18. ZOO OF QUOTIENT SPACES 80

Open Partitions

A partition S of a topological space X is called open, if the saturation of
each open set is open.

17:3. Prove that a partition is open iff the canonical projection X —
X/ g is an open map.

17:4. Prove that if a set A is saturated with respect to an open parti-
tion, then Int A and Cl A are also saturated.

17:C. The quotient space of a second countable space with respect to
an open partition is second countable.

17:D. The quotient space of a first countable space with respect to an
open partition is first countable.

17:E. Let S be an open partition of a topological space X and T be an
open partition of a topological space Y. Denote by S x T the partition
of X XY consisting of A x B with A € S and B € T. Then the injective
factor X xY/s x 17— X/gx Y/ ofprxprX xY — X/gxY/T isa
homeomorphism.

18. Zoo of Quotient Spaces

Tool for Identifying a Quotient Space with a Known Space

18.A. If f : X — Y is a continuous map of a compact space X onto a
Hausdorff space Y then the injective factor f/5(f): X/s(f) =Y is a
homeomorphism.

18.B. The injective factor of a continuous map of a compact space to a
Hausdorff one is a topological embedding.

18.1. Describe explicitly partitions of a segment such that the corresponding
quotient spaces are all the connected letters of the alphabet.

18.2. Prove that there exists a partition of a segment I with the quotient
space homeomorphic to square I x I.

Tools for Describing Partitions

Usually an accurate literal description of a partition is cumbersome, but
can be shortened and made more understandable. Of course, this re-
quires a more flexible vocabulary with lots of words with almost the
same meanings. For instance, the words factorize and pass to a quo-
tient can be replaced by attach, glue, identify, contract, and other words
accompanying these ones in everyday life.

Some elements of this language are easy to formalize. For instance, fac-
torization of a space X with respect to a partition consisting of a set A
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and one-point subsets of the complement of A is called a contraction (of
the subset A to a point), and the result is denoted by X/ 4.

18.3. Let A, B C X comprise a fundamental cover of a topological space X.
Prove that the quotient map A/ 4 n B — X/B of the inclusion 4 — X is a
homeomorphism.

If A and B are disjoint subspaces of a space X, and f : A — B is
a homeomorphism then passing to the quotient of the space X by the
partition into one-point subsets of the set X \ (A U B) and two-point
sets {z, f(z)}, where x € A, is called gluing or identifying (of sets A and
B by homeomorphism f).

Rather convenient and flexible way for describing partitions is to describe
the corresponding equivalence relations. The main advantage of this
approach is that, due to transitivity, it suffices to specify only some pairs
of equivalent elements: if one states that x ~ y and y ~ 2z then it is not
needed to state x ~ z, since this follows.

Hence, a partition is represented by a list of statements of the form
x ~ 1y, which are sufficient to recover the equivalence relation. By such
a list enclosed into square brackets, we denote the corresponding par-
tition. For example, the quotient of a space X obtained by identify-
ing subsets A and B by a homeomorphism f : A — B is denoted by

X/la ~ f(a) for any a € A] or just X/[q ~ f(a)]-

Some partitions are easy to describe by a picture, especially if the original
space can be embedded into plane. In such a case, as in the pictures
below, one draws arrows on segments to be identified to show directions
which are to be identified.

Below we introduce all these kinds of descriptions for partitions and give
examples of their usage, providing simultaneously literal descriptions.
The latter are not nice, but they may help to keep the reader confident
about the meaning of the new words and, on the other hand, appreciating
the improvement the new words bring in.

Entrance to the Zoo

18.C. Prove that I/[g ~ 1] is homeomorphic to S™.

In other words, the quotient space of segment I by the partition consisting
of {0,1} and {a} with a € (0,1) is homeomorphic to a circle.

18.C.1. Find a surjective continuous map I — S' such that the corre-
sponding partition into preimages of points consists of one-point subsets of
the interior of the segment and the pair of boundary points of the segment.
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18.D. Prove that D"/gn-1 is homeomorphic to S™.

In 18.D we deal with the quotient space of ball D" by the partition into
S™~1 and one-point subsets of its interior.

Reformulation of 18.D: Contracting the boundary of an n-dimensional
ball to a point gives rise to an n-dimensional sphere.

18.D.1. Find a continuous map of ball D" to the sphere S™ that maps the
boundary of the ball to a single point, and maps the interior of the ball
bijectively onto the complement of this point.

18.E. Prove that I*/[(0,¢) ~ (1,) for ¢ €]] is homeomorphic to S* x 1.

Here the partition consisits of pairs of points {(0,t),(1,¢)} where t € I,
and one-point subsets of (0,1) x I.

Reformulation of 18.E: If we glue the side edges of a square identifying
points on the same hight, we get a cylinder.

S -
- >

18.F. Let X and Y be topological spaces, S a partition of X. Denote
by T the partition of X x Y into sets A x y with A € S, y € Y. Then
the natural bijection X/g XY — X X Y/T is a homeomorphism.

18.G. Riddle. How are the problems 18.C, 18.F and 18.F related?

18.H. S' x I/[(z,0) ~ (2,1) for z € §'] is homeomorphic to S* x S*.

