(z1)

i
�1(z1) � � � L

h
p(z1)

i
�n+m(z1)

: :

L
h
p(zm)

i
�1(zm) � � � L

h
p(zm)

i
�n+m(zm)

1
CA ; f� =

0
B@

D2f
�
p(z1); �

�
:

D2f
�
p(zm); �

�
1
CA

4

where L is the linearization of N , i.e., L[p(z)]�(z) is the linearization of N about

p acting on � at z, or, more precisely,

L[p(z)]�(z) = ��(z) +D1f
�
p(z); �

�
�(z):

Further we have de�ned

�c =

0
@ �c1

:

�cn+m

1
A ; rN =

0
@ Np(z1)

:

Np(zm)

1
A ; �u =

0
@ �u1

:

�un

1
A ; �v =

0
@ �v1

:

�vn

1
A ;

ru = u���c; rv = v �R��c;

and

qu =

0
B@

P
m

k=1
!kD2q

�
zk; p(zk); �

�
�1(zk)

:P
m

k=1
!kD2q

�
zk; p(zk); �

�
�n+m(zk)

1
CA ;

q� =

2
MX

`=1

mX
k=1

!kD3q
�
zk; p(zk); �

�
; rq =

2
MX

`=1

mX
k=1

!kq
�
zk; p(zk); �

�
:

2.3 Elimination of �c

Equations (2.9) and (2.10) can be written

�
��

L�
�

�
�c =

�
�u+ ru

�rN � f���

�
: (2.13)

Using (2.13) to eliminate �c in (2.11) one obtains

�v = R��

�
��

L�
�

�
�1�

�u+ ru
�rN � f���

�
� rv :

De�ne A and B as

(� j L�)

�
A�

B�

�
= R�: (2.14)

Then the above expression for �v can be rewritten as

�v = (A B)

�
��

L�
�

��
��

L�
�

�
�1�

�u+ ru
�rN � f���

�
� rv ;

that is,

�v = A�u� ��B f� �BrN � rv +Aru:

5

This equation is of the form

�v = A�u+ �� b+ r; (2.15)

where we have de�ned

r = �BrN � rv +Aru; b = �Bf�:

Next, using (2.13) in (2.12) gives

2
MX

`=1

n
q�
u

�
��

L�
�

�
�1�

�u+ ru
�rN � f���

�o
+ �� q� = �rq: (2.16)

Let d 2 Rn, d̂ 2 Rm be the solution of

(� j L�)

�
d

d̂

�
= qu: (2.17)

Then (2.16) can be written

2
MX

`=1

n
d�(�u+ ru) + d̂�(�rN � f���)

o
+ �� q� = �rq ;

which is of the form

P2
M

`=1
fd��ug+ e �� = s; (2.18)

where

e = q� +

2
MX

`=1

n
�d̂�f�

o
; s = �rq �

2
MX

`=1

n
d�ru � d̂�rN

o
:

Finally, the Newton equations for the boundary conditions are of the form

�u = �u; (2.19)

to be applied only at the matching points on the exterior boundary @
. One can,

of course, exclude the boundary unknowns in case of explicit boundary conditions

for u. However, we include (2.19) in the description of the solution algorithm,

in order to suggest the treatment of the more general boundary conditions that

can be handled by our prototype implementation.

6

2.4 General Algorithm

Given current approximations to u, v, c, and �, a complete Newton iteration

now consists of the following steps :

(1) For each �nite element use (2.14) to compute the matrices A and B, and

use (2.17) to compute d and d̂.

(2) Solve the global set of equations (2.15), (2.18), (2.19) for �u, �v and ��. This

can be done by the nested dissection algorithm described in the following

section.

(3) For each �nite element compute �c using (2.13).

(4) Update : u! u+ �u, v ! v + �v, c! c+ �c, and �! �+ ��.

