Measurement And Metric Worksheet

I.	Fill in the blanks with the word or words that best completes the statemen					
1)	The meter is a little longer than ft.					
2)	One-half an inch would be (shorter, longer) than 1.0 cm.					
3)	Write the accepted SI abbreviations for each unit.					
	(a) milligram (c) deciliter					
	(b) microliter (d) milliliter					
4)	The of a measurement describes how close the measurement agrees with the accepted value.					
5)	The of a measurement depends on its reproducibility.					
6)	The space occupied by a sample of matter is known as					
7)	The quantity of an object contains is its mass.					
8)	The mass of 1.0 cm ³ of water at 4°C is					
9)	The ratio of the mass of an object to its volume is its					
10)	To convert $^{\circ}$ C to Kelvin, the number is added to $^{\circ}$ C.					

- II. Change each measurement to scientific notation.
 - (a) 1,062,457 mm
 - (b) 0.00543 km
 - (c) 111.6 g
 - (d) 0.00000521 L
 - (e) 5.025 cm³
- III. Change each measurement to a whole number or decimal.
 - (a) $6.150 \times 10^3 \text{ km}$
 - (b) $5.362 \times 10^2 \text{ mg}$
 - (c) $2.35 \times 10^{-2} \text{ cm}$
 - (d) $8.79 \times 10^{-5} \text{ cm}^2$
- IV. Perform the following operations and give the answers in scientific notation with the correct number of significant figures.
 - (a) 21.6 m + 8.02 m + 171.220 m
 - (b) 2083 L 20 L
 - (c) 47.68 km + 538.01 km + 39 km
 - (d) 0.32 cm x 0.76 cm x 14.2 cm
 - (e) $(7.24 \times 10^4 \text{ mm})/(4.6 \times 10^2 \text{ mm})$
 - (f) $3.05 \times 10^{-5} \text{ m} \times 3.44 \times 10^{-3} \text{ m}$

V.	Use the Factor Label Method to perform the following conversions and give
	your answers to the correct number of significant figures.

- (a) $0.10 \text{ m} = \underline{\hspace{1cm}} \text{cm}$
- (b) 2985 m = ____ cm
- (c) $15.64 g = ___ g$
- (d) $1640 \text{ mL} = ___L$
- (e) 15 mm = ____ cm
- (f) 15 cm = ____ m
- (g) $0.98 \text{ m} = \underline{\hspace{1cm}} \text{cm}$
- (h) $0.067 g = __m mg$
- (i) A proton has a mass of 1.67 x 10^{-27} kg. Calculate the mass of 6.02 x 10^{23} protons.

Solutions

I.

Fill in the blanks with the word or words that best completes the statement.

1)	3					
2)	longer					
3)	(a) mg		(c)	dl		
	(b) µl		(d)	ml		
4)	accuracy					
5)	precision					
6)	volume					
7)	matter					
8)	1.0 g					
9)	density					
10)	273					

II.	Change each measurement to scientific notation.				
	(a)	1.062457 x 10 ⁶ mm			
	(b)	5.43 x 10 ⁻³ km			

(d)
$$5.21 \times 10^{-6} L$$

III. Change each measurement to a whole number or decimal.

- (a) 6150 km
- (b) 536.2 mg
- (c) 0.0235 cm
- (d) 0.0000879 cm²

IV. Perform the following operations and give the answers in scientific notation with the correct number of significant figures.

- (a) 200.84 m
- (b) 2063 L
- (c) 625 km
- (d) 3.5 cm^3
- (e) 160
- (f) $1.05 \times 10^{-7} \text{ m}^2$

- V. Use the Factor Label Method to perform the following conversions and give your answers to the correct number of significant figures.
 - (a) $0.10 \text{ m} \times 10^2 \text{ cm/1 m} = 1.0 \text{ cm}$
 - (b) $2985 \text{ m} \times 1 \text{ km}/10^3 \text{ m} = 2.985 \text{ km}$
 - (c) $15.64 \text{ mg} \times 1 \text{ g}/10^3 \text{ mg} = 0.01564 \text{ g}$
 - (d) $1640 \text{ ml} \times 1\text{L}/10^3 \text{ ml} = 1.640 \text{ L}$
 - (e) $15 \text{ mm} \times 1 \text{ cm}/10 \text{ mm} = 1.5 \text{ cm}$
 - (f) $15 \text{ em } \times 1 \text{ m}/10^2 \text{ em} = 0.15 \text{ m}$
 - (g) $0.98 \text{ m} \times 10^2 \text{ cm/1 m} = 98 \text{ cm}$
 - (h) $0.067 \text{ g x } 10^3 \text{ mg/1 g} = 67 \text{ mg}$
 - (i) $1.67 \times 10^{-27} \text{ kg/p}^+ \times 6.02 \times 10^{23} \text{ p}^+ = 1.01 \times 10^{-3} \text{ kg}$