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that x,y € Z,), so we can write = a/b and y = ¢/d for some integers a, b, ¢ and d, where b and
d are not divisible by p. As p is prime this means that bd is also not divisible by p. We have

z +y = (ad + bc) /(bd)
zy = (ac)/(bd)
—z = —a/b.
As ad + be, ac, —a, b and bd are integers, and bd and b are not divisible by p, this means that
T +y, vy and —z lie in Z,). Thus Z,) is a subring of Q, called the ring of integers localised at

p. (There is a long story coming from algebraic geometry that explains why the word “localised”
is appropriate.)

Example 2.11. We write Z[i] for the set of complex numbers of the form a + bi, where a and b
are integers (possibly zero). Thus 7, 6 — 4i and 12i are elements of Z[i], but 2/3 and 1 —1i/5 are
not. Note that

(a+bi)+ (c+di)=(a+¢)+ (b+d)i
(a + bi)(c + di) = (ac — bd) + (ad + bc)i
—(a+ bi) = (—a) + (—b)i.

It follows easily that Z[i] is closed under addition, multiplication and negation, so it is a subring
of C. The elements of Z[i] are called Gaussian integers.

3. MODULES

Definition 3.1. Let R be aring. A module over R is a set M of things with a definition of m +n
for all m,n € M and a definition of am for all a € R and m € M such that the following axioms
are satisfied:

(a) If m,n € M then m +n € M. [closure under addition]

(b) There is an element 0 € M such that m + 0 = m for all m € M. [additive identity]

(c) For each m € M there is an element —m € M such that m + (—m) = 0. [additive inverses]
(d) m+(n+p) =(m+n)+pforal m,n,pe M. [associativity of addition]
(

(

e) m+n =n+m for all m,n € M. [commutativity of addition]
f
(g) L.m=mfor all m € M.
(b) (ab)ym = a(bm) for all a,b € R and m € M. [associativity of multiplication]

)
)
)
)
) If a € R and m € M then am € M. [closure of M under multiplication by R]
)
)
)

(i) (a+b)m =am +bm for all a,b € R and m € M. [left distributivity of multiplication]
() a(m+n) =am + an for all a € R and m,n € M. [right distributivity of multiplication]

Remark 3.2. Note that axioms (a) to (e) say that M is in particular an Abelian group under
addition.

Example 3.3. Let R be any ring, and let d be a natural number. We then write R? for the set
of d-tuples (z1,... ,x4) with z1,... ,z4 € R. We make R? into a module over R by defining

(1,0, 2q) + (Y1, ¥a) = (1 + Y15+, %a + Ya)
a(z1,...,xq) = (ax1,... ,axq).

It is straightforward to check that the axioms are satisfied. In particular, the case d = 1 says that
we can regard R as a module over itself.

If R is a field, then an R-module is just a vector space over R. Modules are just the natural
generalisation of vector spaces defined over arbitrary rings rather than just fields. It is a basic
fact of linear algebra that if K is a field and V' is a vector space over K with a finite spanning
set, then V is isomorphic to K¢ for some integer d, called the dimension of V. The situation for
modules over non-fields is more complicated; a module is usually not isomorphic to R? for any d.
The next simplest case after fields is when R is a Euclidean domain, and most of the course will
be devoted to the study of modules over such rings.
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Proposition 3.4. A Z-module is just an Abelian group. More precisely, if M is an Abelian group
(with the group operation written as addition) then there is a unique way to define am for all
a €Z and m € M such that axioms (f) to (j) hold, making M a Z-module.

Sketch proof. Rather than giving a complete proof of this, we will give an outline of the argument
with examples.
The basic idea is very simple. We just define
Im=m+m+m
—-Sm=—-(m+m+m+m+m)=_(—m)+(—m)+ (—m) + (—m) + (—m)
and so on. This defines multiplication (of integers by group elements) in terms of addition and
negation of group elements. We actually have no choice about these definitions if we want the
axioms to be satisfied: as 3 = 1+ 1+ 1, axiom (i) says we we must have 3m = (1 + 1+ 1)m =
1m + 1m + 1m, and axiom (g) says that 1m = m so we must have 3m = m 4+ m + m, and so on.
We now need to check that axioms (f) to (j) are satisfied. Axioms (f) and (g) are immediate.
The remaining axioms are easy to check when a and b are nonnegative: for example
2(3m) =2(m +m +m)
=(m+m+m)+ (m+m+m)
=m+m+m+m+m+m
=(2x3)m
2m+3m = (m+m)+ (m+ m+m)
=m+m+m+m+m
=(2+3)m
3(m+n)=(m+n)+ (m+n)+(m+n)
=(m+m+m)+(n+n+n)
=3m + 3n.
If we allow a or b to be negative then there are quite a few more cases to check depending on the
various possible combinations of signs, but they are all quite straightforward. For example
5m + (=3)m = (m +m +m +m+m) + ((=m) + (—m) + (=m))
— m+m+ (m + (=m)) + (m + (~m)) + (m + (=m))
=m-+m
= (54 (-3))m.

