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Prediction of probable genes by Fourier
analysis of genomic sequences
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Abstract A number of methods have been proposed for gene

S L . . . . _detection, based on distinctive features of protein-coding

Motivation: The major signal in coding regions of genomic .
sequences. These have recently been comprehensively

sequences is a three-base periodicity. Our aim is to USeiewed (Fickett and Tung, 1992: Fickett, 1996). The

gg\%'lir tzctzg'ﬁt%erseiooagggsfotg}f pri”?gr'gt?ﬁ agg;rr:]ei(r:egyl\lfdifferent methods are based on a variety of contrasting
b gnize coding reg ge characteristics of protein-coding DNA sequences and DNA
Result: The three-base periodicity in the nucleotide arrange-

i id q h K at f 3inth sequences that do not encode proteins. These methods
ment IS evidenced as a sharp peak a requene){lf in the employ, for example, differences in the patterns of codon
Fourier (or power) spectrum. From extensive spectral

. ;. usage (Staden and McLachlan, 1982) or oligonucleotide
anaIyS|s_ of DNA sequences of total Iength over 5'5, mIIIIOnfrequencies (Shulmaet al., 1981, Fickett, 1982; Borodovsky
base pairs from a wide variety or organisms (including the t al, 1986, 1994), or train neural nets (Lapegesi., 1990;

human genome), and by sgparately examining C(_)ding aNBperbacher and Mural, 1991; Farbetral,, 1992; Xuet al,
non-coding sequences, we f|'nd that the relgtlve height (,)f thf994; Snyder and Stormo, 1995) to recognize the distinctive
peak at f=1/3 in the Fourier spectrum is @ good dis- foq1res of the two sets. Other techniques use linguistic
criminator of coding potential. This feature is utilized by usto ., ~ihods (Dong and Searls, 1994: Manteghal., 1994) and
detect probable coding regions in DNA sequences, by.qreation functions (Li, 1992; Pergt al, 1993; Ossadnik
examining the local signal-to-noise ratio of the peak withing 5, 199a: Buldyrevet al, 1995). At the same time

a sliding window. While the overall accuracy is comparable ;omprehensive evaluations of the various methods suggest
f[o that of other techmqu_es gurrently in use, the_measure thaf 4t they cannot be expected to work equally well for all
is presently proposed is independent of training sets OEenes (Burset and Gliigd996), and constant refinement is
existing database information, and can thus find generaleeded to evolve better methodologies. There is also a need
application. _ (Fickett, 1996) for new methods of gene prediction which
Availability: A computer progranGeneScanwhich locates  jlize features of gene structure that have not so far been
coding open reading frames and exonic regions in genomi¢ncorporated in programs already available.

sequences has been developed, and is available on request. | this paper, we investigate a Fourier technique based on a

Contact: E-mail: rama@jnuniv.ernet.in. distinctive feature of protein-coding regions of DNA
) sequences, namely the existence of short-range correlations
Introduction in the nucleotide arrangement. The most prominent of these is

The gene identification problem (Fickett, 1996), namely the? 1/3 periodicity, which has been shown to be present in
identification of protein-coding genes in DNA sequencesc?ding sequences (Fickett, 1982). The signature of this (and
through computational means, is of great current importancdndeed any other) periodicity can be seen most directly
The worldwide initiative on genome sequencing has necessirough the Fourier analysis (Tsorisal, 1991; Voss, 1992)
tated the development of new approaches to assess rapidly tAg & SPectral peak. In the present work, we analyse genomic
potential of a given nucleotide sequence in a functional conS€duences from different organisms, and verify that such

text. Genome projects have given rise to an exponentiaII)PeriOdi‘?ity is uniyersal for protein_—coding sequences and_is
growing amount of genetic information, much of which is absentin genomic sequences which do not cople for proteins.
novel: even in a simple eukaryote lik&accharomyces The gquantitative measure that we focus on is the relative

cerevisiae less than half the number of potential genestrength of this periodicity, which we then use in order to

sequences were known prior to the recently completed Yea&evelop a simple technigue t(.) predict genes (with and wnhout
Genome Project. introns) in unknown genomic sequences of any organism.