Note that, for any given �nite element, the matrix on the left hand side of (2.13)

is the transpose of the matrix on the left hand side of (2.14) and (2.17). Thus

only one LU -decomposition is required per �nite element.

3 Nested Dissection

Here we show how to to apply the method of nested dissection to the solu-

tion of the global set of equations (2.15) and (2.18). The algorithm consists of

backward recursive elimination of the unknowns �u and �v on boundaries sep-

arating adjacent regions. Here "adjacent" means that the two regions resulted

from subdivision of the larger region formed by their union, i.e., the two regions

correspond to the descendant nodes of a common parent node in the recursion

tree. By "backward recursion" is meant that the elimination starts at the leaves

and terminates at the root of the tree.

This procedure results in the elimination of all the �u's and �v's in the interior

of the domain
. One is left with equations of the form (2.15) corresponding

to the matching point on the exterior boundary @
. The discrete boundary

conditions can be then used to determine the values of �u, �v, and �� at the xi
on @
. Thereafter a recursive backsubstitution gives the values of �u (and hence

�v) on each interior boundary.

To make the above more precise, consider two adjacent regions
1 and
2 as in

Figure 3. These regions need not be �nite elements, i.e., they need not correspond

to leaves in the recursion tree. The elimination of the unknowns �u and �v on

the common boundary is now done as follows. Call the common boundary @
12,

and let @
1 and @
2 denote the remaining parts of the boundaries of
1 and
2,

respectively. The variable �u in (2.15) and (2.18) is split accordingly into �u12
and �u1 for region
1 and �u21 (= �u12) and �u2 for region
1. The variable �v

and the coe�cients and inhomogeneous terms are split in a similar fashion.

Thus, for region
1 the equation (2.15) can be written in the form

7

Ω ΩδΩ δΩ

δΩ

1

12

21 2

Figure 3 Two adjacent regions.

�v1 = A1�u1 +A12�u12 + ��b1 + r1; (3.20)

�v12 = B1�u1 +B12�u12 + ��b12 + r12; (3.21)

while for
2 they have the form

�v2 = A2�u2 +A21�u21 + ��b2 + r2; (3.22)

�v21 = B2�u2 +B21�u21 + ��b21 + r21: (3.23)

By continuity one has

�u12 = �u21; (3.24)

�v12 = ��v21: (3.25)

From (3.21) and (3.23), using (3.24) and (3.25), it follows that

�u12 = �B̂�1

n
B1�u1 +B2�u2 + ��(b12 + b21) + r12 + r21

o
; (3.26)

where we have de�ned

B̂ � B12 +B21:

Substituting this into (3.20) and (3.22), again using (3.24), one obtains

�v1 = A1�u1�A12B̂
�1

n
B1�u1+B2�u2+ ��(b12+ b21)+ r12+ r21

o
+ ��b1+ r1;

�v2 = A2�u2�A21B̂
�1

n
B1�u1+B2�u2+ ��(b12+ b21)+ r12+ r21

o
+ ��b2+ r2;

8

which is of the form

�v1 = Â11�u1 + Â12�u2 + ��b̂1 + r̂1; (3.27)

�v2 = Â21�u1 + Â22�u2 + ��b̂2 + r̂2; (3.28)

where

Â11 = A1 � A12B̂
�1B1; Â12 = � A12B̂

�1B2;

Â21 = � A21B̂
�1B1; Â22 = A2 � A21B̂

�1B2;

and

r̂1 = r1 �A12B̂
�1(r12 + r21); b̂1 = b1 �A12B̂

�1(b12 + b21);

r̂2 = r2 �A21B̂
�1(r12 + r21); b̂2 = b2 �A21B̂

�1(b12 + b21):

The equations (3.27) and (3.28) represents the discrete equations for the enlarged

region, that is, for the union of
1 and
2, after elimination of the common

boundary unknowns �u12 and �v12. Note that these new equations are again of

the form (2.15).