4. MODULES OVER POLYNOMIAL RINGS

We next consider modules over K[z], where K is a field. The upshot here is that the study of
modules over K|[z] is essentially the same as the study of square matrices over K, or of endomor-
phisms of vector spaces over K.

We start with some comments about the process of “substituting a matrix into a polynomial”.
Let K be a field, and let A be an n x n matrix over K. Using the usual matrix multiplication
we can define A2, A and so on; all of these are again n x n matrices over K. Thus, given a
polynomial f(z) = ag + a1 + ... + agz? € K[x] we can define another n x n matrix f(A4) by
fA) =aol + a1 A+ ...+ aqA?.

Example 4.1. If A =(132) and f(z) = 7+ 6z + 52 then 4% = (% 13) and so
0

FA) =7(39)+6(53)+5(539)
=69+ (%33)+ (3 M)
:(3§ 16421)
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Example 4.2. Consider a diagonal matrix A = (6‘ 2) Then

G066 Y

and more generally it is not hard to see that

A0
Ak:< )
0

(Exercise: prove this by induction.) It follows that

d
f(A):a()((l) (1)>+a1<3 2>+...+ad<)(\) ,l?d>

_ ag + a1 A + .. .ag\? 0
- 0 a0+a1u+...adud
(o,
0 flw
More generally, if A is an n X n matrix with entries Ay, ... , A, on the diagonal and zeros elsewhere,

then f(A) has entries f(A1),..., f(An) on the diagonal and zeros elsewhere.

Example 4.3. Consider the matrix A = ({ ). It is easy to check that

0 1)61)=6"")

and thus that A% = (} %) for all k. It follows that

f(A):a()((l) [1)>+a1<(1) }>+...+ad<(1) ‘f)

_fao+...+aq a1 +2ax+...+day
- 0 ap+...+ag )

Note that f(1) = ag+ ...+ aq- Note also that the derivative f'(z) is given by f'(x) = a1 + 2a22 +
.o+ dagr?1, so that f'(1) = ay + 2as + ... + dag. We can thus rewrite the above result as

_ (@
s = (10 4.
Exercise 4.4. Put A = (] 1) and f(z) = 2* — 3z. Calculate f(A).

Exercise 4.5. Let A = (¢ }%) be a 2 x 2 matrix, and put f(z) = 2% — (a + d)z + (ad — bc). Show
that f(A) = (§9). (This is the 2 x 2 case of the Cayley-Hamilton theorem.)

Exercise 4.6. Show that

(6 D)= )12 )

We next need to check that some things work out as they “ought” to when we substitute ma-
trices into polynomials. (Recall that matrix multiplication is noncommutative, there are nonzero
matrices whose square is zero, and numerous other funny things can happen; so we need to be on
our guard.)

Proposition 4.7. Let A be an n X n matriz over a field K. Then for any two polynomials
f,g9 € K[z] we have

(f +9)(4) = f(4) + 9(4)
(F9)(4) = F(A)g(A).
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Proof. Suppose that f(z) = Y, a;z' and g(z) = > bjzl. Then (f + g)(z) = Y, c;z’ where

c¢; = a; + b;, and
= (Z a,m’)(z bja:j) = Z aib]‘l‘i+j = Z dkl'k,
i J i,J k

k
where dy = ) ,_, a;br—;.

Thus
f + g Z czAZ
= Z (a; A* + b; AY)
= Z a; A’ + Z biA!
f( ) +9(A )
Similarly

=> dy A
' k
=Y aibriA

k 1=0

—ZZ az bk zAk Z)

k i=0

= ZZ a; A")(b; A7)
= Z aiA’ Z bjA]
= f(A)g(4).

