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Abstract. A statistical analytical approach has been
used to analyze the secondary structure (SS) of amino
acids as a function of the sequence of amino acid
residues. We have used 306 non-homologous best-
resolved protein structures from the Protein Data Bank
for the analysis. A sequence region of 32 amino acids on
either side of the residue is considered in order to
calculate single amino acid propensities, di-amino acid
potentials and tri-amino acid potentials. A weighted sum
of predictions obtained using these properties is used to
suggest a final prediction method. Our method is as
good as the best-known SS prediction methods, is the
simplest of all the methods, and uses no homologous
sequence/family alignment data, yet gives 72% SS
prediction accuracy. Since the method did not use many
other factors that may increase the prediction accuracy
there is scope to achieve greater accuracy using this
approach.

Key words: Helix — f-Strand and coil — Amino acid
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Secondary structure prediction

1 Introduction

The past few years have seen the development of several
algorithms attempting to predict the secondary structure
(SS) of proteins from a knowledge of the amino acid
sequence alone [1-3]. The Chou-Fasman [4] and GOR
[5] methods are the classical examples in the literature
that have been extensively used, until recently, by
experimentalists when they determine a sequence. These
methods have been very useful for assessing the func-
tional aspects of proteins by correlating the SS predic-
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tions with the experimental results. The present scenario
has much greater expectations from the SS prediction
methods. The most important rationale being to provide
some information about the fold of the target protein
from the predicted SSs [6-8]. Recent attempts using
sequence similarity and alignment procedures from a set
of homologous proteins and nearest-neighbor algo-
rithms increased the prediction accuracy levels to 70%
and above [9-18].

The most popular of all the methods is Rost and
Sander’s [10, 11] PHD program. The most recent
methods which claim to be as good as PHD with con-
ceptual simplicity and user-transparent algorithms are
by Thompson and Goldstein [19] and Rychlewski and
Godzik [20]. There are also quite a few reports on the
possible limitations of SS prediction methods [21-23].
Frishman and Argos [3] argue that the accuracy of SS
prediction cannot be greater than 80-85%, even with a
tenfold increase in sequence data using sequence simi-
larity and alignment procedures.

We have used a simple statistical analytical approach
that was earlier used on DNA sequences to identify
protein coding regions [24] and for splice-site predictions
[25, 26]. We have successfully extended this approach to
protein sequences to predict the intracellular stability of
the protein from comparative sequence data analyses
[27-29]. Here we describe a similar approach to predict
the SS type of each amino acid from the given sequence
of amino acids.

We describe our analysis of non-homologous best-
resolved protein structures. We analyzed the SS of the
amino acid as a function of the sequence of residues in
the near-neighbor region. We calculated propensities and
potentials of conditional occurrence of mono-, di- and
tri-amino acids around the sequence region and used
these values to predict the SS from the sequence.

2 Materials and methods

We have used 306 non-homologous (<25% sequence identity),
best-resolved (2.0 A resolution) protein structures [30] from the
Protein Data Bank (PDB) as a sample data set (data set 1) to
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calculate the set of properties described later. We have prepared a
test data set (data set 2) by taking the closest homologue of each
of the proteins in data set 1 wherever it is available. The SS of
each residue was evaluated using the SSTRUC program [31] from
the coordinates of the atoms given in the PDB files. SSTRUC
takes the PDB files and defines the SS type such as helix (o-helix
or 3jo-helix), p-sheets, turns, coils and also ¢, ¥ and y angles
using Kabsch and Sander’s [32] definition of SS. For analysis and
prediction purposes we will be considering only three types of SSs,
namely, helices (H), f-structures (B) and coils (C) (turns, loops
and all non-regular conformations are included in coils). We have
computed three different kinds of property using normalized oc-
currences in the neighborhood region of the sequence as defined
below.

2.1 Amino acid propensity (AP)

The simple propensity of residues in the three classes of structures
was calculated as follows:

Py(x) = [Ns(x)/N(x)]/(Ns/N), ()

where Ny (x) is the occurrence of amino acid x in the SS type s, N (x)
is the total number of x, N, is the total number of residues in s and
N is the total number of residues in the sample set. This equation
was first defined by Chou and Fasman [4] in their popular SS
prediction method.

