# **SOLUCIONES ELECTROLITICAS**

SE1: DETERMINACIÓN DE COEFICIENTES DE ACTIVIDAD.

**EQUILIBRIO QUIMICO.** 

**CONDUCTIVIDAD Y TRANSPORTE.** 

SE2: PILAS.

## **SE 1.1** DETERMINACION DE COEFICIENTES DE ACTIVIDAD

Calcular la fuerza iónica y el coeficiente de actividad de los iones presentes en cada solución (Considerar volúmenes aditivos y el término a.B de la ecuación de Debye-Huckel = 1).

- a) La solución se forma con 5 ml de una solución 10<sup>-3</sup> molar de KCl y 3 ml de una solución 10<sup>-3</sup> molar de K NO<sub>3</sub> a 25 °C.
- b) Se mezclaron 10 ml de una solución 10<sup>-2</sup> molar de H<sub>2</sub>SO<sub>4</sub> con 10 ml de una solución 10<sup>-2</sup> molar de KNaSO<sub>4</sub> a 45 °C (suponer que el ácido sulfúrico está totalmente disociado).
- c) Se disolvió en 750 ml de metanol, 0,206 g de Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> a 25 °C.

#### **SE 1.2**

#### **EQUILIBRIO QUÍMICO SIMULTÁNEO**

Calcular el pH de una solución de Na<sub>3</sub>AsO<sub>4</sub> 10<sup>-3</sup> M a 25 °C.

#### **DATOS:**

Constantes de disociación del  $H_3AsO_4$ :  $K1 = 5x10^{-3}$   $K2 = 4x10^{-5}$   $K3 = 6x10^{-10}$ 

## **SE 1.3**

#### **EQUILIBRIO QUÍMICO**

Calcular la solubilidad del PbCl<sub>2</sub> en los siguientes casos:

- a) en agua pura.
- b) en solución de NaNO<sub>3</sub> 0,1 N.
- c) en solución de KCI 0,1 N.

**DATO:** Kps  $_{(20 \,{}^{\circ}\text{C})} = 1.7 \times 10^{-5}$ 

## **SE 1.4**

# EQUILIBRIO QUÍMICO SIMULTÁNEO

Calcular el pH y la composición de equilibrio que resultan de mezclar 10<sup>-4</sup> moles de NaH₂PO₄, 10<sup>-4</sup> moles de NaAc y 10<sup>-3</sup> moles de NaCl con agua a 25 °C, hasta obtener 1 litro de solución.

#### DATOS

Considerar que se verifican los siguientes equilibrios:

$$H_{3}PO_{4} \leftrightarrow H^{+} + H_{2}PO_{4}^{-}$$
  $K_{1} = 6,5x10^{-3}$   
 $H_{2}PO_{4}^{-} \leftrightarrow H^{+} + HPO_{4}^{-2}$   $K_{2} = 9x10^{-9}$   
 $HAc \leftrightarrow H^{+} + Ac^{-}$   $K_{3} = 10^{-5}$   
 $H_{2}O \leftrightarrow H^{+} + OH^{-}$   $K_{W} = 10^{-14}$ 

#### **SE 1.5**

## **EQUILIBRIO QUÍMICO SIMULTÁNEO**

Calcular la composición de equilibrio que resulta de saturar con  $SO_{2(g)}$  una solución acuosa  $10^{-3}$  M de NaHSO<sub>3</sub> ( $\bar{P}_{SO_2}$  = 0,4 atm.)

**DATOS:** Se determinó la variación de la concentración total de  $SO_2$  en agua, a diferentes  $P_{SO_2}$  en presencia de un electrolito inerte de concentración tal que se cumpla que  $\gamma$  $H_2SO_2$ 

| $ar{P}_{SO2}$ | C <sub>so2</sub> |
|---------------|------------------|
| 0.0104        | 0.0271           |
| 0.0450        | 0.0854           |
| 0.0971        | 0.1664           |
| 0.1790        | 0.2873           |
| 0.3330        | 0.5014           |

Usar todos los datos. Suponer despreciable la disociación de HSO<sub>3</sub>.