We are now ready to construct some modules over K|z].

Construction 4.8. Let A be an n x n matrix over a field K; we will use this to define a module
My over K[z]. The elements of My are just the vectors v = (v1,...,v,) of length n over K, so
My = K™ as a set. Addition and subtraction of vectors is defined in the usual way. All that is
left is to define the product fv for f € K[z] and v € K™, which we do by the formula fv = f(A)v.
Here f(A) is an n X n matrix, so the right hand side is defined by the ordinary multiplication of
vectors by matrices.

We need to check the module axioms. Axioms (a) to (e) only involve addition and negation so
they are clear. Axiom (f) is also clear because fuv is certainly a vector in K". If f(z) is constant
polynomial 1, then f(A) is the identity matrix, so fv = Iv = v for all v; this gives axiom (g). For
axiom (h) we recall that (fg)(A4) = f(A)g(A) so

(fg)vz(fg)( Jv
f(A)g(A)v
f(A)(gv)

=f(gv)

Similarly, axiom (i) follows from the fact that (f + g)(4) = f(A4) + g(A). Finally, axiom (j) is
clear, because B(v + w) = Bv + Bw for any matrix B and any vectors v and w.
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Remark 4.9. Let A and B be two different n x n matrices. Then M4 and Mp have the same
elements but the multiplication rules in M4 and Mpg are different, so M, and Mp are different
modules.

Example 4.10. Let A be the matrix (2 9) over Q, so that f(A) = (f(02) fO ) (by Example 4.2).
Then M4 = Q?, with the multiplication rule f.(s,t) = (f(2)s, f(3)t). For example, if g(x) = 2> —6
then g(2) = —2 and ¢(3) = 3 so we have

(22 — 6)(10,11) = (-2 x 10,3 x 11) = (=20, 33).

0
Then M, is the set Q® with the group operation f.(s,t) = (f( s+ f! 1) (1)t). For example, if
g(z) = 2% — 6 then g(1) = =5 and ¢'(1) = 2 so we have

(2% —6)(10,11) = (=5 x 10+ 2 x 11,—5 x 11) = (=28, —55).

Example 4.11. Let A be the matrix ({ 1) over Q, so that f(A) = ( (1) £'( ) (by Example 4.3).

Example 4.12. The simplest examples are where A is just a 1 x 1 matrix, or in other words just
an element A\ € K. The module M, is just a copy of K, with the multiplication rule f.a = f(\)a.
For example, the polynomial f(z) = 1+ x + 22 satisfies f(2) = 7, so in the module M, over Q[z]
we have f.6 =7 x 6 = 42.

There is a well-known correspondence between matrices and endomorphisms, and for many
purposes it is more natural to use the latter. Let V be a vector space over a field K, and let
¢ be an endomorphism of V' (in other words, a linear map from V to itself). Then we can
define ¢?(v) = ¢(¢p(v)) to get a new endomorphism of V, and similarly we can define ¢* for all
k > 0. More generally, for any polynomial f(z) = ag + a1x + ... + agz® € K[z] we can define an
endomorphism f(¢) by

F(#)(v) = agv + a16(v) + ... + aqgd? (v).
We can then make V into a module over K{[z] by defining fv = f(¢)(v).

We will next give an example involving differentiation, which is the basis of the applications
of module theory to differential equations. To avoid annoying technicalities, it is best to restrict
attention to functions that can be differentiated as many times as we like. We therefore introduce
the following definition.

Definition 4.13. A function f: R — R is smooth if the n’th derivatives f(")(¢) are defined and
continuous everywhere on R for all n > 0. In particular, the function f = f©) itself must be
defined and continuous everywhere.

For example, sin(t), cos(t), e, > and so on are smooth. However, the functions 1/t and log(t)
are not defined at ¢ = 0, so they are not smooth. The function f(t) = |¢| is defined and continuous
everywhere and f'(t) = —1 for ¢ < 0 and f'(t) = 1 for ¢ > 0 but f'(0) is undefined so f is not
smooth. Similarly, if g(t) = t'/° then ¢'(t) = t~2/3/3, which is undefined at ¢t = 0 so g is not
smooth.

We write C*°(R,R) for the set of all smooth functions from R to R. If f and g are smooth
and a is constant then one can show that f + g and af are smooth. It follows that C*° (R, R) is
a vector space over R. Similarly, the set C*°(R, C) of smooth functions from R to C is a vector
space over C.

