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Abstract

We study the dynamics of a hamiltonian system with two degrees of freedom coupled to a Nosé—Hoover thermostat.
In the absence of the thermostat, the system is quasi-integrable: at low energies, most of the motion is on two-
dimensional tori, while at higher energies, the motion is mainly chaotic. Upon coupling to the thermostat the system
becomes more chaotic, as evidenced by the magnitude of the largest Lyapunov exponent. In contrast to the case of
isotropic oscillator systems coupled to thermostats, there is no evidence for a regime of integrable behaviour, even for

large values of Q.

1. Introduction

Molecular dynamics simulations of many-
particle systems [1] at constant temperature have
been greatly facilitated by the introduction, in the
mid-1980s, of the Nosé—Hoover thermostat [2].
This scheme, which yields the deterministic equa-
tions of motion, results from the assumption that
the system is coupled to a specially chosen addi-
tional degree of freedom. A number of studies
{2—-4], have shown that this gives rise to canonical
distributions in the phase-space if the dynamics of
the extended system (i.e. the system of interest +
the thermostat) is ergodic.

The incorporation of the Nosé equations in the
dynamics is guaranteed [2,5] to give a canonical
distribution in the system of choice, and accord-
ingly, a number of applications have been made
in diverse areas [6-8], since comparison with
experimental results is direct. However, study of
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the intrinsic dynamics of the Nosé equations for
systems with few degrees of freedom is also impor-
tant [3,4,9], since the question of ergodicity in the
extended system has not been examined in detail.

In this paper we study the Nosé—Hoover
dynamics of a system with two degrees of freedom.
The isolated system is a perturbed isotropic oscil-
lator which is intrinsically quasi-integrable [10]: at
low energies, the dynamics are regular and lie on
the surface of two-dimensional invariant tori in
the phase space. At higher energies, these tori are
destroyed by the perturbation, as described by
the Kolmogorov-Arnold—Moser (KAM) theory
[10,11]. The chaotic nature of the system dynamics
can be characterised by the largest Lyapunov expo-
nent; there is a ‘‘transition” [11] to large-scale
chaos at a well-defined energy. (This behaviour
is typical of coupled oscillator systems, and the
phenomenology has been described in detail for
the similar Hénon—Heiles hamiltonian [12]. This
latter system is unfortunately only quasibound,
and is thus somewhat more difficult to study in
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the present context, since at any nonzero tempera-
ture, some of the motion is unbounded.)

Upon addition of the thermostat, although
comparison with constant energy studies is no
longer direct, we can make correspondence with
the “most probable” energy shell. We find that
the largest Lyapunov exponent of the extended
system can be significantly enhanced, depending
on the value of the parameter Q that characterises
the thermostat [2].

The Nosé—Hoover prescription is simple to
describe. Given a dynamic system with N free-
doms, described by a hamiltonian H, =
SN pi/m;+ V(g), where V is the interaction
potential and § and j are the coordinates and con-
jugate momenta, respectively, the Nosé—Hoover
equations of motion are obtained by introducing
an additional degree of freedom, ¢, which is
coupled to the motion of the system through

OH
E = pi/m (1)

. oH oV )
Pi‘_a_qi'_cpi Bql —(pi i=1...

g; =
N ()

The evolution of the fictitious heat-bath variable ¢,
and its conjugate coordinate, s, is governed by

N

51),
Z(”’ op, kB 617,)

1—1

(Z’i — Nkg ) (3)

i=1
s=sC 4)

where T is the temperature and 1/Q corresponds to
the “mass” of the heat-bath. The extended system
is thus described by the effective hamiltonian

H, = H,+¢*/2(1/Q) + Nk, T log s (5)

which is conserved by the dynamics.