#### **SE1.6**

#### EQUILIBRIO QUÍMICO SIMULTÁNEO

Se ponen en contacto 100 ml de aqua que contiene 6 gr de ácido benzoico (BH) y 0,51 moles de cafeína (C) con 100 ml de solvente orgánico (SO), en el que no se disuelve la cafeína y en el que el ácido benzoico existe solo como dímero (BH)<sub>2</sub>. La cafeína en agua forma un complejo con el ácido benzoico:

$$C + BH \leftrightarrow CBH$$

Luego de alcanzado el equilibrio, se separa la fase orgánica y se pone en contacto con 100 ml de agua pura. El pH de la fase acuosa en el equilibrio es 2,97 y la cantidad total de BH (en ambas fases y bajos todas las formas) es 1,45x10<sup>-2</sup> moles.

#### Calcular:

- $2BH_{(aq)} \leftrightarrow (BH)_2^{(so)}$ a) La constante del equilibrio, tomando ERSI - EC molaridad:
- $C + BH \leftrightarrow CBH$ b) La constante del equilibrio, tomando ERSI - EC molaridad:

#### DATOS:

$$BH \leftrightarrow B^- + H^+$$
  $K_d = 6.3 \times 10^{-5}$  (ERSI - ECM)

- Suponer comportamiento ideal de especies moleculares.
- Suponer volúmenes de soluciones iguales a volúmenes de solventes.



 $n_{RH}^{T} = 1.45 \times 10^{-2} \text{ moles}$ 

## **SE 1.7**

#### EQUILIBRIO QUÍMICO SIMULTÁNEO

- a) Calcular las concentraciones de Na<sub>2</sub>HPO<sub>4</sub> y NaH<sub>2</sub>PO<sub>4</sub> que deben utilizarse para preparar una solución reguladora de pH = 7.3 con una fuerza iónica de  $10^{-2}$ .
- b) Calcular el pH resultante cuando a 1 litro de la solución anterior se le agregan 10<sup>-3</sup> moles de HCI.

DATO:

$$PO_4H_2^- \leftrightarrow PO_4H^{2-} + H^+$$

pK = 6.84

## **SE 1.8**

#### **EQUILIBRIO QUÍMICO**

Calcular las concentraciones en el equilibrio de una solución saturada de SO<sub>2</sub> a 25 °C. **DATOS:** 

Solubilidad del  $SO_2 = 9,41 \text{ g}/100 \text{ g}$  de  $H_2O$ 

- 
$$SO_{2(d)} + H_2O \leftrightarrow SO_3H^- + H^+$$

$$K = 1.2 \times 10^{-2}$$

## **SE1.9**

#### EQUILIBRIO QUÍMICO SIMULTÁNEO

Calcular la composición de equilibrio cuando se satura con CaCO<sub>3</sub> una solución acuosa de CO<sub>2</sub> con  $\overline{P}_{co}$  = 1 atm a 25 °C.

#### **DATOS:**

$$\mathrm{CO}_{2(g)} \mathop{\leftrightarrow} \mathrm{CO}_{2(d)}$$

$$K_1 = 5.7 \times 10^{-4}$$

$$CO_{2(d)} + H_2O \leftrightarrow CO_3H^- + H^+$$
  $K_2 = 9.3x10^{-8}$ 

$$K_2 = 9.3 \times 10^{-8}$$

$$\text{CO}_3\text{H}^- \leftrightarrow \text{CO}_3^{2-} + \text{H}^+$$

$$K_3 = 1.4 \times 10^{-11}$$

$$CaCO_{3(s)} \leftrightarrow CO_3^{2-} + Ca^{2+}$$

$$K_4 = 2.9 \times 10^{-9}$$

$$\mathrm{H_2O} \leftrightarrow \mathrm{OH}^- + \mathrm{H}^+$$

$$K_{w} = 10^{-14}$$

# **SE 1.10**

# **EQUILIBRIO QUÍMICO - CONDUCTIVIDAD**

Calcular la composición de todas las especies en equilibrio presentes en una solución acuosa que contiene: [Acido benzoico] =  $10^{-3}$  M [Benzoato de sodio] =  $10^{-3}$  M [Cloruro de sodio] =  $2x10^{-3}$ M, usando todos los datos que se proporcionan (T = 25 °C).