2.2 Di-amino acid potentials (DP)

The conditional occurrence of near-neighbor residues and their SS
type in each structure is used to calculate DP values, ;,R,(x).

iyRs(x) = [yNs(x)/[yans(x)a (2)
where ;,Ny(x) is the normalized occurrence of x in structure s
with residue y at position i (i = —n, —n+1,...,—1,0, 1,...,n; i=0

corresponds to the position of residue x) and ;,Ny—(x)is the same
normalized occurrence in non-s. For example, a normalized
occurrence is the occurrence with respect to one of the total
di-amino acid occurrences, X.;,M(x)/;,M,_y(x), whichever has the
lowest value [e.g., [yN\‘(x) = [}:M\'(x) and pinn—s(X) = inn—s(X)
[>iMy(x)] 2 ;;My—s(x)] or vice versa].

2.3 Tri-amino acid potential (TP)

This is similar to DP, but in this case we do not take into account
the type of the central residue, only the residue in the SS type is
considered when calculating the TP value, ;. 7.

Iy = ist/ian—57 (3)

where ;. Ny is the normalized occurrence of residues in the SS type s
with di-peptide z at a distance i (varies from —32 to +32). ;.N,_ is
the same normalized occurrence in non-s.

2.4 Matrices of amino acid propensities and potentials

The above-mentioned properties are computed for the 80,672 res-
idues of the natural data sets in the form of separate matrices. In all
our matrix definitions we followed the alphabetical order of the
single residue code of amino acids and the order of SS type as C, H
and B for s = 1, 2 and 3, respectively.

1. For the AP we have a 20 x 3 matrix, with each element
expressing the propensity of a specific amino acid in a specific
SS type. For example the element (1,1) of the matrix is the
propensity of alanine in the coil-type structure.

2. The DP is a 20 x 20 x 3 X m matrix, where m = -n to +n
(2n+1 values) is the number of nearest neighbors considered
and 7 is the maximum number of residues away from the central
residue. Thus in this case, for example, the element (1,1,1,1)
would represent the DP value of alanine in a coil-type structure
with another alanine at a position —n from the residue under
consideration.

3. The TP matrix is of dimension 400 x 3 x m. The element (1,1,1)
here would represent the TP value of all amino acids in the coil-
type structure with the di-peptide (4;_,A;_,+1) at i — n from the
central residue 7.

2.5 SS prediction

The three calculations (Table 2) are used separately to predict the
SS of a given sequence of amino acids.

1. The sum of the average individual residue propensities (AP) was
calculated in the region m (i — n to i + n) for each of the SS
types. The highest value among the three scores (for three SS
types) is used to predict the SS type of ith residue.

2. Using DP values the sum of the individual calculations for its
nearest-neighbor residues is calculated for each of the three SS
types as its score and is illustrated in Table 2. The class for
which this score is highest is the predicted structure type for the
central residue.

3. A similar procedure is followed for TP values to calculate SS
scores for each ith amino acid. Here the SS of the i th residue is
predicted based on its neighborhood dipeptide sequence and it
is independent of the type of residue present at position i.

4. As a fourth calculation these individual scores were used to
define an overall score to take into account the effect of all three
properties in our final predictions. The overall score is a
weighted sum (WS) of individual scores. Similarly, in this case
the highest score among the three SS types is also used to
predict the SS type of the ith residue.

3 Results

The percentage of SS prediction accuracy using each of
the calculations is presented in Fig. 1 as a function of the
number of nearest-neighbor residues in the sequence to
calculate individual scores. We have systematically gone

Table 1. Average percentage of secondary structure predictions for
the total amino acids in different data sets. The values given in
parentheses are average percentages per protein

SMU* Overall % Coil % Helix % p-strand %
prediction prediction  prediction  prediction
(a) Predictions on sample data set 1
AP 49.4(49.5) 54.4(53.0)  46.7(44.5)  47.9(46.2)
DP 70.5(70.5) 65.9(65.1)  74.2(68.7)  70.0(67.8)
TP 65.8(66.0) 56.1(55.3)  73.1(65.6)  65.7(63.0)
WS 72.0(72.1) 65.4(64.2)  77.0(70.0)  71.7(69.2)
(b) Predictions on test data set 2
AP 48.9(48.6) 52.5(50.5)  46.6(44.3)  48.2(46.5)
DP 64.5(63.3) 57.0(55.2)  70.6(63.3)  64.1(62.4)
TP 61.9(61.1) 49.3(48.2)  71.1(61.5)  62.6(60.2)
WS 66.6(65.5) 56.9(54.8)  74.0(64.7)  66.8(64.6)

