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Exercises
1.8 Give the chains of rangespaces and nullspaces for the zero and identity trans-
formations.

1.9 For each map, give the chain of rangespaces and the chain of nullspaces, and
the generalized rangespace and the generalized nullspace.
(a) t0 : P2 → P2, a+ bx+ cx2 7→ b+ cx2

(b) t1 : R2 → R
2,

(

a
b

)

7→

(

0
a

)

(c) t2 : P2 → P2, a+ bx+ cx2 7→ b+ cx+ ax2

(d) t3 : R3 → R
3,

(

a
b
c

)

7→

(

a
a
b

)

1.10 Prove that function composition is associative (t ◦ t) ◦ t = t ◦ (t ◦ t) and so we
can write t3 without specifying a grouping.

1.11 Check that a subspace must be of dimension less than or equal to the dimen-
sion of its superspace. Check that if the subspace is proper (the subspace does not
equal the superspace) then the dimension is strictly less. (This is used in the proof
of Lemma 1.3.)

1.12 Prove that the generalized rangespace R∞(t) is the entire space, and the
generalized nullspace N∞(t) is trivial, if the transformation t is nonsingular. Is
this ‘only if’ also?

1.13 Verify the nullspace half of Lemma 1.3.

1.14 Give an example of a transformation on a three dimensional space whose
range has dimension two. What is its nullspace? Iterate your example until the
rangespace and nullspace stabilize.

1.15 Show that the rangespace and nullspace of a linear transformation need not
be disjoint. Are they ever disjoint?

5.III.2 Strings

This subsection is optional, and requires material from the optional Direct Sum
subsection.

The prior subsection shows that as j increases, the dimensions of the R(tj)’s
fall while the dimensions of the N (tj)’s rise, in such a way that this rank and
nullity split the dimension of V . Can we say more; do the two split a basis —
is V = R(tj)⊕N (tj)?

The answer is yes for the smallest power j = 0 since V = R(t0)⊕N (t0) =
V ⊕ {~0}. The answer is also yes at the other extreme.

2.1 Lemma Where t : V → V is a linear transformation, the space is the direct
sum V = R∞(t)⊕N∞(t). That is, both dim(V ) = dim(R∞(t)) + dim(N∞(t))
and R∞(t) ∩N∞(t) = {~0 }.
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Proof. We will verify the second sentence, which is equivalent to the first. The
first clause, that the dimension n of the domain of tn equals the rank of tn plus
the nullity of tn, holds for any transformation and so we need only verify the
second clause.

Assume that ~v ∈ R∞(t) ∩N∞(t) = R(tn) ∩N (tn), to prove that ~v is ~0.
Because ~v is in the nullspace, tn(~v) = ~0. On the other hand, because R(tn) =
R(tn+1), the map t : R∞(t)→ R∞(t) is a dimension-preserving homomorphism
and therefore is one-to-one. A composition of one-to-one maps is one-to-one,
and so tn : R∞(t)→ R∞(t) is one-to-one. But now — because only ~0 is sent by
a one-to-one linear map to ~0 — the fact that tn(~v) = ~0 implies that ~v = ~0. QED

2.2 Note Technically we should distinguish the map t : V → V from the map
t : R∞(t)→ R∞(t) because the domains or codomains might differ. The second
one is said to be the restriction∗ of t to R(tk). We shall use later a point from
that proof about the restriction map, namely that it is nonsingular.

In contrast to the j = 0 and j = n cases, for intermediate powers the space
V might not be the direct sum of R(tj) and N (tj). The next example shows
that the two can have a nontrivial intersection.

2.3 Example Consider the transformation of C2 defined by this action on the
elements of the standard basis.

(

1
0

)

n7−→
(

0
1

) (

0
1

)

n7−→
(

0
0

)

N = RepE2,E2(n) =

(

0 0
1 0

)

The vector

~e2 =

(

0
1

)

is in both the rangespace and nullspace. Another way to depict this map’s
action is with a string.

~e1 7→ ~e2 7→ ~0

2.4 Example A map n̂ : C4 → C
4 whose action on E4 is given by the string

~e1 7→ ~e2 7→ ~e3 7→ ~e4 7→ ~0

has R(n̂)∩N (n̂) equal to the span [{~e4}], has R(n̂2)∩N (n̂2) = [{~e3, ~e4}], and
has R(n̂3) ∩N (n̂3) = [{~e4}]. The matrix representation is all zeros except for
some subdiagonal ones.