The present method, like other Fourier-based methods, offers
I : : some advantages, namely that it is quite easy to apply and
School of Physical Sciences, . ior k led fth tob | d
23ehool of Environmental Sciences and requires no prior knowledge of the sequence to be analysed.
3School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India The origin of the period-3 signal in protein-coding

“To whom correspondence should be addressed sequences derives from the triplet nature of the codon. This
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Table I. Summary of genomic sequences studied

Group Species GC ORF$ Gene8 ORFs with Genes with
(%) P=4 P=4
Fungus S.cerevisiaéll 38.6 216 54 198 51
Fungus S.cerevisia&/Ill 38.2 267 140 255 139
Insect virus A.californica 40.7 154 51 137 49
Protozoa E.histolytic& 34.2 26 26 26 26
Bacteria A.vinelandif 62.4 6 6 6 6
Bacteria H.influenzae 38.2 1727 933 1667 927
Nematode C.elegans 35.6 - 146 - 146
Mammal Humabh 51.2 - 24 - 24
Various Globins 49.6 - 15 - 15
Various Actingd 36.8 15 15 15 15

2Total number of ORFs as reported in the literature.

PORFs positively identified as coding for proteins through homology, detection of the corresponding c-DNA.

“The G+ C content quoted is the average over genes only. Data from Sehghl(1994) as well as GenBank. The4GC content is the average over the
sequences analysed.

9H.K.Das, private communication.

°The human sequences used in this study are those used by Uberbacher and Mural (1991) for GRAIL.

fThe GenBank locus names of the sequences studied are: ACAACTI, CELACI, DROACT2A, BOVACT1, BOVACT2, BOVACT2, RABACMAL,
RABACMA2, CHKACACA, QULACASK, SLMACT15, SLMACT21, SOYACT1G, MUSACACM, MUSACASA, HUMACBPAL. The & C content quoted

is the average over all the actins from different species.

9The GenBank accession numbers of sequences studied are: J00153, J00182, J00413, J03082, KO1714, K03256, M17601, M17602, M17909, M61740, V004!
V00513, X00371, X00372, X00373, X03248 and X04862. The G content quoted is an average over all the globin sequences from different species.

fact alone is, however, insufficient to explain why coding of compositional bias in generating the period-3 signal, we
regions exclusively have the signal, while non-coding regiondave performed a variety of numerical experiments. Our
overwhelmingly do not, and the reasons for this distinction lieresults indicate that while codon bias does play a role, it is,
in the unequal usage of codons (codon bias) in coding regionsowever, not the primary reason for the periodicity.

(Tsonis et al,, 1991), as well as in the biased usage of

nucleotide triples in genomic DNA (the triplet bias). The Algorithm

latter bias comes in part from the unequal usage of the amino

acids in naturally occurring proteins, and is universally The Fourier analysis described below has been performed on
present. The former bias arises from the unequal usage of thricleotide sequences, of total length over 5.5 Mbases. These
codons corresponding to a given amino acid, and is specific teequences (listed in Table 1) include the complete sequences
a given organism. In order to explore the role of the two typef yeast §. cerevisiagchromosomes Ill (Oliveet al., 1992)

0.04 0.04
1 a 1
0.03 4 0.03
o~
¥,0.02 + 60.02 .
v wn
0.01 ~ 0.01

Fig. 1. Typical Fourier spectra fora] a coding stretch of DNA andb a non-coding stretch fror8.cerevisiaeghromosome Ill.
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Gene prediction by Fourier analysis

and VIl (Johnsoret al., 1994); the genome dAutographa  such as rRNA, intergenic spacers and introns, which have a
californicanuclear polyhedrosis virus (Ac-NPV) (Ayresal.,  flat Fourier spectrum devoid of any peiodicity (see Figure 1b).
1994); 2.2Mb of contiguous sequences @henorhabditis In order to contrast the two types of spectra, we focus on the
eleganschromosome Il (Wilsoret al., 1994); several cDNA signal-to-noise ratio of the peak fit= 1/3, namely:

and plasmid sequences of a protozoan pardsiteamoeba P— S13)/5 3)
histolytica (Sehgalet al., 1994; as well as GenBank); the -
genome of Haemophilus influenzagFleischmannet al., Our survey of a large number of coding and non-coding
1995); a few genes from the bacteridmotobacter vinelandii sequences from a variety of organisms is summarized in
(H.K.Das, private communication), and human genomicTable I, which gives details of the systems studied, and Figure

sequences (Bilofsky and Burks, 1988). 2, which shows cumulative distributions of the signal-to-
A sequence oN nucleotides may be formally viewed as a noise ratio for coding and non-coding sequences. The solid
symbol string, §&,j = 1,2,...,N}, wherex; is one of the four  curve in Figure 2 shows the fraction of coding sequences with

symbolsA, T, G andC, and denotes the occurrence of thatP less than the abscissa, and the dashed curve shows the
particular nucleotide in positio. In order to define the fraction of non-coding sequences with greater than the
Fourier spectrum for a genomic sequence, we adopt thabscissa. The two distributions can be clearly seen to have
following procedure. One can define a binary indicatoronly a small area of overlap: this suggests, as is made explicit
function or projection operator (Voss, 1992; see Figure 1 obelow, that a coding measure can be devised from this
this paper for a graphical illustration of the use of theobservation.

projection operatorlJ, which selects the elements of the We use the valu® = 4 as a discriminator between coding
sequence that are equal to the symbatamelyU,,(x) = 1 if and non-coding sequences. From the data presented in Table |
X is a and 0 otherwise. Using the operataig, U, Ug and  and Figure 2, it is evident that the bulk of coding sequences
Uc successively on a DNA sequence yields four binary(~95%) from all organisms tested so far satisfy this criterion.
sequences, as illustrated below: Similarly, almost 90% of the non-coding regions héve 4;
these sequences were taken from the intergenic regions of the

Sequence G GATATCACTTTAGAG - AN ; -
ApplyU, 0 0 1 0100100001010 several organisms used in this study,_mclud&gere\{lsme
ApplyUr 0 00 1010001110000 ch.romosomes I.II anq VIII, baculovirusA(californica),
AppyUs 1 1 0000000000010 1 !—LmfluenzgeE.h|stolyt|ca(§1 t'otal'of>l.OMbase). The .bars
ApplyUc 0 00 0001 010000000 In Figure 2 indicate the variation in values®from organism

~ to organism; there appears to be no particular systematics,
Thus, any DNA sequence can be converted to four binargjnce the signal-to-noise ratio depends strongly on the length

sequences, which can then be Fourier analysed in the normg} ihe sequence.
manner, to examine correlations between the symbols. The gne set of counterexamples that we have seen to the above
total Fourier spectrum of the DNA sequence is (Silverman, o coding sequences wifi< 4. The few such cases are
and Linsker, 1986; Let al,, 1994) the sum of these individual jsiructive: for instance. the Mat proteins alone in
spectra, namely: S.cerevisiaehromosome Ill do not show any peak. Whether
1 2 this fact is related to unusual amino acid organization of these
Sf)= Z S.(f) = Z N (1)  proteins is currently being investigated. The other set, namely
a a 2 non-coding sequences wikh> 4, are slightly more common,
where the discrete frequenty= k/N, withk = 1,2, .., N/2. but these can often be easily recognized as non-coding from

S,(f) is the partial spectrum corresponding to the symbolthe existence of several other periO(_jic features (the Whple
a = A, T,GorC. The average of the total spectrufican be ~ SPECIrUM appears more grassy, in contrast to coding

calculated (see, for example, Chechetkin and Turygin, 19958auénces where the=1/3 peak is invariably the only
from the frequency of occurrencg, of each symbol ¢ = prominent spectral feature). From our analysis so far, the non-
AT,G,C) as: * coding sequences with > 4 do not appear to belong to any

specific sequence category.
_ oN2 1 1 In order to utilize this measure to predict potential protein-
S= NZ SKIN) = N (1 + N Z pi) 2 coding sequences, we first note that the spectral approach can
k=1 “ be applied even to fairly short gene sequences (even of the
For protein-coding sequences from a variety of organismsprder of a few hundred bases). A genomic sequence of
the Fourier spectrum [equation (1)] reveals the characteristianknown functionality can be analysed for putative protein-
periodicity of three as a distinct peak at frequeficy 1/3 (a  coding properties by the following procedure. AN
typical pattern is shown in Figure 1a). No such ‘peak’ abovenucleotide sequence window of the complete sequence is
the noise level is apparent for non-protein coding sequenceanalysed according to equation (1), and the existence of a