A detailed study on the effect of the thermo-
stat on the integrable AN-dimensional isotropic
harmonic oscillator has been recently carried out
by Nos¢ [9]. Depending on the initial conditions
and on the parameter Q, the system shows a
quasiperiodic behaviour of the actions. Although
the extended system is, strictly speaking, non-
integrable, in the large Q limit the system appears

to be integrable, and does not show evidence of
ergodicity, even after coupling to the heat-bath.
However, nonergodicity appears to be exceptional
behaviour: once the degeneracy in the oscillator
frequencies is broken, the N-dimensional harmonic
oscillator system is ergodic [9].

In the present work we retain the degeneracy in
the oscillator frequencies and instead examine the
effect of a nonintegrable perturbation. Upon addi-
tion of this term, the system hamiltonian becomes

H,=3(pl +p3+41 +43) + aqiqs
:H0+05H| (6)

where « is the strength of the nonintegrable pertur-
bation. In the absence of the thermostat, the
dynamics of this system, which were originally
examined by Pullen and Edmonds [13], has been
studied extensively and can be summarised as
follows. At low energies, E < 10, this system
shows regular orbits for almost all initial condi-
tions, while at high energies E > 50, virtually all
the tori have collapsed and most of the phase
space is covered with chaotic trajectories. At inter-
mediate energies, there are KAM surfaces and
islands of regular behaviour in the stochastic sea,
as is typical in quasi-integrable systems [l1].
Since the unthermostatted system is itself intrinsi-
cally chaotic, we expect thermalisation to be more
effective, even for fairly large values of Q. Since
most dynamic systems, and in particular those
describing many-particle systems, are nonlinear
and in all likelihood, nonintegrable, this would
suggest that the Nosé-Hoover methodology is
reliable in most applications.

This paper is organised along the follow-
ing lines. We apply the methods of analysis intro-
duced for the isotropic (integrable) harmonic
oscillator to the nonintegrable case in order to
assess the speed of thermalisation in the latter
system. This is described in Section 2. Since the
equations of motion are deterministic, it is possible
to define the Lyapunov exponents of the extended
dynamic system. These are evaluated in Section 3,
as a function of temperature, and comparison
is made with constant energy (microcanonical)
studies. A summary and discussion of our results
is given in Section 4.
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2. Thermalisation

In this Section we study the effect of the non-
integrable perturbation on the process of
thermalisation. For the isotropic oscillator case,
it has been observed [9] that the motion in the
extended system is quasiperiodic, with a beat fre-
quency (2 that varies as 1/Q. The quasiperiodicity
was seen in the time-dependence of the energy or
action in each of the degrees of freedom. Upon
addition of the nonintegrable term, identification
of this phenomenon is facilitated by transforming
the system using the set of action angle variables
provided by the isotropic oscillator,

Ji=Y(pl+aq}) (7)
6i=tan“l(@) i=1,2 (8)
Di

Since wy /w, = 1 a further canonical transformation
through an F,-generating function is appropriate,
Fy = (6, = 62)J, + 6, BT ¢,

which transforms from J, 6 to J, 6, where
¢ = 6, — 6,. Applying this to H, and averaging
over 6,, we obtain the transformed system hamil-
tonian as

H,=Jy + aJi(J, = Ji)(1 +}cos 20,) (10)

Upon incorporation of the thermostat, the Nosé
equations of motion in these variables are

Jy = = 2¢J, cos* (8, + 6,)
—4ad,(J, — J))sin2(8, + 6;)sin* 6, (1)
Jy = = 2C[Jy cos* (8, + 6,) + (J, = J}) cos® 6]
—4ald, (jz — j])[sin 2(@1 + éz) sin? éz
+sin*(4) + 6,) sin” 4] (12)
8, = ([sin(B, + 6,) cos(d, + 6,) — sin 6 cos fy]
+ 4a|(J, — 2J,) sin®(8) + 6,) sin” 6, (13)
52 =1+ (sinb,cos b, + dad, sin2(51 + 92) sin® 92
(14)

;1

C Q[2j1 COSz(é| +éz)+2(j2—j|)coszéz—gT]

(15)
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Fig. 1. Variation of the beat frequency, {2, with respect to the
difference in initial conditions, Afgy, for different values of
the nonlinear coupling constant, a.