N̂ = RepE4,E4(n̂) =









0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0









∗ More information on map restrictions is in the appendix.
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2.5 Example Transformations can act via more than one string. A transfor-
mation t acting on a basis B = 〈~β1, . . . , ~β5〉 by

~β1 7→ ~β2 7→ ~β3 7→ ~0
~β4 7→ ~β5 7→ ~0

is represented by a matrix that is all zeros except for blocks of subdiagonal ones

RepB,B(t) =













0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0













(the lines just visually organize the blocks).

In those three examples all vectors are eventually transformed to zero.

2.6 Definition A nilpotent transformation is one with a power that is the zero
map. A nilpotent matrix is one with a power that is the zero matrix. In either
case, the least such power is the index of nilpotency.

2.7 Example In Example 2.3 the index of nilpotency is two. In Example 2.4
it is four. In Example 2.5 it is three.

2.8 Example The differentiation map d/dx : P2 → P2 is nilpotent of index
three since the third derivative of any quadratic polynomial is zero. This map’s
action is described by the string x2 7→ 2x 7→ 2 7→ 0 and taking the basis
B = 〈x2, 2x, 2〉 gives this representation.

RepB,B(d/dx) =





0 0 0
1 0 0
0 1 0





Not all nilpotent matrices are all zeros except for blocks of subdiagonal ones.

2.9 Example With the matrix N̂ from Example 2.4, and this four-vector basis

D = 〈









1
0
1
0









,









0
2
1
0









,









1
1
1
0









,









0
0
0
1









〉

a change of basis operation produces this representation with respect to D,D.









1 0 1 0
0 2 1 0
1 1 1 0
0 0 0 1

















0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

















1 0 1 0
0 2 1 0
1 1 1 0
0 0 0 1









−1

=









−1 0 1 0
−3 −2 5 0
−2 −1 3 0
2 1 −2 0








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The new matrix is nilpotent; it’s fourth power is the zero matrix since

(PN̂P−1)4 = PN̂P−1 · PN̂P−1 · PN̂P−1 · PN̂P−1 = PN̂4P−1

and N̂4 is the zero matrix.

The goal of this subsection is Theorem 2.13, which shows that the prior
example is prototypical in that every nilpotent matrix is similar to one that is
all zeros except for blocks of subdiagonal ones.

2.10 Definition Let t be a nilpotent transformation on V . A t-string gener-
ated by ~v ∈ V is a sequence 〈~v, t(~v), . . . , tk−1(~v)〉. This sequence has length k.
A t-string basis is a basis that is a concatenation of t-strings.

2.11 Example In Example 2.5, the t-strings 〈~β1, ~β2, ~β3〉 and 〈~β4, ~β5〉, of length
three and two, can be concatenated to make a basis for the domain of t.

2.12 Lemma If a space has a t-string basis then the longest string in it has
length equal to the index of nilpotency of t.

Proof. Suppose not. Those strings cannot be longer; if the index is k then
tk sends any vector — including those starting the string — to ~0. So suppose
instead that there is a transformation t of index k on some space, such that
the space has a t-string basis where all of the strings are shorter than length
k. Because t has index k, there is a vector ~v such that tk−1(~v) 6= ~0. Represent
~v as a linear combination of basis elements and apply tk−1. We are supposing
that tk−1 sends each basis element to ~0 but that it does not send ~v to ~0. That
is impossible. QED

We shall show that every nilpotent map has an associated string basis. Then
our goal theorem, that every nilpotent matrix is similar to one that is all zeros
except for blocks of subdiagonal ones, is immediate, as in Example 2.5.

Looking for a counterexample — a nilpotent map without an associated
string basis that is disjoint — will suggest the idea for the proof. Consider the
map t : C5 → C

5 with this action.

~e1

~e2

7→
7→
~e3 7→ ~0

~e4 7→ ~e5 7→ ~0

RepE5,E5(t) =













0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 0













Even after ommitting the zero vector, these three strings aren’t disjoint, but
that doesn’t end hope of finding a t-string basis. It only means that E5 will not
do for the string basis.

To find a basis that will do, we first find the number and lengths of its
strings. Since t’s index of nilpotency is two, Lemma 2.12 says that at least one
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string in the basis has length two. Thus the map must act on a string basis in
one of these two ways.