Now define 9: C*®°(R,R) — C>®(R,R) by 9(f) = f'. If f and g are smooth and a and b are
constant, we have

d(af +bg) = (af +bg) =af +bg" = ad(f) + bd(g),
which shows that J is an R-linear map.
Similarly, differentiation gives a C-linear map from C*°(R, C) to itself, which we again call 0.

We could use the endomorphism 9 of C*°(R,R) to make C*°(R,R) into a module over R[z].
However, it is more standard and notationally less confusing to rename the variable z and call it
D instead. We will also write p(D) for a typical polynomial in D, to avoid confusion with elements
of C*(R,R), which are typically called f.
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Definition 4.14. We regard C*°(R,R) as a module over R[D] by the rule p(D)f = p(9)(f), or
equivalently

(a0 +a1D+ ...+ ap,D™)f = aod(f) + a10*(f) + ...+ and™(f)
=aof +arf + ... 4 amf™.
We regard C°°(R, C) as a module over C[D] by the same rule.
Example 4.15.
(1+D+D*).(1+t+t)=Q+t+)+ L+t +t3) + (1 +t+t3)"
=(1+t+82)+(1+2t)+(2)
=443t +1t°.

Example 4.16. Consider the function f(t) = tsin(¢); I claim that (D? + 1)2f = 0. Indeed, we
have

f'(t) = sin(t) + t cos(t)
f"(t) = 2cos(t) — tsin(t)
((D* + 1)f)(t) = f(t) + f"(t) = 2 cos(t)
We also have cos’(t) = —sin(t) and so cos”(t) = — cos(t) so (D? + 1)cos = 0. It follows that
(D* +1)2f = (D* + 1)(2cos) = 0.
Example 4.17. Consider a function of the form f(t) = e + e#t. T claim that

(p(D)f)(t) = p(N)e + p(u)et.
Indeed, we have
f'(t) = XeM + pert
FU(1) = A2eM 4 et

and more generally f*)(t) = AfeM 4 pFelt (as one can easily check by induction). If p(D) =
ag+a1D + ...+ a,,D™ then we have

(p(D)f)(t) = ag(eM + ert) + a;(NeM + pe!t) + ... + am(A™eM + pmert)
=(ag+a A+ ...+ apX™)eM + (ag +aip+ ... + app™)e
= p(\)eM + p(p)et.

Exercise 4.18. Put f(t) = te!. Show that (D*f)(t) = (k + t)et for all k > 0 and thus that
(p(D)f)(t) = (¥’ (1) + p(1)t)e’.

We explained above how a vector space V over K with an endomorphism ¢ can be regarded as
a K[z]-module. We conclude this section by showing that every K[z]-module arises in this way.

Indeed, let M be a module over K[z]. As mentioned previously, axioms (a) to (e) say that M is
an Abelian group under addition. Also, if a € K then we can regard a as a constant polynomial,
so am is defined for all m € M. As M is a module over K[z], axioms (f) to (j) are valid for all
polynomials a and b, so certainly they are valid for the special case of constant polynomials. Thus,
we can regard M as a module over K. A module over a field is the same thing as a vector space,
so M is a vector space over K.

Next, if m € M then zm is another element of M, so we can define a function ¢: M — M by
¢(m) = xm. 1 claim that this is a K-linear endomorphism. Indeed, for any m,n € M we have
z(m 4+ n) = zm + zn by the right distributivity law, which means that ¢(m + n) = ¢(m) + ¢(n).
Moreover, for a € K we have ax = za, so

ap(m) = a(zm) = (ax)m = (za)m = z(am) = ¢(am)
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(using axiom (h) twice). This shows that ¢ is linear, as claimed. Now consider a polynomial
flz) =3, a;x" € K[z]. T claim that fm = ", a;¢'(m) = f(¢)(m) for all m € M. Indeed, we
have

(2*)m = x(zm) = zd(m) = ¢(¢(m)) = ¢ (m)
(a)m = z(2*m) = 2¢”(m) = ¢(¢*(m)) = ¢°(m).

Extending this by induction, we see that 2¥m = ¢*(m) for all k. Thus

fm= (Z a;x")m
= Zaiacim
= Zaid)i(m)

= f(¢)(m).

Thus, the module structure is obtained from the endomorphism ¢ in the way considered previously.

5. GENERAL MODULE THEORY

Let R be a ring.