(c) Predictions with jack-knife test on sample data set 1. The pro-
tein used for prediction was replaced with the closest homologue
from test data set 2

AP 49.1(49.0)  54.0(52.0)  46.1(43.1)  48.1(43.4)
DP 63.7(63.1)  58.2(57.1)  68.6(60.3)  62.7(57.5)
TP 61.3(60.6)  50.3(49.5)  69.5(59.2)  61.5(55.0)
WS 66.0(65.4)  58.1(56.8)  72.4(62.3)  65.6(59.0)

(d) Predictions with jack-knife test on sample data set 1

AP 49.3(49.4)  54.4(53.0) 46.6(43.8)  47.6(42.8)
DP 52.9(52.9)  45.5(44.6)  61.0(54.4)  49.2(43.6)
TP 542(54.1)  41.4(41.0)  65.1(57.2)  65.1(57.2)
WS 56.6(56.5)  46.3(45.5)  66.6(58.2)  53.2(46.6)

4SMU = statistical measure used for predictions



Table 2. Illustrative example of the use of di-amino acid potentials
(DP) to calculate scores to predict a possible secondary structure
(SS) for residue alanine in its given neighborhood sequence. For
example, (C, A) sub-matrix gives the coil (C ) potential values of
di-amino acids for alanine in the ith position and various residues in
the i — 3, i—2,..., i + 3 positions, respectively. Similarly (H, A)
for the helix (H) of alanine and (B, A) for the fS-strand (B) of
alanine potentials matrix. Matrices for each residue were computed
separately. The DP values shown in bold correspond to the amino
acid alanine and its near-neighbor sequence of amino acids is given
in the first row. The scores to predict the secondary structure of
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alanine in its given sequence environment are 11.51, 3.84 and 6.89
for the C, H and B structures. The highest value is for the
C structure. Therefore, the SS of alanine in that sequence
neighborhood is predicted to be C. [The TP matrix was also
calculated in a similar way, but with a slight difference. The row of
the matrix is for 400 (20 x 20) combinations of amino acid pairs
and the height of the column represents i — 32 to i + 32 rows. The
TP matrix is not concerned with the residue type at the ith position
but only its SS type. All residues at the ith position with each SS
type will have one sub-matrix, i.e. a total of three sub-matrices for
three SSs]

