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5.IV Jordan Form

This section uses material from three optional subsections: Direct Sum, Deter-
minants Exist, and Other Formulas for the Determinant.

The chapter on linear maps shows that every h : V →W can be represented
by a partial-identity matrix with respect to some bases B ⊂ V and D ⊂ W .
This chapter revisits this issue in the special case that the map is a linear
transformation t : V → V . Of course, the general result still applies but with
the codomain and domain equal we naturally ask about having the two bases
also be equal. That is, we want a canonical form to represent transformations
as RepB,B(t).

After a brief review section, we began by noting that a block partial identity
form matrix is not always obtainable in this B,B case. We therefore considered
the natural generalization, diagonal matrices, and showed that if its eigenvalues
are distinct then a map or matrix can be diagonalized. But we also gave an
example of a matrix that cannot be diagonalized and in the section prior to this
one we developed that example. We showed that a linear map is nilpotent —
if we take higher and higher powers of the map or matrix then we eventually
get the zero map or matrix — if and only if there is a basis on which it acts via
disjoint strings. That led to a canonical form for nilpotent matrices.

Now, this section concludes the chapter. We will show that the two cases
we’ve studied are exhaustive in that for any linear transformation there is a
basis such that the matrix representation RepB,B(t) is the sum of a diagonal
matrix and a nilpotent matrix in its canonical form.

5.IV.1 Polynomials of Maps and Matrices

Recall that the set of square matrices is a vector space under entry-by-entry
addition and scalar multiplication and that this spaceMn×n has dimension n2.

Thus, for any n×n matrix T the n2+1-member set {I, T, T 2, . . . , Tn
2} is linearly

dependent and so there are scalars c0, . . . , cn2 such that cn2Tn
2

+ · · ·+c1T +c0I
is the zero matrix.

1.1 Remark This observation is small but important. It says that every trans-
formation exhibits a generalized nilpotency: the powers of a square matrix can-
not climb forever without a “repeat”.

1.2 Example Rotation of plane vectors π/6 radians counterclockwise is rep-
resented with respect to the standard basis by

T =

(√
3/2 −1/2

1/2
√

3/2

)

and verifying that 0T 4 + 0T 3 + 1T 2 − 2T − 1I equals the zero matrix is easy.
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1.3 Definition For any polynomial f(x) = cnx
n + · · ·+ c1x+ c0, where t is a

linear transformation then f(t) is the transformation cnt
n + · · · + c1t + c0(id)

on the same space and where T is a square matrix then f(T ) is the matrix
cnT

n + · · ·+ c1T + c0I.

1.4 Remark If, for instance, f(x) = x − 3, then most authors write in the
identity matrix: f(T ) = T − 3I. But most authors don’t write in the identity
map: f(t) = t− 3. In this book we shall also observe this convention.

Of course, if T = RepB,B(t) then f(T ) = RepB,B(f(t)), which follows from

the relationships T j = RepB,B(tj), and cT = RepB,B(ct), and T1 + T2 =
RepB,B(t1 + t2).

As Example 1.2 shows, there may be polynomials of degree smaller than n2

that zero the map or matrix.

1.5 Definition The minimal polynomial m(x) of a transformation t or a square
matrix T is the polynomial of least degree and with leading coefficient 1 such
that m(t) is the zero map or m(T ) is the zero matrix.

A minimal polynomial always exists by the observation opening this subsec-
tion. A minimal polynomial is unique by the ‘with leading coefficient 1’ clause.
This is because if there are two polynomials m(x) and m̂(x) that are both of the
minimal degree to make the map or matrix zero (and thus are of equal degree),
and both have leading 1’s, then their difference m(x)− m̂(x) has a smaller de-
gree than either and still sends the map or matrix to zero. Thus m(x)− m̂(x) is
the zero polynomial and the two are equal. (The leading coefficient requirement
also prevents a minimal polynomial from being the zero polynomial.)

1.6 Example We can see that m(x) = x2 − 2x− 1 is minimal for the matrix
of Example 1.2 by computing the powers of T up to the power n2 = 4.

T 2 =

(

1/2 −
√

3/2√
3/2 1/2

)

T 3 =

(

0 −1
1 0

)

T 4 =

(

−1/2 −
√

3/2√
3/2 −1/2

)

Next, put c4T
4 + c3T

3 + c2T
2 + c1T + c0I equal to the zero matrix

−(1/2)c4 + (1/2)c2 + (
√

3/2)c1 + c0 = 0

−(
√

3/2)c4 − c3 − (
√

3/2)c2 − (1/2)c1 = 0

(
√

3/2)c4 + c3 + (
√

3/2)c2 + (1/2)c1 = 0

−(1/2)c4 + (1/2)c2 + (
√

3/2)c1 + c0 = 0

and use Gauss’ method.

c4 − c2 −
√

3c1 − 2c0 = 0

c3 +
√

3c2 + 2c1 +
√

3c0 = 0

Setting c4, c3, and c2 to zero forces c1 and c0 to also come out as zero. To get
a leading one, the most we can do is to set c4 and c3 to zero. Thus the minimal
polynomial is quadratic.
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Using the method of that example to find the minimal polynomial of a 3×3
matrix would mean doing Gaussian reduction on a system with nine equations
in ten unknowns. We shall develop an alternative. To begin, note that we can
break a polynomial of a map or a matrix into its components.