Using (3.26) one can also eliminate the unknown �u's in the interior of
 from

the discrete integral constraint (2.18). Consider all adjacent regions
1 and
2

at the Mth level in the recursion tree, and pairwise combine their contribution

to the total sum. Then (2.18) can be written

2
M�1X
`=1

fd�1�u1 + d�12�u12 + d�21�u21 + d�2�u2g+ e �� = s; (3.29)

where the splitting of d and �u is done as before. Using (3.26) and (3.24), rewrite

(3.29) as

2
M�1X
`=1

n�
d�1 � (d12 + d21)

�B̂�1B1

�
�u1 +

�
d�2 � (d12 + d21)

�B̂�1B2

�
�u2

o
+

�
e�

2
M�1X
`=1

(d12 + d21)
�B̂�1(b12 + b21)

�
�� = s+

2
M�1X
`=1

(d12 + d21)
�B̂�1(r12 + r21);

which is of the form

2
M�1X
`=1

fd̂�1�u1 + d̂�2�u2g+ ê �� = ŝ; (3.30)

where

d̂�1 = d�1 � (d12 + d21)
�B̂�1B1; d̂�2 = d�2 � (d12 + d21)

�B̂�1B2;

9

ê = e�

2
M�1X
`=1

(d12+d21)
�B̂�1(b12+b21); ŝ = s+

2
M�1X
`=1

(d12+d21)
�B̂�1(r12+r21):

Note that Equation (3.30) is still of the same form as Equation (2.18), but the

sum is now over half the number of regions, each of which is the union of two

descendant regions in the recursive division of
.

The procedure is repeated recursively, and in synchrony with the eliminations

that yield Equations (3.27) and (3.28). The �nal stage results in equations of

the form (2.15), (2.18) (with M = 0), and (2.19), corresponding to the exterior

boundary @
. These equations can be solved for for �� and for �u and �v on

@
. A recursive backsubstitution process then gives the values of �u and �v in

the interior of
.

The number of arithmetic operations required by the above nested dissection

method can be shown to be O(K3) for a K by K mesh (with K2 elements).

This compares favorably with the O(K4) required by a standard band-solver.

For details see [10].

4 Continuation

The problem formulation in Section 1 includes the integral constraint (1.3),

which was also taken into account in the discretization and solution procedures

in Sections 2-3. This makes it possible to use the pseudo-arclength continuation

method [12] for following solution families for varying �. In continuous form, the

pseudo-arclength constraint is given byZ

�
u(x)� u0(x)

�
_u0(x) dx+ (�� �0) _���s = 0;

where (u0(�); �0) denotes a given solution, and where (_u0(�); _�0) is the direction

vector of the solution branch at (u0(�); �0), i.e., the normalized rate of change of

the solution (u(�); �) with respect to �s.

Since
 is the unit square, with area 1, one can rewrite the continuous pseudo-

arclength equations asZ

��
u(x)� u0(x)

�
_u0(x) + (�� �0) _� ��s

�
dx = 0;

which is of the form (1.3), with

q(x; u(x); �) =
�
u(x)� u0(x)

�
_u0(x) + (�� �0) _�0 ��s:

The discretization and solution procedure is now as described in the preceding

sections. In particular, the discretized integral constraint (2.8) becomes

10

2
MX

`=1

mX
k=1

n
!k

�
p(zk)� p0(zk)

�
_p0(zk)

o
+ (� � �0) _�0 ��s = 0;

and the coe�cients in the Newton equation (2.12) are now given by

qu =

0
@

P
m

k=1
!k _p0(zk)�1(zk)

:P
m

k=1
!k _p0(zk)�n+m(zk)

1
A ; q� = _�0; (4.31)

and

rq =

2
MX

`=1

n mX
k=1

!k

�
p(x)� p0(zk)

�
_p0(zk)

o
+ (�� �0) _�0 ��s:

Above, p0 denotes the restriction of a given piecewise polynomial solution to the