...PYVAPGP...
(C, A)
C D E F G H 1 K L M N P Q R S T \" W Y
-3 0.72 1.09 127 098 1.03 121 1.09 064 1.07 0.74 0.87 092 143 0.83 096 1.15 140 093 1.16 1.33
-2 0.65 2.03 099 054 092 147 192 0.79 097 0.84 0.67 1.80 245 0.83 0.74 1.10 1.14 061 1.13 1.23
-1 0.54 231 1.35 0.68 090 285 153 0.53 085 0.65 033 1.60 241 0.74 0.76 120 0.98 0.68 0.58 1.0l
1 0.52 0.86 195 0.69 0.63 191 082 044 093 047 0.57 1.67 418 0.75 0.83 132 1.71 0.57 0.75 0.75
2 064 143 150 0.73 0.75 1.56 093 0.72 094 0.64 0.59 140 281 083 089 132 149 0.66 0.80 0.72
3 0.68 1.10 1.07 1.00 1.04 096 0.67 097 0.89 0.73 0.80 1.09 2.43 0.87 0.81 1.28 1.51 092 0.68 1.28
C score = 11.51
(H, A)
A C D E F G H 1 K L M N P Q R S T v W Y
-3 1.66 0.65 1.03 128 1.02 0.65 0.79 1.16 089 132 137 092 092 1.37 1.05 0.77 0.73 0.78 091 0.76
=2 1.72 0.57 1.15 186 0.79 0.54 0.66 0.92 1.06 1.1 1.86 0.85 0.51 1.60 128 1.04 080 0.88 090 0.74
-1 2.06 039 1.02 186 091 033 062 081 125 148 1.84 0.76 0.55 1.66 1.11 098 086 0.83 1.13 0.80
1 2.08 0.88 0.69 1.60 098 0.62 084 093 132 1.84 1.36 0.74 0.27 1.66 1.61 079 047 082 1.19 0.84
2 1.84 0.74 0.69 1.78 097 0.73 083 098 1.53 1.33 144 0.66 0.34 149 171 0.65 0.59 088 0.83 1.05
3 1.74 076 0.82 127 1.01 077 139 1.02 141 143 128 099 035 1.67 1.13 061 0.69 080 0.82 094
H score = 3.84
(B, A)
A C D E F G H 1 K L M N P Q R S T \" W Y
-3 0.63 1.62 0.70 0.68 094 147 126 122 1.10 090 0.70 1.23 0.72 0.74 096 124 1.09 150 098 1.08
-2 0.68 096 0.81 070 1.50 1.52 0.82 1.39 095 1.02 0.56 0.56 0.84 0.57 094 085 1.19 176 1.02 1.23
-1 0.60 1.29 0.65 0.55 126 120 120 2.09 0.84 0.86 1.00 0.84 0.75 0.61 1.12 082 125 1.75 135 1.34
1 0.61 1.36 0.73 0.71 1.52 091 151 198 0.69 0.81 1.07 0.84 0.85 0.61 0.56 1.04 1.51 198 1.04 1.61
2 061 103 1.07 055 134 095 1.39 1.39 0.51 1.02 096 125 1.17 065 044 134 133 1.66 1.56 1.25
3 0.63 133 124 0.68 095 147 091 101 066 0.80 0.87 0.92 139 048 1.04 151 1.07 145 177 0.82
B score = 6.89

up from 3 to 65 residue lengths (i.e. m = i— 32 to
i + 32) to see what effect amino acid type in the nearest-
neighbor region has on the predictions. This also helped
us to set a length around the amino acid to be used to
achieve the best possible predictions.

The percentage of correct predictions in a protein is
defined as the ratio of the total number of correct pre-
dictions to the total number of amino acids in the pro-
tein sequence multiplied by 100. In the case of individual
SS, for example in helices, it is the ratio of the total
number of residues correctly predicted to be in the helix
conformation and the total number of residues in the
protein that are in the helix conformation that is mul-
tiplied by 100.

From the plots in Fig. 1 it is observed that predic-
tions from simple propensity values are highest for six
near-neighbor residues with a maximum predictability of
only 49.39% (Fig. 1a). For the other two calculations
the percentage of predictions increases with the increase
in sequence length. The highest SS predictions of
70.47% and 65.80% are observed from DP and TP
values, respectively, at m =65 (Fig. 1b, ¢). The WS of
these three individual scores, defined as an overall score
(Fig. 1d) gives the SS prediction as 71.96%, which sur-

prisingly is the highest of the three individual charac-
teristics.

The predictions (Table 1) for individual SS type using
AP values gives the highest predictions of 54.43%
(m=5), 48.64% (m=17) and 48.67% (m=>5) for C, H
and B, respectively. Using DP, the highest SS predictions
are 65.92%, 74.22% and 69.96% for C, H, and B,
respectively at m =65. Using TP at m = 65 the highest
prediction of 73.13% for H and 65.69% for B are
obtained while the highest for C is 57.43% at m = 3
residues. The overall predictions using WS values
are 65.39% for C, 77.02% for H and 71.74% for B
at m = 65. Among the three SS types the percentage
prediction is the highest for H with DP as well as TP,
and it is highest for C with AP values.