Note that the equation of motion for s, the vari-
able conjugate to ¢ is unimportant for the evolu-
tion of the remaining variables, and we work in
units of kg = 1.

These equations are integrated for differential
initial conditions A#,, and for different values of
o, and results are shown in Fig. 1. For o = 0, the
variation of the beat frequency, €2, is well described
by the curve Q = Asin(Ad,), with 4 = 0.136, and
for sufficiently small values o (say <0.001) this
dependence of the beat frequency on Af, remains.
For larger values of the nonlinearity, however,
there is a marked deviation, specially for low initial
phase difference A8, values: the beat frequency for
the nonintegrable system turns out to be much
larger. Since the beat frequency is a measure of
rapidity of thermalisation, the present results reveal
that the nonlinear system thermalises faster than
the integrable system. The contrast is greatest in
the regime where the unperturbed system is regular.

The mechanism of thermalisation in the extended
system is the frequent change in the energy shell
occupied by the trajectory of the dynamic system.
In the absence of coupling to the heat bath, the
system would remain in a single energy shell
(the microcanonical ensemble) and if integrable, all
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the trajectories would be regular. When this system
is coupled to the thermostat, the energy is no longer
conserved as the system is driven from one energy
shell to another. The faster the driving rate, the
faster the system thermalises. In the case of a non-
linear system, the system is chaotic even on a given
energy shell, and such systems respond more readily
to the application of the thermostat (see Fig. 1).

Although the thermostat function does not
depend on the precise value of the parameter Q, it
is well known that it is important to choose this
parameter carefully for most practical purposes.
We examined the variation of the beat frequency
as a function of Q, and these results are shown in
Fig. 2. For a = 0, the beat frequency is proportional
to 1/Q and for low values of a the behaviour of
thesystem does not change significantly. But when
nonlinearity is high, there is marked deviation for
high Q, whereas the integrable system shows regu-
lar dynamics even after being coupled to the thermo-
stat [9] and thus does not thermalise; the present
system thermalises even in this regime of Q.

3. Lyapunov exponents

The extent of chaos in a dynamic system is best
quantified through the Lyapunov exponents {10,11],

2.5
4
.- Ay e 6=0.00
! J N3, aeeee a=0.001
: ) O ewess a=0.01
2.0 - :' , Nloeees a=0.05
! l AN
! N
L , e
' -,
: i NN
1.5 ! 1 .
! 1 %,
1 AN
c - s b
1
H !
1.0 - ! [
’ i
!
r 1
i
; /
0.5 :/
i
L ;
. ll et T 1
o e - 4 L L
080" 0z o4 0.8 1.0 1.2

0.6

1/Q
Fig. 2. Variation of the beat frequency, €2, as a function of the
heat-bath inverse mass parameter, Q, for different values of a.
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Fig. 3. Plot of the maximal Lyapunov exponent, A, as a function
of the system energy, E. The value of the perturbation parameter
« was taken as 0.05.

which measure the rate of divergence of traject-
ories in the phase space. The process of thermali-
sation, since it is related to the ergodicity of the
extended system can also be studied through
the behaviour of the largest Lyapunov exponent.
(For a hamiltonian dynamic system with N degrees
of freedom and M conserved quantities, there are
2N Lyapunov exponents of which 2M are strictly
zero [14]. Furthermore, they come in pairs of
positive and negative exponents so that the sum
of all the Lyapunov exponents is zero. The largest
of these measures the local rate of divergence of
trajectories, and thus aids in quantifying the chaotic
behaviour).