Definition 5.1. Let M be an R-module. A submodule of M is a subset N C M such that
(a) 0e N
(b) If n,m € M then n+m € N (ie N is closed under addition)
(¢c) If n € N and a € R then an € N (ie N is closed under multiplication by elements of R).

Note that if N is a submodule and n € N then —n = (—1)n € N, so N is closed under negation
and thus is a subgroup of M under addition. It is easy to see that N can itself be considered as
an R-module.

Example 5.2. If R is a field, then modules are just the same as vector spaces, and submodules
are just the same as vector subspaces.

Example 5.3. If R = 7Z, then modules are just the same as Abelian groups, and submodules are
just the same as subgroups.

Example 5.4. If M is a module over any ring R, it is clear that {0} and M itself are submodules
of M.

Example 5.5. Let V' be a vector space over a field K, equipped with a K-linear endomorphism
¢:V — V. We regard V as a K[z]-module in the usual way. We say that a subset W C V is
stable under ¢ if ¢(w) € W for all w € W (or more briefly, if ¢(W) C W).

I claim that a subset W C V is a K[z]-submodule if and only if it is a vector subspace and is
stable under ¢. Indeed, suppose that W is a submodule. Then it is certainly closed under addition
and under multiplication by constant polynomials (ie elements of K) so it is a vector subspace.
Also, it is closed under multiplication by z, so for w € W we have ¢(w) = zw € W; this shows
that W is stable under ¢, as claimed.

Conversely, suppose that W is a vector subspace and is stable under ¢. Clearly W is closed under

addition. For any w € W we have ¢(w) € W. Thus ¢?(w) = ¢(é(w)) = ¢(an element of W) =
another element of W , so ¢*>(W) C W. Thus ¢*(w) = ¢(¢*(w)) = ¢(an element of W) =
another element of W , so ¢*(W) C W, and so on, so ¢*(w) € W for all k > 0. Now consider a
polynomial f(z) = ag+...+aqz? € K[z]. We then have fw =), a;¢'(w). The vectors ¢'(w) lie
in W, the coefficients a; lie in K, and W is a vector subspace of V, so we see that >, a;¢'(w) € W.
Thus fw € W for all w € W and f € K|[z], so W is a submodule of V.
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Example 5.6. Let A be the matrix <(1) 5

over Q[z]. Put Wy = {(u,v) € Q* | u = —3v} and Wy = {(u,v) € Q* | u = —4v}. A typical
element of Wy has the form (—3v,v) and we have

0 -6 —3v\ _ [—6v
1 5 v |\ 20 )’
which also lies in W,. Thus Wy is stable under A and thus is a submodule of Q7.
However, W is not a submodule. Indeed, the vector (—4,1) lies in W; but

0 -6\ /—4\ (-6
1 5 1/ \1)°
which does not lie in W.

Example 5.7. Suppose that A\, € K and A\ # u. Define ¢: K2 — K2 by é(u,v) = (Au, uv),
and use this to make K? into a module over K|[z]. Define

L={(u,0)|ueK}cCK?
M ={(0,v)|ve K} C K%

) over Q, and use this to make Q? into a module

I claim that L and M are K|[z]-submodules of K2, and moreover that the only submodules are
{0}, L, M and K? itself.

It is clear that L and M are vector subspaces of K2. Moreover we have ¢(u,0) = (Au,0) € L,
so L is stable under ¢ and thus is a submodule. Similarly ¢(0,v) = (0,uv) € M, so M is a
submodule. It is trivial to check that {0} and K2 are subspaces of K2.

We will not give a complete proof that these are the only submodules, but here is the key point.
We assumed that X\ # p, so A — p is a nonzero element of the field K, so (A — p) ! is defined. We
thus have elements 7o = (A — u) " *(z — pu) € K[z] and 71 = 1 — g € K[z]. Note that

mo(u,0) = (A — p) ™ (2(u,0) — p(u,v))
= (A=) ((u,v) — (pu, w))
= (A=)~ (O, po) — (put, o))
=(

and

Now let W be a submodule of K2. Suppose that W contains an element (u,v) with u # 0 # v.
Then for any a,b € K we have au~'my + bv='m € K[z] and

(autmo + bv tmy) (u,v) = au "t (u,0) + bv1(0,v) = (a,b).