We have tested the WS predictions on data set 2
which has 190 proteins. The average prediction has come
down to 66.6% (Table 1). We have also done a jack-
knife test on predictions on data set 1 by replacing the
protein that is being used for prediction with the closest
homologue of that protein. This again gives a 66%
prediction. If we do not include the closest homologue in
the jack-knife test the average prediction drastically
comes down to 56.6% (Table 1).
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(b) Di-amino acid Potentials
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Fig. 1. Percentage of secondary structure (SS) predictions using all
three types of measures, namely, a amino acid propensities, b di-
amino acid potentials and ¢ tri-amino acid potentials are given.
Predictions from the weighted sum of these three characteristics is
also shown d. The xy-plots for prediction of different SS types,
namely, coil (blue), helix (pink), [-strand (black) and overall
prediction (red) are shown for each characteristic

4 Discussion

From the method described it is clear that the SS taken
by a residue at the ith position in a sequence is assessed
based on the following factors:

1. The amino acid type at the ith position.

2. The effect of amino acids present at a distance of
i £ n positions on the amino acid type at the ith
position in its near-neighbor region.

3. The effect of di-peptides in the near-neighbor region
at a distance i £ n.

We observed that the percentage of SS prediction for
individual cases, using AP, DP and TP, is lower than the
WS of these predictions. This indicates that the contri-
bution from each of the above-mentioned factors has a
significantly high complementary effect in determining
the SS of the amino acid.

In the final prediction approach, we took the WS of
each score in a particular SS type taken at the highest

(¢) Tri-amino acid Potentials
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overall prediction achieved by AP, DP and TP values.
The WS gave 72% correct prediction accuracy. For
some individual proteins the predictions are much better
than this. In fact about 56% of proteins have a predic-
tion level above 72% and 34 (11%) sequences have
predictions even above 80%.

However, in cross-validation tests such as a blind test
on data set 2 and the jack-knife test within data set 1,
with and without replacing the protein subjected to test
prediction by a closest homologue, the prediction accu-
racy decreases significantly (26%, see Table 1). This may
be because of the non-homologous nature of the pro-
teins in the sample data set. Each of the proteins in
sample data set 1, that generates the weight matrices, has
very important statistical information which is not sup-
plemented by the other protein structures in the data set
because of their non-homologous nature. We observe
that the DP and TP matrices show larger prediction
values than the AP matrices. Normalization of each in-
dividual protein sequence in the data set with all its
available closest homologues should give rise to im-
proved predictions in any cross-validation tests.

An analysis of proteins which have high percentages
of prediction shows that these are structures dominated
by one kind of SS such as all-o or all-f classes of pro-
teins. The problem with proteins dominated by a par-
ticular structural motif, however, is that other structures
seem to be almost completely wrongly predicted. For



example, if a protein is nearly all-H, few Cs and turns are
necessary to stabilize the overall structure. In these
proteins amino acids in some regions may have sufficient
propensity to form rigid regular structures (H/B) but
these are forced to form required turns/Cs for overall
stability of the protein. In such cases nature may be
choosing the sequence regions having weak propensity
to continue as rigid SSs to form the Cs and turns. We
need to improve the method which takes care of such
regions of protein structures.

5 Concluding remarks

Our further interest is to use such a statistical analytical
approach with respect to the sequence of amino acids and
structural environment of the residues in known protein
structures. We need to normalize each of the non-
homologous proteins with total mono-, di- and tri- amino
acid occurrences in all the corresponding closest homo-
logues. We plan to use solvent accessibility type, hydro-
gen bonding, packing density and sequence variability
as the amino acid residue environment-dependent
parameters. The strategy to be followed is to define
amino acid residue SS type as a function of these
structural environment-dependent parameters. Thus,
there is scope to increase the prediction accuracy by
incorporating these structural environment-dependent
parameters, sequence alignment data and nearest-neigh-
bor algorithms.

In summary, we described a statistical analytical ap-
proach to predict SS from sequences of amino acids.

1. The database of 306 non-homologous best-resolved
structures has been used to calculate properties of SSs.

2. These calculations take the effect of a near-neighbor
sequence of amino acids into account in the form of
propensities and potentials.

3. Overall prediction using the WS of individual predic-
tions, from AP, DP and TP, gives about 72%
prediction accuracy on average on the sample data.
There is decrease of about 6% on cross-validation
tests which may be improved by using more repre-
sentative proteins with each of the proteins from the
non-homologous data set. The individual character-
istics, AP, DP and TP have significant complemen-
tary information to one another.

4. Since the present method does not use many other
prediction-improving factors, such as residue struc-
tural environments, residue variability from sequence
alignments and nearest-neighbor algorithms, there is
a scope for improvement of prediction accuracy.
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