The maximal Lyapunov exponent (MLE), A,
can be calculated as [15]

1 AX
= lim - li 1 16
A :lina]o t Alxlunl()< 8 A)‘c'()) (16)

where AX, is the difference in the initial conditions
of the two trajectories and AX is the difference
at time z. To evaluate A along the trajectory, AX
is propagated in time and follows the equation
of motion

AX = JAX (17)

where J is the Jacobian. An extension of the above
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Fig. 4. Variation of A with respect to temperature T for different
values of the parameter Q. The value of the perturbation param-
eter is a = 0.05. The curve labelled “without NH” is for the
isolated system (without thermostat).

algorithm can be used to compute all the exponents
[16]; here, however, we focus on the MLE. The
Jacobian for the isolated system is

0 0 1 0

S 0 0 0 1 (18)
—1—2aq% —4aq;19, 0 O
—d0agq,9, —-1-20g7 0 0

The MLE was evaluated as a function of total
energy, and the results are shown in Fig. 3, for
a = 0.05. There is an apparently abrupt transition
to chaos at an energy of around E = 9, which is
typical behaviour for perturbed oscillator systems.
Beyond this “critical” energy, there is essentially
a monotonic increase in the MLE.

The Jacobian of the extended system (we omit
the equations for s) is

0 0 1 0
0 0 0 1
J=1| -1- 2aq% —4daqq; —C 0
—daq1q;  —1-20q7 0 —C
0 0 2p1/Q 2p2/Q
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Shown in Fig. 4 is a plot of the MLE versus
temperature for typical values of Q. In all cases,
the MLE of the thermostat is enhanced above the
value of the exponent in the isolated system,
although the overall dependence on the tempera-
ture is very similar to that of the MLE on the total
energy. Some correspondence between the canoni-
cal and microcanonical results can be made by
noting that at temperature 7', the most probable
energy is E = kgT. These microcanonical results
are also superimposed in Fig. 4, and one can clearly
see that the extended system is effectively more
chaotic than the isolated system. This result is not
entirely unexpected, but it is also gratifying to note
that for both high and low Q values, unlike the
case of the isotropic oscillator, the onset of ergodi-
city is earlier for the extended system, with the high
Q limit following the curve of the isolated system
more closely. However, fluctuations in the value
of the MLE are higher in the former case, specially
in the intermediate temperature regime. This is
due to the competition between the temperature
T and the parameter Q. Raising the temperature,
T has the effect of making the system more ergodic,
while decreasing the value of Q makes the system
more thermalised.

4. Discussion and summary

In this paper we have studied the effect of the
Nosé¢ thermostat on a nonlinear, nonintegrable
dynamic system with two degrees of freedom. The
effect of the thermostat on any system is to accele-
rate ergodic behaviour by driving the system from
one energy shell to another, with the speed of
thermalisation depending (inversely) on the param-
eter Q. Although the Nosé—Hoover equations are
now routinely used in a variety of applications,
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the reliability of such a procedure can only be
assessed by studying the detailed dynamics of
systems with few degrees of freedom. We find
that thermalisation proceeds more rapidly in the
presence of nonintegrable terms in the hamil-
tonian, when the isolated system is itself capable
of chaotic behaviour; this enhances ergodicity in
the extended system. (Although this behaviour is
guaranteed for all Q, we also note that intermediate
values are, for practical reasons, optimal).

Confirmation of this is provided by studying the
variation of the largest Lyapunov exponent, which
is significantly larger in the extended system than
in the isolated system at comparable energies. The
thermostatted system effectively wanders between
different energy shells, with the time spent in each
shell determined by the canonical distribution.
(Such behaviour is reminiscent of mechanisms
that enhance mixing in chaotic flows, as proposed
by Ottino [17]).

Our present results complement those of Nose
[9] who observed that even for the integrable case
of multidimensional oscillators, the absence of
low order commensurability in the frequencies
was sufficient to give ergodic behaviour in the
extended system. We have shown here that addi-
tion of nonintegrable terms has the same effect,
and provides ergodicity, even when the frequencies
remain commensurable.
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