1.7 Lemma Suppose that the polynomial f(x) = cnx
n + · · ·+ c1x+ c0 factors

as k(x − λ1)q1 · · · (x − λ`)q` . If t is a linear transformation then these two are
equal maps.

cnt
n + · · ·+ c1t+ c0 = k · (t− λ1)q1 ◦ · · · ◦ (t− λ`)q`

Consequently, if T is a square matrix then f(T ) and k ·(T−λ1I)q1 · · · (T−λ`I)q`

are equal matrices.

Proof. This argument is by induction on the degree of the polynomial. The
cases where the polynomial is of degree 0 and 1 are clear. The full induction
argument is Exercise 1.7 but the degree two case gives its sense.

A quadratic polynomial factors into two linear terms f(x) = k(x−λ1) · (x−
λ2) = k(x2 + (λ1 + λ2)x+ λ1λ2) (the roots λ1 and λ2 might be equal). We can
check that substituting t for x in the factored and unfactored versions gives the
same map.

(

k · (t− λ1) ◦ (t− λ2)
)

(~v) =
(

k · (t− λ1)
)

(t(~v)− λ2~v)

= k ·
(

t(t(~v))− t(λ2~v)− λ1t(~v)− λ1λ2~v
)

= k ·
(

t ◦ t (~v)− (λ1 + λ2)t(~v) + λ1λ2~v
)

= k · (t2 − (λ1 + λ2)t+ λ1λ2) (~v)

The third equality holds because the scalar λ2 comes out of the second term, as
t is linear. QED

In particular, if a minimial polynomial m(x) for a transformation t factors
as m(x) = (x − λ1)q1 · · · (x − λ`)q` then m(t) = (t − λ1)q1 ◦ · · · ◦ (t − λ`)q` is
the zero map. Since m(t) sends every vector to zero, at least one of the maps
t− λi sends some nonzero vectors to zero. So, too, in the matrix case — if m is
minimal for T then m(T ) = (T −λ1I)q1 · · · (T −λ`I)q` is the zero matrix and at
least one of the matrices T −λiI sends some nonzero vectors to zero. Rewording
both cases: at least some of the λi are eigenvalues. (See Exercise 29.)

Recall how we have earlier found eigenvalues. We have looked for λ such that
T~v = λ~v by considering the equation ~0 = T~v−x~v = (T−xI)~v and computing the
determinant of the matrix T − xI. That determinant is a polynomial in x, the
characteristic polynomial, whose roots are the eigenvalues. The major result
of this subsection, the next result, is that there is a connection between this
characteristic polynomial and the minimal polynomial. This results expands
on the prior paragraph’s insight that some roots of the minimal polynomial
are eigenvalues by asserting that every root of the minimal polynomial is an
eigenvalue and further that every eigenvalue is a root of the minimal polynomial
(this is because it says ‘1 ≤ qi’ and not just ‘0 ≤ qi’).
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1.8 Theorem (Cayley-Hamilton) If the characteristic polynomial of a
transformation or square matrix factors into

k · (x− λ1)p1(x− λ2)p2 · · · (x− λ`)p`

then its minimal polynomial factors into

(x− λ1)q1(x− λ2)q2 · · · (x− λ`)q`

where 1 ≤ qi ≤ pi for each i between 1 and `.

The proof takes up the next three lemmas. Although they are stated only in
matrix terms, they apply equally well to maps. We give the matrix version only
because it is convenient for the first proof.

The first result is the key — some authors call it the Cayley-Hamilton Theo-
rem and call Theorem 1.8 above a corollary. For the proof, observe that a matrix
of polynomials can be thought of as a polynomial with matrix coefficients.

(

2x2 + 3x− 1 x2 + 2
3x2 + 4x+ 1 4x2 + x+ 1

)

=

(

2 1
3 4

)

x2 +

(

3 0
4 1

)

x+

(

−1 2
1 1

)

1.9 Lemma If T is a square matrix with characteristic polynomial c(x) then
c(T ) is the zero matrix.

Proof. Let C be T − xI, the matrix whose determinant is the characteristic
polynomial c(x) = cnx

n + · · ·+ c1x+ c0.