~β1 7→ ~β2 7→ ~0
~β3 7→ ~β4 7→ ~0
~β5 7→ ~0

~β1 7→ ~β2 7→ ~0
~β3 7→ ~0
~β4 7→ ~0
~β5 7→ ~0

Now, the key point. A transformation with the left-hand action has a nullspace
of dimension three since that’s how many basis vectors are sent to zero. A
transformation with the right-hand action has a nullspace of dimension four.
Using the matrix representation above, calculation of t’s nullspace

N (t) = {













x
−x
z
0
r













∣

∣ x, z, r ∈ C}

shows that it is three-dimensional, meaning that we want the left-hand action.

To produce a string basis, first pick ~β2 and ~β4 from R(t) ∩N (t)

~β2 =













0
0
1
0
0













~β4 =













0
0
0
0
1













(other choices are possible, just be sure that {~β2, ~β4} is linearly independent).

For ~β5 pick a vector from N (t) that is not in the span of {~β2, ~β4}.

~β5 =













1
−1
0
0
0













Finally, take ~β1 and ~β3 such that t(~β1) = ~β2 and t(~β3) = ~β4.

~β1 =













0
1
0
0
0













~β3 =













0
0
0
1
0












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Now, with respect to B = 〈~β1, . . . , ~β5〉, the matrix of t is as desired.

RepB,B(t) =













0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0













2.13 Theorem Any nilpotent transformation t is associated with a t-string
basis. While the basis is not unique, the number and the length of the strings
is determined by t.

This illustrates the proof. Basis vectors are categorized into kind 1, kind 2, and
kind 3. They are also shown as squares or circles, according to whether they
are in the nullspace or not.

3 7→ 1 7→ · · · · · · 7→ 1 7→ 1 7→ ~0

3 7→ 1 7→ · · · · · · 7→ 1 7→ 1 7→ ~0
...

3 7→ 1 7→ · · · 7→ 1 7→ 1 7→ ~0

2 7→ ~0
...

2 7→ ~0

Proof. Fix a vector space V ; we will argue by induction on the index of nilpo-
tency of t : V → V . If that index is 1 then t is the zero map and any basis is
a string basis ~β1 7→ ~0, . . . , ~βn 7→ ~0. For the inductive step, assume that the
theorem holds for any transformation with an index of nilpotency between 1
and k − 1 and consider the index k case.

First observe that the restriction to the rangespace t : R(t)→ R(t) is also
nilpotent, of index k − 1. Apply the inductive hypothesis to get a string basis
for R(t), where the number and length of the strings is determined by t.

B = 〈~β1, t(~β1), . . . , th1(~β1)〉_〈~β2, . . . , t
h2(~β2)〉_ · · ·_〈~βi, . . . , thi(~βi)〉

(In the illustration these are the basis vectors of kind 1, so there are i strings
shown with this kind of basis vector.)

Second, note that taking the final nonzero vector in each string gives a basis
C = 〈th1(~β1), . . . , thi(~βi)〉 for R(t) ∩N (t). (These are illustrated with 1’s in
squares.) For, a member of R(t) is mapped to zero if and only if it is a linear
combination of those basis vectors that are mapped to zero. Extend C to a
basis for all of N (t).

Ĉ = C
_〈~ξ1, . . . , ~ξp〉
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(The ~ξ’s are the vectors of kind 2 so that Ĉ is the set of squares.) While many

choices are possible for the ~ξ’s, their number p is determined by the map t as it
is the dimension of N (t) minus the dimension of R(t) ∩N (t).

Finally, B
_
Ĉ is a basis for R(t)+N (t) because any sum of something in the

rangespace with something in the nullspace can be represented using elements
of B for the rangespace part and elements of Ĉ for the part from the nullspace.
Note that

dim
(

R(t) + N (t)
)

= dim(R(t)) + dim(N (t))− dim(R(t) ∩N (t))

= rank(t) + nullity(t)− i
= dim(V )− i

and so B
_
Ĉ can be extended to a basis for all of V by the addition of i more

vectors. Specifically, remember that each of ~β1, . . . , ~βi is in R(t), and extend

B
_
Ĉ with vectors ~v1, . . . , ~vi such that t(~v1) = ~β1, . . . , t(~vi) = ~βi. (In the

illustration, these are the 3’s.) The check that linear independence is preserved
by this extension is Exercise 29. QED

2.14 Corollary Every nilpotent matrix is similar to a matrix that is all zeros
except for blocks of subdiagonal ones. That is, every nilpotent map is repre-
sented with respect to some basis by such a matrix.