N
> U (%) exp 2nif
j=1
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Fig. 2. Cumulative distributions of local peak-to-noise ratio at frequeiney1/3 for the sequences studied. The solid curve (right) is the fraction of coding
sequences witR less than the abscissa, while the dashed curve (left) is the fraction of non-coding sequenPageatier than the abscissa. Thus, almost 95%
of all coding sequences ha¥e= 4, while nearly 90% of all non-coding sequences will h& 4. The indicated bars show the variation in the distribution
among the different organisms studied.

peak atf = 1/3 can be used to identify whether this sub- there are very few intron-containing genes in these sequences,
sequence forms part of a coding or non-coding region. Foand open reading frames (ORFs) of length less than 300 bp
each window, the local signal to noise ratiBy(j), is are notfrequently encountered. A window length in the range

computed according to equation (3)l{eing the position of of 250-400 gives similar results, although the number of

the centre of the window of lengtid). Note that this involves false negatives in the sequences studied was least for 351.
the calculation of a single spectral line, and not the totaWindows of length less than 250 have increased noise and
spectrum. somewhat poorer statistics, while those greater than 400 tend

By sliding this window along the sequence, we generate & miss the ORFs due to numerous overlaps. For higher
graph ofPy,(j ) versug which makes it possible essentially to organisms, where we expect introns, shorter windows
‘read off’ the probable coding regions: these are thos€M ~ 150) were used. As regards the discrimination value,
portions of the sequence with, > 4. To identify the exact an alternate way of deciding the optimal valuéPdb use as a
end points of the coding region, the sequence is scanned todascriminator would be to take the minimum in the sum of the
distance ofM nucleotides up- and downstream of the abovetwo curves in Figure 2. Our results indicate that using a value
identified region so as to locate the initiation and terminatiorof P, = 5 would not give drastically different results. Lower
codons, respectively, in any of the six possible readingvalues of the threshold increase the number of false
frames. Having obtained these endpoints, we generate thmositives—we get more and more overlapping windows,
total spectrum [equation (1)] of the putative gene in order tcand subsequent ORF analysis tends to pick up all ORFs,
verify that the spectral feature éf= 1/3 is distinctive and whether coding or not.
characteristic of a coding region. This double check is useful
in reducing the number of false positives.

The window lengthM, and the discrimination value need
to be chosen in any implementation of the method. In ouin this section, the technique described above is applied to a
study, we have taken the window lengthMs= 351 for the  variety of genomic sequences from several different organisms.
analysis of genomic sequences of yeast and insect virus, sinceThe results of our analysis of yeast chromosomes Il and

Implementation
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Table Il. Summary of results fob.cerevisiaehromosomes |1l and VIII, and
H.influenzae

Chromosome Il Chromosome VIIH.influenzae

ORFs 216 267 1727
ORFs detected 187 226 1499
False positives detected 0 0 0
Specificity 1.0 1.0 1.0
Sensitivity 0.87 0.85 0.87
Genes reported 54 140 933
Genes detected 44 123 867
Sensitivity 0.81 0.88 0.93

VIII, and the genome of.influenzaeare given in Table II.
We have used a scanning window of leniyth= 351. Of the
483 probable genes (ORFs) reportedbicerevisiaehromo-
somes Il and VIII (Oliveret al., 1992; Johnstoat al., 1994),

Table IlIA. Summary of results for human afdelegangenomic sequences

C.elegans Human
Genes reported 146 24
Genes detected 146 24
Exons reported 982 141
Exons detected 837 119
Exons> 100 bp reported 844 93
Exons> 100 bp detected 764 86

Table llIB. Summary of results for exon detection in ALLSEQ (Burset and
Guigo, 1996)