`th element, and _p0 is its derivative with respect to �s. We can write _p(x) =P
n+m

i=1
_ci�i(x). The coe�cients _ci can be determined by one extra back solve in

the solution process. To see this, note that di�erentiating Equations (2.5), (2.6),

(2.7), and (2.8) with respect to �s gives

L�� _c+ _� f� = 0;

_u��� _c = 0;

_v �R�� _c = 0:

and

2
MX

`=1

n
q�
u
_c
o
+ _� q� = 1;

i.e., the same left hand sides as in Equations (2.9)-(2.12), with qu and q� given

by (4.31). Thus the linear equation solution procedure of Sections 2.4 and 3 can

be used to compute the _u, _v, and _�. Thereafter the _c can be computed from

�
��

L�
�

�
_c =

�
_u

�f� _�

�
:

11

nb:col: 1 2 � 2 3 � 3 4 � 4

mesh max: error (o) max: error (o) max: error (o) max: error (o)

2 � 2 8:84e�3 4:54e�4 2:09e�5 4:04e�7

4 � 4 2:80e�3 (1:66) 5:18e�5 (3:13) 7:64e�7 (4:78) 7:40e�9 (5:77)

8 � 8 7:21e�4 (1:96) 4:30e�6 (3:59) 2:72e�8 (4:81) 1:32e�10 (5:81)

16 � 16 1:81e�4 (1:99) 3:02e�7 (3:83) 8:84e�10 (4:95) 2:14e�12 (5:95)

32 � 32 4:54e�5 (2:00) 1:99e�8 (3:92) 2:81e�11 (4:97) 3:40e�14 (5:98)

64 � 64 1:14e�5 (2:00) 1:28e�9 (3:96)

Table 1 Maximum error and order of convergence at the matching points.

5 Numerical Results

First, consider the equation

�u = (2x2y2 + 2x2y + 2xy2 � 6xy)ex+y for (x; y) 2
 � R2;

u = 0 on @
;

where
 is the unit square. The analytical solution is

u(x; y) = x(x� 1)y(y � 1)ex+y:

Table 1 presents the maximum error at the matching points for di�erent mesh

sizes and number of collocation points. The collocation and matching points are

chosen to be Gauss points. The convergence rates between consecutive items in

each column are shown in parentheses.

Finally, Table 2 and Table 3 show the location and the maximum error of the

fold in Bratu's problem

�u+ �eu = 0 for (x; y) 2
;

u = 0 on @
;

where
 is the unit square, for various choices of the number of mesh and colloca-

tion points (The exact location of the fold is assumed to be at � = 6:808124423.)

Bibliography

[1] Ascher, U. M. and Mattheij, R. M. M. and Russell, R. D., "Numerical solution of
boundary value problems for ordinary di�erential equations", Prentice-Hall, 1988.

12

nb:col: 1 2 � 2 3 � 3 4 � 4

mesh � � � �

1 � 1 5:886071059 8:829106588 6:468997582 6:896291085

2 � 2 7:848094745 6:657615709 6:819161991 6:807812085

4 � 4 6:861418190 6:805822324 6:808174115 6:80812296

8 � 8 6:820207335 6:808016922 6:808124690 6:808124424

16 � 16 6:811079454 6:808117899 6:808124427 6:808124423

32 � 32 6:808859009 6:808124018 6:808124423 6:808124423

64 � 64 6:808307808 6:808124397

Table 2 The location of the fold in Bratu's problem.

nb:col: 1 2 � 2 3 � 3 4 � 4

mesh max: error (o) max: error (o) max: error (o) max: error (o)

1 � 1 9:22e�1 2:02 3:39e�1 8:82e�2

2 � 2 1:04 (0:17) 1:51e�1 (3:75) 1:10e�2 (4:94) 3:12e�4 (8:14)