This form is unique in the sense that if a nilpotent matrix is similar to two
such matrices then those two simply have their blocks ordered differently. Thus
this is a canonical form for the similarity classes of nilpotent matrices provided
that we order the blocks, say, from longest to shortest.

2.15 Example The matrix

M =

(

1 −1
1 −1

)

has an index of nilpotency of two, as this calculation shows.

p Mp N (Mp)

1 M =

(

1 −1
1 −1

)

{
(

x
x

)

∣

∣ x ∈ C}

2 M2 =

(

0 0
0 0

)

C
2

The calculation also describes how a map m represented by M must act on any
string basis. With one map application the nullspace has dimension one and so
one vector of the basis is sent to zero. On a second application, the nullspace
has dimension two and so the other basis vector is sent to zero. Thus, the action
of the map is ~β1 7→ ~β2 7→ ~0 and the canonical form of the matrix is this.

(

0 0
1 0

)
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We can exhibit such a m-string basis and the change of basis matrices wit-
nessing the matrix similarity. For the basis, take M to represent m with respect
to the standard bases, pick a ~β2 ∈ N (m) and also pick a ~β1 so that m(~β1) = ~β2.

~β2 =

(

1
1

)

~β1 =

(

1
0

)

(If we take M to be a representative with respect to some nonstandard bases
then this picking step is just more messy.) Recall the similarity diagram.

C
2
w.r.t. E2

m−−−−→
M

C
2
w.r.t. E2

id




y
P id





y
P

C2
w.r.t. B

m−−−−→ C
2
w.r.t. B

The canonical form equals RepB,B(m) = PMP−1, where

P−1 = RepB,E2(id) =

(

1 1
0 1

)

P = (P−1)−1 =

(

1 −1
0 1

)

and the verification of the matrix calculation is routine.
(

1 −1
0 1

)(

1 −1
1 −1

)(

1 1
0 1

)

=

(

0 0
1 0

)

2.16 Example The matrix













0 0 0 0 0
1 0 0 0 0
−1 1 1 −1 1
0 1 0 0 0
1 0 −1 1 −1













is nilpotent. These calculations show the nullspaces growing.

p Np N (Np)

1













0 0 0 0 0
1 0 0 0 0
−1 1 1 −1 1
0 1 0 0 0
1 0 −1 1 −1













{













0
0

u− v
u
v













∣

∣ u, v ∈ C}

2













0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0













{













0
y
z
u
v













∣

∣ y, z, u, v ∈ C}

3 –zero matrix– C
5
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That table shows that any string basis must satisfy: the nullspace after one map
application has dimension two so two basis vectors are sent directly to zero,
the nullspace after the second application has dimension four so two additional
basis vectors are sent to zero by the second iteration, and the nullspace after
three applications is of dimension five so the final basis vector is sent to zero in
three hops.

~β1 7→ ~β2 7→ ~β3 7→ ~0
~β4 7→ ~β5 7→ ~0

To produce such a basis, first pick two independent vectors from N (n)

~β3 =













0
0
1
1
0













~β5 =













0
0
0
1
1













then add ~β2, ~β4 ∈ N (n2) such that n(~β2) = ~β3 and n(~β4) = ~β5

~β2 =













0
1
0
0
0













~β4 =













0
1
0
1
0













and finish by adding ~β1 ∈ N (n3) = C
5) such that n(~β1) = ~β2.

~β1 =













1
0
1
0
0













Exercises
X 2.17 What is the index of nilpotency of the left-shift operator, here acting on the

space of triples of reals?
(x, y, z) 7→ (0, x, y)

X 2.18 For each string basis state the index of nilpotency and give the dimension of
the rangespace and nullspace of each iteration of the nilpotent map.
(a) ~β1 7→ ~β2 7→ ~0

~β3 7→ ~β4 7→ ~0

(b) ~β1 7→ ~β2 7→ ~β3 7→ ~0
~β4 7→ ~0
~β5 7→ ~0
~β6 7→ ~0

(c) ~β1 7→ ~β2 7→ ~β3 7→ ~0
Also give the canonical form of the matrix.

2.19 Decide which of these matrices are nilpotent.
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