#### **DATOS:**

- Conductividad equivalente de soluciones acuosas de ácido benzoico a 25°C:

| C <sub>B</sub> ×10 <sup>3</sup> | $\Lambda_{\rm exp} \left[ {\rm cm}^2 / \Omega {\rm eq} \right]$ |
|---------------------------------|-----------------------------------------------------------------|
| 0.095887                        | 209.32                                                          |
| 0.191120                        | 166.03                                                          |
| 0.26281                         | 147.66                                                          |
| 0.38101                         | 127.85                                                          |
| 0.75122                         | 96.679                                                          |

#### **SE 1.11**

#### EQUILIBRIO QUÍMICO - CONDUCTIVIDAD

El estudio experimental del sistema SO<sub>2</sub> - H<sub>2</sub>O

$$\begin{array}{c|c} & \text{SO}_{2(g)} & \text{H}_2\text{O}_{(g)} \\ & \updownarrow & \updownarrow \\ & \text{SO}_{2(\text{dis})} + \text{H}_2\text{O} \leftrightarrow \text{SO}_3\text{H}^- + \text{H}^+ \end{array}$$

permitió acceder, a una T y P determinada, a la siguiente información:

| 5 403[ , ]                        | 0                     |
|-----------------------------------|-----------------------|
| $\bar{P}_{SO2} \times 10^3 [atm]$ | $m_{SO2} \times 10^3$ |
| 0.27                              | 2.484                 |
| 1.20                              | 6.203                 |
| 2.29                              | 9.546                 |

|                       | κ/m <sub>i</sub> ° (cm <sup>2</sup> / $\Omega$ mol) |       |       |                       |
|-----------------------|-----------------------------------------------------|-------|-------|-----------------------|
| $m_i^{o} \times 10^2$ | HNa SO₃                                             | HCI   | NaCl  | SO <sub>2</sub> (dis) |
| 0.5                   | 96.7                                                | 414.7 | 121.1 | 290.0                 |
| 1.0                   | 95.2                                                | 411.5 | 119.1 | 257.0                 |
| 1.5                   | 94.0                                                | 409.1 | 117.6 | 235.5                 |

- La disociación del SO<sub>3</sub>H<sup>-</sup> es despreciable.
- Usar exclusivamente los datos proporcionados, sin recurrir a otra fuente de información.
- a) Determinar lo mas exactamente posible, y usando todos los datos, la constante de Henry  $(K_H)$  del  $SO_2$  de  $H_2O$ .
- b) Determinar si la actividad del agua en dicho sistema se puede aproximar a la unidad. Justifique matemáticamente la respuesta.

## **SE 1.12**

## EQUILIBRIO QUÍMICO - CONDUCTIVIDAD

A partir de mediciones de conductividades equivalentes de soluciones de ácido acético se obtuvo la siguiente información:

| $\Lambda = \kappa/N^{\circ}$ | C (mol/l)  |
|------------------------------|------------|
| 210.32                       | 0.00002801 |
| 127.71                       | 0.00011135 |
| 98.47                        | 0.00021844 |
| 48.13                        | 0.0010283  |
| 32.21                        | 0.0024140  |
| 16.367                       | 0.0098421  |
| 11.567                       | 0.0200000  |

Estimar la conductividad equivalente a dilución infinita y la constante de disociación del ácido acético. Comparar con los valores tabulados.

RESULTADOS:  $\Lambda_{O} = 116,07$   $K_{d} = 5,17 \times 10^{-5}$ 

## SE 1.13 EQUILIBRIO QUÍMICO - CONDUCTIVIDAD - ECUACION DE ONSAGER

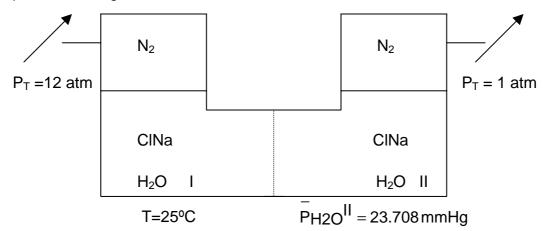
Haciendo uso de la ecuación de Onsager, estimar la constante de equilibrio de la disociación del ácido acético sabiendo que a 25 °C y  $C^{\circ}_{HAc}$  = 0,02 M, la conductividad equivalente experimental es  $\Lambda$ =  $\kappa$ /C = 11,567.