As W is a submodule this means that (a,b) € W. As a and b were arbitrary this shows that
W = K2. If W does not contain any elements (u,v) with u 7# 0 # v then one has to fiddle around
a bit more but one can show that W = {0} or W =L or W = M.

Example 5.8. The set R[t] of polynomial functions is a vector subspace of the space C*° (R, R)
of all smooth functions from R to R. Moreover if f € R[t] then the derivative of f is again a
polynomial, in other words 9(f) = f' € R[t]. This means that the subspace R[¢] is stable under
the endomorphism 9, so it is an R[D]-submodule of C*°(R, R).

Example 5.9. Let W be the space of functions of the form f(t) = a cos(t)+bsin(t) (with a,b € R).
Because 9(a cos(t) + bsin(t)) = bcos(t) — asin(t), we see that W is stable under 9. It is thus an
R[D]-submodule of C* (R, R).



RINGS, MODULES AND LINEAR ALGEBRA 11

Remark 5.10. Suppose that Ny and N; are two submodules of an R-module M. I claim that
Ny N Ny is again a submodule. Indeed, as 0 € Ny and 0 € N; we have 0 € Ny N Ny. Suppose that
n,m € NoN Ny. As n,m € Ny and Ny is a submodule we have n +m € Ng. As n,m € Ny and
Ny is a submodule we have n +m € Ny. Thus n +m € Nog N N;. Now suppose that a € R. As
Ny is a submodule and n € Ny we have an € Ny. As N is a submodule and n € N; we also have
an € Ny, so an € Ng N N;. This shows that Ny N N7 is a submodule, as claimed.

Definition 5.11. Suppose that Ny and N; are two submodules of an R-module M. We define
Ny + Ni to be the set of elements z € M that can be written in the form x = ng + n1 for some
ng € Ng and n; € N;y. I claim that this is a submodule of M. Indeed, suppose that z,y € No+ Ny,
so we can write x = ng+ny and y = mg + m; with ng,mg € Ng and n1,m; € N;. Then 2+ y can
be written as (ng +mo) + (n1 +my) , with ng + mg € Ny and ny + my € Ny, s0 z +y € No+ Ny.
Similarly, if @ € R then ang € Ny and an; € Ny so ax = ang + an; € Ny + N;. This shows that
Ny + N; is closed under addition and under multiplication by R, so it is a submodule as claimed.

Definition 5.12. Let Ny and N1 be R-modules. We define Ny & N to be the set of pairs (ng,n1)
with ng € Ng and ny € N;. We make this set into an R-module by defining
(no,n1) + (mo,m1) = (ng + mo, n1 + mi)
a(ng,n1) = (ang,any).

(It is a longish but straightforward exercise to check that the axioms are satisfied.) This R-module
is called the external direct sum of Ng and Ny.

Example 5.13. The group Zs has elements 0 and 1, and the group Z3 has elements 0,1 and 2.
Thus, the group Zs ® Z3 has elements (0,0), (0,1), (0,2), (1,0), (1,1) and (1,2). To illustrate
the additiion law, we have (1,2) + (1,2) = (2,4). The first component is to be interpreted as an

element of Zy, so 2 = 0. The second component is to be interpreted as an element of Zs, so 4 = 1.

Thus (1,2) + (1,2) = (0,1).

Example 5.14. An element of R"@® R™ is a pair (u,v) with u € R" and v € R™, or in other words

alist (u1,... ,up,v1,...,vy) where each u; and v; is an element of R. Thus, R” & R™ = R"t™.
The next example relies on the following definition:

Definition 5.15. Let A and B be matrices over a field K, of sizes p X ¢ and n X m. The block

sum of A and B is the matrix < A | Onxg

Opxm | B
A ® B. For example, if A =(1%) and B = (3§) then the block sum of A and B is

19 IZOO
aep=(nean= ().
0078

Note that an element w € RPT" can be written as w = (u,v) with u € RP and v € R", and we

have i my= (< 5) () = ().

Example 5.16. Let A and B be square matrices over a field K, of sizes n and m say. We then
have modules M4 and Mp over K[z]. The elements of M4 @® Mp are pairs w = (u,v) with u € K"
and v € K™, or equivalently they are elements of K™*™. The module structure is given by the
rule z(u,v) = (zu, zv) = (Au, Bv), or in other words zw = (A ® B)w. Thus M4 @& Mp = Magp-

Definition 5.17. Let M be an R-module, and let Ny and N; be submodules. We say that M is
the internal direct sum of Ng and Ny if Ng + Ny = M and Ng N Ny = {0}.