C =











t1,1 − x t1,2 . . .
t2,1 t2,2 − x

...
. . .

tn,n − x











Recall that the product of the adjoint of a matrix with the matrix itself is the
determinant of that matrix times the identity.

c(x) · I = adj(C)C = adj(C)(T − xI) = adj(C)T − adj(C) · x (∗)

The entries of adj(C) are polynomials, each of degree at most n − 1 since the
minors of a matrix drop a row and column. Rewrite it, as suggested above, as
adj(C) = Cn−1x

n−1 + · · ·+C1x+C0 where each Ci is a matrix of scalars. The
left and right ends of equation (∗) above give this.

cnIx
n + cn−1Ix

n−1 + · · ·+ c1Ix+ c0I = (Cn−1T )xn−1 + · · ·+ (C1T )x+ C0T

− Cn−1x
n − Cn−2x

n−1 − · · · − C0x
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Equate the coefficients of xn, the coefficients of xn−1, etc.

cnI = −Cn−1

cn−1I = −Cn−2 + Cn−1T
...

c1I = −C0 + C1T

c0I = C0T

Multiply (from the right) both sides of the first equation by Tn, both sides
of the second equation by Tn−1, etc. Add. The result on the left is cnT

n +
cn−1T

n−1 + · · ·+ c0I, and the result on the right is the zero matrix. QED

We sometimes refer to that lemma by saying that a matrix or map satisfies
its characteristic polynomial.

1.10 Lemma Where f(x) is a polynomial, if f(T ) is the zero matrix then f(x)
is divisible by the minimal polynomial of T . That is, any polynomial satisfied
by T is divisable by T ’s minimal polynomial.

Proof. Let m(x) be minimal for T . The Division Theorem for Polynomials
gives f(x) = q(x)m(x) + r(x) where the degree of r is strictly less than the
degree of m. Plugging T in shows that r(T ) is the zero matrix, because T
satisfies both f and m. That contradicts the minimality of m unless r is the
zero polynomial. QED

Combining the prior two lemmas gives that the minimal polynomial divides
the characteristic polynomial. Thus, any root of the minimal polynomial is
also a root of the characteristic polynomial. That is, so far we have that if
m(x) = (x− λ1)q1 . . . (x− λi)qi then c(x) must has the form (x− λ1)p1 . . . (x−
λi)

pi(x− λi+1)pi+1 . . . (x− λ`)p` where each qj is less than or equal to pj . The
proof of the Cayley-Hamilton Theorem is finished by showing that in fact the
characteristic polynomial has no extra roots λi+1, etc.

1.11 Lemma Each linear factor of the characteristic polynomial of a square
matrix is also a linear factor of the minimal polynomial.

Proof. Let T be a square matrix with minimal polynomial m(x) and assume
that x−λ is a factor of the characteristic polynomial of T , that is, assume that
λ is an eigenvalue of T . We must show that x− λ is a factor of m, that is, that
m(λ) = 0.

In general, where λ is associated with the eigenvector ~v, for any polyno-
mial function f(x), application of the matrix f(T ) to ~v equals the result of
multiplying ~v by the scalar f(λ). (For instance, if T has eigenvalue λ associ-
ated with the eigenvector ~v and f(x) = x2 + 2x + 3 then (T 2 + 2T + 3) (~v) =
T 2(~v) + 2T (~v) + 3~v = λ2 ·~v+ 2λ ·~v+ 3 ·~v = (λ2 + 2λ+ 3) ·~v.) Now, as m(T ) is
the zero matrix, ~0 = m(T )(~v) = m(λ) · ~v and therefore m(λ) = 0. QED
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1.12 Example We can use the Cayley-Hamilton Theorem to help find the
minimal polynomial of this matrix.

T =









2 0 0 1
1 2 0 2
0 0 2 −1
0 0 0 1









First, its characteristic polynomial c(x) = (x−1)(x−2)3 can be found with the
usual determinant. Now, the Cayley-Hamilton Theorem says that T ’s minimal
polynomial is either (x− 1)(x− 2) or (x− 1)(x− 2)2 or (x− 1)(x− 2)3. We can
decide among the choices just by computing:

(T − 1I)(T − 2I) =









1 0 0 1
1 1 0 2
0 0 1 −1
0 0 0 0

















0 0 0 1
1 0 0 2
0 0 0 −1
0 0 0 −1









=









0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0









and

(T − 1I)(T − 2I)2 =









0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0

















0 0 0 1
1 0 0 2
0 0 0 −1
0 0 0 −1









=









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









and so m(x) = (x− 1)(x− 2)2.

Exercises

X 1.13 What are the possible minimal polynomials if a matrix has the given charac-
teristic polynomial?

(a) 8 · (x − 3)4 (b) (1/3) · (x + 1)3(x − 4) (c) −1 · (x − 2)2(x − 5)2

(d) 5 · (x+ 3)2(x− 1)(x− 2)2

What is the degree of each possibility?

X 1.14 Find the minimal polynomial of each matrix.

(a)

(

3 0 0
1 3 0
0 0 4

)

(b)

(

3 0 0
1 3 0
0 0 3

)

(c)

(

3 0 0
1 3 0
0 1 3

)

(d)

(

2 0 1
0 6 2
0 0 2

)

(e)

(

2 2 1
0 6 2
0 0 2

)

(f)











−1 4 0 0 0
0 3 0 0 0
0 −4 −1 0 0
3 −9 −4 2 −1
1 5 4 1 4











1.15 Find the minimal polynomial of this matrix.
(

0 1 0
0 0 1
1 0 0

)

X 1.16 What is the minimal polynomial of the differentiation operator d/dx on Pn?
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