RESULTADOS:  $\gamma_{\pm}^{O'} = 0.9723$   $K_d = 1.79 \times 10^{-5}$ 

## SE 1.14 EQUILIBRIO QUÍMICO - CONDUCTIVIDAD - ECUACION DE ONSAGER

Para una solución de [Co(CN)<sub>6</sub>]La (hexacianocobaltato de lantano), se tienen los siguientes datos experimentales de conductividad equivalente en función de la concentración a 25 °C.

| $N^{O}[eq/l]$            | $\Lambda_{\exp}\left[cm^2/\Omega\ eq\right] \equiv \kappa/N^O$ |
|--------------------------|----------------------------------------------------------------|
| 7.196 x 10 <sup>-4</sup> | 103.6                                                          |
| 5.479 x 10 <sup>-4</sup> | 109.8                                                          |


Determinar el valor exacto de la constante del siguiente equilibrio:

$$[\text{Co(CN)}_6]$$
La  $\leftrightarrow$   $[\text{Co(CN)}_6]^{3-}$  + La<sup>3+</sup>

**DATO:**  $\Lambda_o$  [Co(CN)<sub>6</sub>]La = 168,5 cm<sup>2</sup>/ $\Omega$  eq.

## SE 1.15 PRESION OSMÓTICA - CONDUCTIVIDAD - ECUACION DE ONSAGER

En el siguiente dispositivo se tienen dos soluciones de CINa separadas por una membrana semipermeable al agua:



Si se mezcla un volumen de la solución I con 1 volumen de la II y 10 volúmenes de agua, ¿Cuál será la conductividad específica de la solución resultante?

# **SE 1.16** NÚMERO DE TRANSPORTE

Calcular el N° de transporte del Br⁻ y Na⁺ en una solución de NaBr, que además contenía Br₂. Después de la electrólisis, en un dispositivo Hittorf, el compartimento anódico contenía 100 grs. de H₂O, 0,11 moles de Br₂ y 0,092 moles de NaBr, y el compartimento catódico, 100 grs de H₂O, 0,09

moles de  $Br_2$  y 0,108 moles de NaBr. No se produjeron pérdidas de  $Br_2$  de la solución. La concentración de  $Br_2$  siempre fue menor que la de saturación. Se usaron electrodos de Pt. Reacciones que ocurren:

**ÁNODO**

$$2Br^{-} \rightarrow Br_{2} + 2e^{-}$$

$$Br_{2} + 2e^{-} \rightarrow 2Br^{-}$$

## **SE 1.17**

#### NÚMERO DE TRANSPORTE

Calcular el número de transporte del ion Cl<sup>-</sup> en una solución de CaCl<sub>2</sub> 1 x 10<sup>-3</sup> M.

## **SE 1.18**

#### CONDUCTIVIDAD

Determinar la solubilidad del PbCl<sub>2</sub> a 25 °C sabiendo que la conductividad específica de la solución es igual a  $2.976 \times 10^{-3} \, \Omega^{-1} \, \text{cm}^{-1}$ .

## **SE 1.19** NUMERO DE TRANSPORTE - HITTORF

Se electrolizó una solución con 185,2 gr de CsCl/1000 gr de agua, con un ánodo de plata y un cátodo de AgCl, en un aparato de Hittorf. En un coulombímetro de plata en serie con el dispositivo se depositaron 5,48 gr de plata durante el periodo de electrólisis. Al finalizar, la porción catódica en el aparato de Hittorf pesaba 117,22 gr y contenía 21,88 gr de CsCl. Calcular el número de transporte del ión Cesio en esta solución.

# **SE 1.20** EQUILIBRIO QUÍMICO - CONDUCTIVIDAD

Calcular los gramos de PbCl<sub>2</sub> utilizados para preparar 200 ml de una solución cuya conductividad específica es 1,13.10<sup>-3</sup> cm<sup>-1</sup>  $\Omega$ -1 y donde ocurren los siguientes equilibrios a 25 °C:

$$\begin{array}{lll} PbCI_{2} \ (d) \ \leftrightarrow \ PbCI^{+} + CI^{-} & K_{1} = 1,82.10^{-2} \\ PbCI^{+} \ \leftrightarrow \ Pb^{2+} + CI^{-} & K_{2} = 2,49.10^{-2} \end{array}$$

**DATOS:** Considerar  $\lambda_i = \lambda_i^0$ ;  $\lambda_{PbCl}^0 = 40.4 \text{ cm}^2 \Omega^{-1} \text{ eq}^{-1}$ .