Here the partition consists of one-point subsets of S x (0,1), and pairs
of points of the basis circles lying on the same generatrix of the cylinder.

Reformulation of 18. H: If we glue the basis circles of a cylinder identifying
points on the same generatrix, then we get a torus.

18.1. I*/](0,t) ~ (1,t), (£,0) ~ (t,1)] is homeomorphic to S* x S*.

In 18.1 the partition consists of

e one-point subsets of the interior (0,1) x (0, 1) of the square,

e pairs of points on the vertical sides, which are the same distance
from the bottom side (i.e., pairs {(0,%), (1,¢)} with ¢ € (0,1)),

e pairs of points on the horizontal sides which lie on the same vertical
line (i.e., pairs {(¢,0), (¢,1)} with ¢ € (0,1)),

e the four vertices of the square
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Reformulation of 18.I: Identifying the sides of a square according to the
MAWAN

picture g 2 , we get a torus @

AN

Transitivity of Factorization

A solution of Problem 18.1 can be based on Problems 18.F and 18.H and
the following general theorem.

18.J Transitivity of Factorization. Let S be a partition of a space
X, and let S" be a partition of the space X/g. Then the quotient space
(X/9)/s" is canonically homeomorphic to X/T, where T is the parti-
tion of the space X into preimages of elements of the partition S' under
projection X — X/g.

Mobius Strip

Mobius strip or Mobius band is 12/[(0,@ ~(1,1—t)) In other words,
this is the quotient space of square I? by the partition into pairs of
points symmetric with respect to the center of the square and lying on
the vertical edges and one-point set which do not lie on the vertical
edges. Figuratively speaking, the Mobius strip is obtained by identifying
the vertical sides of a square in such a way that the directions shown on
them by arrows are superimposed.

18.K. Prove that the Mobius strip is homeomorphic to the surface swept
in R?® by an interval, which rotates in a halfplane around the middle point
while the halfplane rotates around its boundary line. The ratio of the
angular velocities of these rotations is such that rotation of the halfplane
by 360° takes the same time as rotation of the interval by 180°. See
Figure 1.

FIGURE 1



18. ZOO OF QUOTIENT SPACES 84
Contracting Subsets

18.4. Prove that [0, 1]/[%’ 2] is homeomorphic to [0,1], and [0, 1]/{%’1} is
homeomorphic to letter P.

18.5. Prove that the following spaces are homeomorphic:

(a) RZ;

(b) R/r;

(c) R*/p2;

@) B/p

(e) R?/4 where A is a union of several segments with a common end point;
(f) R?/p where B is a simple finite polygonal line, i.e., a union of a finite

sequence of segments I;, ..., I, such that the initial point of I;;1
coincides with the final point of I;).

18.6. Prove that if f : X — Y is a homeomorphism then the quotient spaces
X/ A and Y/ f(4) are homeomorphic.

18.7. Prove that R* /[0, 400) is homeomorphic to Int D* U {(0, 1)}

Further Examples

18.8. Prove that Sl/[z ~ 27i/3 ] is homeomorphic to St.

In 18.8 the partition consists of triples of points which are vertices of equi-
lateral inscribed triangles.

18.9. Prove that the following quotient spaces of disk D? are homeomorphic
to D?:

(a) Dz/[(ac,y) ~ (—z,—y))]:
(b) D*/[(z,y) ~ (z,~y)];
(© D*/[(z,y) ~ (—y,z)]-

18.10. Find a generalization of 18.9 with D™ substituted for D2.

18.11. Describe explicitly the quotient space of line R! by equivalence rela-
tionz~y&z—yE€Z.

18.12. Present the Mdbius strip as a quotient space of cylinder S! x I.

Klein Bottle

Klein bottle is IQ/[(t, 0) ~ (t,1), (0,1) ~ (1,1 —1t)]- In other words, this
is the quotient space of square I? by the partition into

one-point subsets of its interior,

pairs of points (t,0), (¢,1) on horizontal edges which lie on the same
vertical line,

pairs of points (0,¢), (1,1 — ¢) symmetric with respect to the center
of the square which lie on the vertical edges, and

the quadruple of vertices.
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18.13. Present the Klein bottle as a quotient space of

(a) a cylinder;

(b) the M&bius strip.

18.14. Prove that S' x Sl/[(z’w) ~ (—z,w)] is homeomorphic to the Klein
bottle. (Here w denotes the complex number conjugate to w.)

18.15. Embed the Klein bottle into R? (cf. 18.K and 16.5).

18.16. Embed the Klein bottle into R* so that the image of this embedding
under the orthogonal projection R* — R? would look as follows.

Projective Plane

Let us identify each boundary point of the disk D? with the antipodal
point, i.e., factorize the disk by the partition consisting of one-point
subsets of the interior of the disk and pairs of points on the boundary
circle symmetric with respect to the center of the disk. The result is
called the projective plane. This space cannot be embedded into R?, too.
Thus we are not able to draw it. Instead, we present it in other way.

18.L. A projective plane is the result of gluing of a disk and the Mobius
strip by homeomorphism between boundary circle of the disk and bound-
ary circle of the Mobius strip.