4 � 4 5:33e�2 (4:29) 2:30e�3 (6:03) 4:97e�5 (7:80) 1:46e�6 (7:74)

8 � 8 1:21e�2 (2:14) 1:08e�4 (4:42) 2:67e�7 (7:54) 1:00e�9 (10:5)

16 � 16 2:96e�3 (2:03) 6:52e�6 (4:04) 4:00e�9 (6:06) 0

32 � 32 7:35e�4 (2:01) 4:05e�7 (4:01) 0 0

64 � 64 1:83e�4 (2:00) 2:60e�8 (3:96)

Table 3 Maximum error at the matching points in Bratu's problem.

[2] Ascher, U. M. and Christiansen, J. and Russell, R. D., "A collocation solver for
mixed order systems of boundary value problems", Math. Comp., Vol. 33, pp.
659-679, 1979.

[3] Ascher, U. M. and Spiteri, R. J., "Collocation software for boundary value
di�erential-algebraic equations", SIAM J. Sci. Comput.,Vol. 15,pp. 938-952, 1995.

[4] Bialecki, B., "Convergence analysis of orthogonal spline collocation for elliptic
boundary value problems", SIAM J. Numer. Anal., 1997.

[5] Bialecki B. and Cai X. C., "H1
�norm error bounds for piecewise Hermite bicubic

orthogonal spline collocation schemes for elliptic boundary value problems", SIAM
J. Numer. Anal., Vol. 31, pp. 1128-1146, 1994.

[6] Christara C. C., "Spline collocation methods, software and architectures for linear
elliptic boundary value problems", Ph.D. Thesis, Purdue University, IN, USA,
1988.

[7] de Boor, C. and Swartz, B., "Collocation at Gaussian points", SIAM J. Numer.
Anal. , Vol. 10, pp. 582-606, 1973.

13

[8] Doedel, E. J. and Champneys, A. R. and Fairgrieve, T. F. and Kuznetsov,
Y. A. and Sandstede, B. and Wang, X.-J., "AUTO97 : Continuation and bi-
furcation software for ordinary di�erential equations", (Available by FTP from
ftp.cs.concordia.ca. in directory pub/doedel/auto), Department of Computer Sci-
ence, Concordia University, Montreal, Canada, 1997.

[9] Doedel, E. J., "Nonlinear Numerics", J. Franklin Inst., Vol. 334B, 5/6,pp. 1049-
1073, 1997.

[10] Doedel, E. J., "On the construction of discretizations of elliptic partial di�erential
equations", J. Di�erence Equations and Applications, Vol. 3, pp. 389-416, 1997.

[11] Fairweather G., "Spline collocation methods for a class of hyperbolic
partialintegro-di�erential equations", SIAM J. Numer. Anal., Vol. 31, pp. 444-
460, 1994.

[12] Keller H. B., "Numerical solution of bifurcation and nonlinear eigenvalue prob-
lems", Applications of Bifurcation Theory, Rabinowitz, P. H., Academic Press,
pp. 359-384, 1977.

[13] Prenter, P. M. and Russell, R. D., "Orthogonal collocation for elliptic partial
di�erential equations", SIAM J. Numer. Anal., Vol. 13, pp. 923-939, 1976.

[14] Russell, R. D. and Christiansen, J., "Adaptive mesh selection strategies for solving
boundary value problems", SIAM J. Numer. Anal., Vol. 15, pp. 59-80, 1978.

[15] Sun W., "Cyclic reduction algorithm for solving collocation systems", Intern. J.
Computer Math., Vol. 61, pp. 293-305, 1996.

[16] Sun W., "Iterative algorithm for orthogonal spline collocation linear system",
SIAM. J. Sci. Comput., Vol. 16, pp. 720-737, 1995.

[17] Wheeler, M. F., "An elliptic collocation-�nite element method with interior penal-
ties", SIAM J. Numer. Anal., Vol. 15, No. 1, pp. 152-161, 1978.

14