>, of size (p + n) x (¢ + m). This is denoted by

Remark 5.18. We can define a function o: Ng & Ny — M by o(ng,n1) = no + n1. When
we have defined homomorphisms and isomorphisms of modules, we will see that o is always a
homomorphism, and that ¢ is an isomorphism if and only if M is the internal direct sum of Ny
and Nj. This is the precise sense in which internal direct sums are “the same” as external ones.
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Example 5.19. In example 5.7 we see that K? is the internal direct sum of L and M.

Example 5.20. Consider the Abelian group M = Zi5 as a module over Z. Put Ny = {0, 3,6, 9}
and N; = {0,4,8}. It is easy to see that Ny and N; are subgroups, and obviously No N Ny = {0}.
I claim that we also have Ny + N; = M. Indeed, we have 1 =9 +4 € Ny + N; and Ny + N; is
a submodule so for any a € Z we have @ = a.1 € Ny + Ny, as required. Thus M is the internal
direct sum of Ny and N;.

Example 5.21. Let V be the space of functions f € C*°(R,R) that satisfy f” = f. This is a
vector space closed under differentiation, so it is an R[D]-submodule of C*°(R,R). Put Wy =
{flf =ftand Wy ={f | f/ = —f}. These are also vector spaces closed under differentiation,
so they are R[D]-submodules of C*°(R,R). If f € W; then f' = (—f) = —(—f) = f,s0o f € V.
This shows that W, C V and similarly W, C V, so Wy and W are submodules of V.

I claim that V is the direct sum of Wy and W;. One way to see this is just to solve the
differential equations. We find that V consists of all functions of the form ae + be~t, that Wy
consists of all functions of the form ae?, and that W, consists of all functions of the form be~?,
and the claim is clear from this.

We can also prove the claim without solving the differential equations explicitly. Indeed, if
feWon Wi then f = f' (because f € Wy) and f' = —f (because f € Wy) so f=—f,s0 f =0.
This shows that Wo N Wy, = {0}. Next, suppose that g € V, so g = g. Put go = (g + ¢')/2 and
91 =(g9—¢')/2. We find that g, = (¢' + ¢")/2= (9" + 9)/2 = go, 80 go € Wy. Similarly, we have
gi=00"—-9"/2=("—9)/2=—g1,50 g1 € Wi. As g = go + g1 it follows that g € Wy + W1, and
we conclude that V = Wy + W, as required.

Definition 5.22. Let M be a module over a ring R, and let my,... ,m, be elements of M.
Let N be the set of elements x € M that can be written in the form z = aymi + ... + a,m,
for some ay,...,a, € M. I claim that this is a submodule of M. Indeed, if z,y € N then
we have z = ) .a;m; and y = ), b;m; for some a1,...,a,,b1,...,b, € R. We then have

z+y =Y ,(a;+b;)m; so x+y € N; this shows that N is closed under addition. Similarly, if ¢ € R
we have cx = ) _,(ca;)m; € N, so N is closed under multiplication by R, so it is a submodule as
claimed.

We call N the submodule generated by {m1,... ,m,}. In particular, we say that M is generated
by {mq,...,m,} if N = M, or equivalently if every element € M can be written in the form
aimy + ...+ a,m,. We say that M is finitely generated if there is some finite list of elements that
generates M. We say that M is cyclic if there is a single element m € M that generates M, which
means that every element © € M can be written in the form z = am for some a € R.

Example 5.23. The module R? is clearly generated by the standard basis elements e; = (1,0,... ,0),
es = (0,1,0,...,0) and so on. In particular it is finitely generated. It is not cyclic unless d = 1.

Example 5.24. Let M be a finite Abelian group, considered as a Z-module. Let the elements
of M be mq,... ,mg. Then any element m € M is equal to m; for some i, so certainly it can be
expressed in the form ), a;m; (for example, my = 0.my + 1.ma 4+ 0.mg3 + ... + 0.mg). Thus, M
is finitely generated as a Z-module.