You May Have Been Provoked to Perform an Illegal Operation

Solving the previous problem you did something which does not fit into
the theory presented above. Indeed, the operation with two spaces called
gluing in 18.L has not appeared yet. It is a combination of two operations:
first we must make a single space consisting of disjoint copies of the
original spaces, and then we factorize this space identifying points of one
copy with points of another. Let us consider the first operation in details.

Set-Theoretic Digression. Sums of Sets

A sum of a family of sets {X,}aca is the set of pairs (z,,«) such that
To € Xo. The sum is denoted by [[ .4 Xo. The map of X3 (8 € A)
to [[,c4 Xao defined by formula x — (z, ) is an injection and denoted
by ing. If only sets X and Y are involved and they are distinct, we can
avoid indices and define the sum by setting

XY ={(z,X) |z e X} U{(y,Y) |y e Y}.
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Sums of Spaces

18.M. If { X, }aca is a collection of topological spaces then the collection
of subsets of [[,., Xo whose preimages under all inclusions in, (a € A)
are open, is a topological structure.

The sum [[ ., Xo with this topology is called the (disjoint) sum of
topological spaces X, (a € A).

18.N. Topology described in 18.M is the finest topology with respect to
which all inclusions in, are continuous.

18.17. The maps ing : Xg — [[,c4 Xa are topological embedding, and
their images are both open and closed in [, 4 Xa-

18.18. Which topological properties are inherited from summands X, by
the sum [],. 4 Xo? Which are not?

Attaching Space

Let X, Y be topological spaces, A a subset of Y, and f : A — X
a continuous map. The quotient space (X IIY)/[q ~ f(a) for a € A] i
denoted by X U; Y, and is said to be the result of attaching or gluing
the space Y to the space X by f. The latter is called the attaching map.

Here the partition of X IT'Y" consists of one-point subsets of iny (Y . A)
and in; (X \ f(A)), and sets in;(z) Uiny(f~'(z)) with z € f(A).

18.19. Prove that the composition of inclusion X — X II'Y and projection
XY — X Uy Y is a topological embedding.

18.20. Prove that if X is a point then X Uy Y is Y/ 4.

18.0. Prove that attaching a ball D" to its copy by the identity map of
the boundary sphere S™ ! gives rise to a space homeomorphic to S™.

18.21. Prove that the Klein bottle can be obtained as a result of gluing two
copies of the Mdbius strip by the identity map of the boundary circle.

18.22. Prove that the result of gluing two copies of a cylinder by the identity
map of the boundary circles (of one copy to the boundary circles of the other)
is homeomorphic to S' x S*.

18.23. Prove that the result of gluing two copies of solid torus S! x D? by
the identity map of the boundary torus S' x S! is homeomorphic to S' x S2.

18.2/. Obtain the Klein bottle by gluing two copies of the cylinder S' x I
to each other.

18.25. Prove that the result of gluing two copies of solid torus S! x D? by
the map
St x St = 8 x S (x,y) = (y,2)

of the boundary torus to its copy is homeomorphic to S2.
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18.P. Let X, Y be topological spaces, A asubset of Y, and f,g: A — X
continuous maps. Prove that if there exists a homeomorphism h : X — X
such that ho f = g then X Uy Y and X U, Y are homeomorphic.

18.Q. Prove that D™ U, D™ is homeomorphic to S™ for any homeomor-
phism A : S"~1 — §n—L,

18.26. Classify up to homeomorphism topological spaces, which can be ob-
tained from a square by identifying a pair of opposite sides by a homeomor-
phism.

18.27. Classify up to homeomorphism the spaces which can be obtained
from two copies of S! x I by identifying of the copies of S* x {0,1} by a
homeomorphism.

18.28. Prove that the topological type of the space resulting in gluing two

copies of the Mobius strip by a homeomorphism of the boundary circle does
not depend on the homeomorphism.

18.29. Classify up to homeomorphism topological spaces, which can be ob-
tained from S! x I by identifying S* x 0 with S' x 1 by a homeomorphism.

Basic Surfaces

A torus S' x S' with the interior of an embedded disk deleted is called a
handle. A two-dimensional sphere with the interior of n disjoint embed-
ded disks deleted is called a sphere with n holes.

18.R. A sphere with a hole is homeomorphic to disk D?.

18.S. A sphere with two holes is homeomorphic to cylinder S x I.

A sphere with three holes has a special name. It is called pantaloons.

The result of attaching p copies of a handle to a sphere with p holes
by embeddings of the boundary circles of handles onto the boundary
circles of the holes (the boundaries of the holes) is called a sphere with
p handles, or, more ceremonial (and less understandable, for a while),
orientable connected closed surface of genus p.

18.30. Prove that a sphere with p handles is well-defined up to homeomor-
phism (i.e., the topological type of the result of gluing does not depend on
the attaching embeddings).

18.T. A sphere with one handle is homeomorphic to torus S* x S!.

18.U. A sphere with two handles is homeomorphic to the result of gluing
two copies of a handle by the identity map of the boundary circle.

A sphere with two handles is called a pretzel. Sometimes this word de-
notes also a sphere with more handles.



