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The Recovery of Rockets.
Jørgen Franck, Danish Amateur Rocket Club

1. Introduction
The primary objective of any recovery sequence, of course, is the reduction of the
rockets velocity to some value for which adequate impact survival may be obtained. The
parachute is ejected close to apogee due to the relative low velocity, to avoid damage to
the recovery system and the rocket itself. Typically a cross-type parachute consisting of
five squares is used because it is easy to fabricate. The length of all the rigging lines are
equal to two times the side in one square.

Fig. 1   Cross-type parachute

A timer is use as the sole method to initiate the recovery. The timer is set to a
predetermined time based on the trajectory calculations. At take-off the timer is initiated
by use of an acceleration switch. The timer for the recovery system is self-contained
with its own power supply. This design assures a reliable and safety launch procedure.
When the rocket is mounted on the launcher, the only requirement regarding the
recovery system is to switch on the timer circuit.

Unfortunately the location of the rocket after touchdown can be difficult, because the
rocket can drift substantially when the parachute is deployed at apogee. A small pilot
parachute or streamer can be used instead at apogee to guide the rocket fast down to
avoid excessive drift. Then later the main parachute is deployed to achieve the necessary
impact velocity. One drawback is the substantially more complex recovery system
requiring two timers.
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The recovery system divide the rocket with an internal separator in two parts
respectively the engine and the payload section. The two parts are combined to the
parachute with a line. The most important part is the payload section which carries the
instruments to conduct the experiments. The line between the parachute and the engine
is longest to achieve touchdown of the lesser important engine first. This arrangement
reduce the impact velocity additional for the payload section.

Fig. 2   Rocket travelling vertically downward in a parachute

Using different line lengths reduce the probability for impact between the engine and
payload section when the rocket is divided. The lines are attached at the ends of the two
sections. This assure mainly longitudinal stress at separation and touchdown on the
sections.

Payload section

Parachute

Engine
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2. Motion with air resistance equal to kv²
The rocket in parachute (considered as a particle of mass m) having weight of
magnitude mg is travelling vertically downward with the velocity v. The air resistance
acting on the system has magnitude proportional to the square of the instantaneous
velocity, and opposed to it.

Fig. 3   Forces acting on a rocket travelling vertically downward in a parachute

Then by Newton’s second law

ma mg kv= − ⇒2

m
dv
dt

mg kv= − 2

which may be written

mdv
mg kv
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The function tanh−1 (x) is the inverse hyperbolic tangent of x. The velocity at any
subsequent instant is then
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As t increases the hyperbolic tangent function approaches the limit 1 resulting in the
limiting value for the velocity

v
mg
kterminal =

This is called the terminal velocity, the limit to which the velocity of the parachute
tends. It can also be obtained at once from the equation of motion. At the moment the
air resistance balance gravity the acceleration a of the parachute is zero. Inserting in the
equation of motion the same result for the terminal velocity is obtained.

The distance at any subsequent instant is

v
dy
dt

= ⇒
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Finally the acceleration at any subsequent instant is
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3. Motion with  air resistance equal to nv
At a relatively low velocity, the air resistance may be approximated by assuming that it
is proportional to the instantaneous velocity, and opposed to it.

Fig. 4   Forces acting on a rocket travelling vertically downward in a parachute

The equation in this case is

ma mg nv= − ⇒
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which may be written
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Assuming g and n constant, we get by integrating
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The velocity at any subsequent instant is then
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The terminal velocity is
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because as t increases the exponential function approaches the limit 0, as is likewise
evident from the equation of motion.

The distance at any subsequent instant is
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Finally the acceleration at any subsequent instant is
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4. Determination of the coefficients k and n
The value k is equal to

k ACD= ½ρ

where

ρ : Density of the air.
A : Cross sectional  area 5 a² of the cross-type parachute, where a is the length of

  a square.
CD : Drag coefficient of the parachute (dimension-less).

The value n is equal to

n K= η

where

η : Coefficient of viscosity of the air.
K : Coefficient related to the shape of the parachute.

The coefficient  η depends on the frictional force between different layers of the air
moving with different velocities.