Example 5.25. Let W5 be the space of functions of the form f(t) = a + bt + ct?, considered
as a module over R[D] in the usual way. In particular, the function g(t) = ¢? gives an element
of Ws. I claim that W is generated by g, and thus is cyclic. Indeed, we have ¢'(t)/2 = ¢ and
g"(t)/2 = 1. Tt follows that for any function f(t) = a+bt+ct?, we have (c+ (b/2)D+ (a/2)D?)g =
cg+ (b/2)g" + (a/2)g" = f, so f € R[D]g. This proves that R[D]g = W» as required.

It is not hard to extend this method to show that the space Wy of polynomials of degree at
most d is also a cyclic module over R[D] generated by the function g(t) = 7.

Example 5.26. Consider R[z] as a module over R; T claim it is not finitely generated. Indeed,
suppose we have a finite list fi,... , f, of elements of R[z]. Let d; be the degree of the polynomial
fi, and put d = max(dy,...,d,). Then each of the polynomials f; only involves the powers
L,z,2%,... ,2% so any polynomial of the form aif; + ... + a,fn, (With ay,...,a, € R) also
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involves only these powers. This means that ¢t! cannot be written in the form a1 fi +. ..+ an fn,
so the elements fi,... , f, do not generate R[z] as a module over R.

6. HOMOMORPHISMS

Definition 6.1. Let M and N be modules over a ring R. An R-module homomorphism (or just
homomorphism) from M to N is a function a: M — N such that
(a) a(mg +m1) = a(mg) + a(my) for all mg,m; € M.
(b) al(am) = aa(m) for all a € R and m € M.
Note that this implies that @(0) = «(0.0) = 0(0) = 0 and a(—m) = a((—1).m) = (-1).a(m) =
—a(m).
An isomorphism is a homomorphism which is also a bijection.

Remark 6.2. Let a: M — N be an isomorphism. As « is a bijection, there is an inverse
function a=': N — M such that a(a=!(n)) = n for all n € N and a~!(a(m)) = m for all
m € M. T claim that @' is also a homomorphism. To see this, suppose that ng,n; € N. We
then have elements a~!(ng) and a~!(n1) in M. As a is a homomorphism, we have a(a ™! (ng) +
a"t(n1)) = ala t(ng)) + a(at(n1)) = no + n1. We can apply ! to this equation to get
a Ha(a t(ng)) +alat(ny))) = a t(ng +n1). Because a~*(a(m)) = m for all m, the left hand
side is just a=!(ng) + a~!(n1). We thus have a=!(ng) + a=!(n1) = a='(no + n1), showing that
a~! respects addition.

Similarly, suppose that n € N and a € R. As a respects multiplication by R, we have
alaa™t(n)) = aa(at(n)) = an. By applying a~! to this equation we get a ! (a(aa"1(n))) =
a~t(an). The left hand side is just aa~!(n), so we have aa~!(n) = a~!(an), completing the proof
that ! is a homomorphism.

Example 6.3. Let R be any ring. Define 7: R?2 — R%, 0: R®> — R and 6: R> — R® by
7(u,v) = (v,u)
o(z,y,z) =x+y+z
o(u,v) = (u,v — u, —v).
It is easy to check that these are all homomorphisms. For example, we have
8(uo,vo) + 8(u1,v1) = (ug,vo — uo, —vo) + (u1,v1 — u1, —v1)
= (uop + u1,v0 +v1 —ug — U1, —Vg — V1)
= §(uo + u1,v0 + v1)
= 6((uo, vo) + (u1,v1))
and
ad(u,v) = a.(u,v — u, —v)
= (au,a(v — u), —av)
= d(a.(u,v)),
so ¢ is a homomorphism.

Example 6.4. I would like to define two homomorphisms «, 3: Z3 — Z15 by a(m) = 4m and
B(m) = 5m. There is a potential problem with this kind of definition, which means that the
definition of § is actually invalid, although it turns out that a is OK. Consider the element z =
1 € Z3, which can also be described as z = 4. Using the description z = 1 we get 3(z) =5 € Z15».
Using the description z = 4 we get 3(z) = 20 € Z12. As 20 # 5 (mod 12), the elements 5 and 20
in Z19 are not the same, so our definition of 8 is not self-consistent.

However, this problem does not occur with a. To see why, suppose we describe an element
y € Zs in two different ways, say y = = m. As 7 = m in Zs3, we have n = m (mod 3), so
n = m + 3k for some integer k. This means that 4n = 4m + 12k, so 4n = 4m in Z5. This means
that we get the same answer for a(y) no matter which description we use, so a is a well-defined
function from Zs to Zqs.