The coefficients  CD  and  K can be determined theoretical and experimental. The
theoretical approach is complex because many parameters influence on the size of the
coefficients as:

• Shape of the parachute.
• Porosity of the canopy material.
• Length of rigging lines.
• Interference from the rocket attached to the parachute.
• Interference from the rigging lines.

A practical approach is to derive formulas base on experimental data to obtain the
coefficients.

The most common experimental technique to determine the coefficients is by the use of
a wind tunnel. Practical limitations in the size of the wind tunnel and to avoid
interference from the wind tunnel walls requires typically a scale model of the parachute
to perform the measurements.

Another experimental approach is the vertical drop test from a building or tower where
the actual parachute can be used. To avoid damage on the rocket itself a similar weight
can be used as dummy. The coefficients can be determined by measuring the time taken
by the parachute to fall a specified distance when released from rest. In the two cases
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we have the following relationship between distance and time when the initial velocity is
zero:
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Unfortunately the coefficients k and n can not be determined directly in the above
equations by inserting the measured distance and time. In the latter equation the
exponential function can be written as an infinite series as follows:
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Unfortunately the above equations is more suited for objects with a fixed geometry
during the whole fall. When the parachute is  released from rest it takes some time
before it get fully inflated causing inaccurate determination of coefficients. A more
accurate method is to measure over a distance where the parachute travel with the
terminal velocity, we have

y v tterminal=

and in the two cases we get
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5. Example
In this example we will use the formulas where the air resistance is proportional to the
square of the instantaneous velocity. First we must determine the constant k for the
parachute. The first problem you typically encounter using the vertical drop test is the
demand for an extremely accurate timing device to achieve a reasonable accurate
determination of k. Using a large drop distance y and a smaller mass m than the actual
prolong the drop time avoiding an extremely accurate timing device.

The rocket have a burnout mass including the parachute equal to

m = 9.5kg

In the vertical drop test the rocket is replaced by a sandbag with a reduced weight to
prolong the drop time. The mass of the sandbag including the parachute is equal to

m = 1.1kg

Finally you avoid to cushion the rocket at the end of its fall to avoid damage. A building
is used with a drop distance of

y = 14.65m

Actually we dropped the parachute from a point 3m higher to assure that the parachute
has achieved the terminal velocity at the beginning of the distance of interest. Several
vertical drop tests resulted in an average drop time equal to

t = 3.6s

The constant k can now be found, we get
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The drag coefficient of the parachute is
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where ρ is the density of the air and A is the cross sectional area of the cross parachute.
The terminal velocity of the rocket is
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Use a scaled parachute based on the one from the experiment to adjust the terminal
velocity. This is possible because a scaled parachute do not influence on the size of the
experimental found drag coefficient avoiding further experiments. A parachute twice the
size used in the experiment reduce the terminal velocity by
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We assume that the parachute move with the terminal velocity throughout the distance
of interest, which is
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To check this assumption we will find the velocity of the parachute when it enters the
distance of interest. We first determine the time is takes to travel 3m
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Remember the initial velocity is zero because we drop it and further we neglect the time
it takes the parachute to fully deploy. Finally the velocity can be obtained after travelling
3m, we get
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Apparently the parachute have reached a velocity very close to the terminal velocity, so
3m is adequate to ensure this. Anyway we always force the parachute to be fully
deployed before we release it, to create a scenario as close to the assumptions above.

Last we will determine the touchdown velocity of the payload. Due to different lengths
of the lines respectively to the engine and payload, the payload section is 4m above
ground at engine touchdown. This time the initial velocity is greater than the terminal
velocity and the mass m is equal to

m m mrocket engine= − ⇒

m = −95 69. .kg kg = 2.6kg

As before we calculate first the time it takes to travel the distance, in this case 4m, we
get
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Finally the velocity can be obtained after travelling 4m, we get
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This simple arrangement reduce the touchdown velocity for the payload section from
12m/s to 7.3m/s. The terminal velocity of the payload is
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Finally I will not recommend to use the theory based on air resistance proportional to
the instantaneous velocity in the above experiment. Especially the use of a reduced mass
in the experiment to prolong the drop time result in a very inaccurate determination of
the rockets terminal velocity. Inserting the values result in a terminal velocity of the
rocket equal to
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