Sensitivity ~ Specificity ~ Approximate
correlation

Missing exons  Wrong exons

0.66 0.60 0.53 0.31 0.35

our method locates 413 of these exactly. Of the 194 identified

genes (i.e. through homology search or detection of corresndeed confirmatory, the number of false positives is
ponding c-DNA), the present method locates 167, giving ajrastically reduced; in this instance, the number is actually
sensitivity index (sensitivity= number detected/number zero and thus the specificity [specificity number detected/
reported) of 0.86 at the gene level. By the procedure desmumber detected- false positives)] is exactly 1.00. A few
cribed in the previous section, namely first identifying ageneS, for examp|e the mating type, do not show this
probable gene and then verifying that the Fourier spectrum igeriodicity, and thus will not be identifiable through our
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Fig. 3. Window analysis of the local signal-to-noise ratRy(j) for (a) a

portion of the 315000 nucleotide chromosome Il $fcerevisiaefrom
location 260 000 to 265 000. The identified ORFs, from Olieeal. (1992),

analysis. Similar observations hold for the analysis of the
H.influenzaeggenome.

Our method has been applied to genes that contain introns
as follows. We first applied our technique to the 2.2 Mbase
C.elegansand several human genomic sequences, as well as
globin sequences. In this analysis, we shortened the window
size toM = 150, and this sets the limit on the shortest exonic
regions that can be predicted with confidence-ta00 bp. A
representative analysis using g@aglobin is shown in Figure
3b. The three exonic regions and the intermediate introns can
be clearly distinguished, and precise boundaries of the exons
can be demarcated by using the canonical splice acceptor and
donor sites.

A summary of our results is given in Table IlIA. All 24
genes reported to be present in the human sequences and all
146 of those irC.elegansould be correctly identified (i.e. at
least one exon in each of the genes was identified). Within the
genes, we identified 119 out of 141 exons in human
sequences, and 837 out of 982 exon€irlegansHowever,
when exons shorter than 100bp were excluded from the
analysis, 86 out of 93 such exons could be identified in the
former set and 764 out of 844 in the latter, signifying a
sensitivity of over 0.9. Our data are comparable to predictions
of other methods (Uberbacher and Mural, 1991; Snyder and
Stormo, 1995) that locate exonic regions in genomic

are indicated at the top of the figure. The length of the window was 351 bases
andj varies in steps of three. The baseline is s@gtj) = 4. (b) Window Sequences _ o
analysis for the8 globin of goat, of length 2278 bp—the exons correspondto A more stringent test of gene structure prediction is

nucleotides 471-562, 689-911 and 1754-1882; the second intron (911 ossible, and to evaluate the efficiency of our method vis-a
1754) is much longer than the first intron (562—-689). These are indicated JJ y

the top of the figure. We used a window of length 150 bases and the baselindS €stablished methods currently in use, we have applied our
is also set aPy(j) = 4 technique to the set of sequences (ALLSEQ) recently
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Fig. 4. The persistence of the spectral signature of myosin fEohistolyticaupon artificially altering the nucleotide sequen@.The Fourier transform of the

myosin DNA sequenceb] The Fourier transform with the codon bias removed, by translating the sequence to the protein, and regenerating a nucleotide
sequence with the codons corresponding to a given amino acid used with equal probabjlifies.Fourier transform with the genetic code scrambled, namely

by translating the sequence to the protein and then assigning an arbitrary genetic code.

compiled by Burset and Guig¢1996), to benchmark a dataset ALLSEQ is designed for complete gene recognition
number of different gene-structure prediction programs. Weand our method is directed toward coding region recognition;
chose a random subset of 75 sequences and obtained tive feel that it will be possible to improve our algorithm
results shown in Table IlIB, which indicate that the greatly with further refinements or by incorporation in more
sensitivity, specificity and approximate correlation (Bursetsophisticated programs.

and Guigo 1996) of our method GeneScan is comparable to

(if somewhat poorer than) programs such as GeneParsef2iscussion

(0.65, 0.78, 0.65), GenLang (0.70, 0.73, 0.65), GRAIL I

(0.70, 0.83, 0.74) and SORFIND (0.68, 0.83, 0.70). HoweverWe now briefly address the question of the origin of the
this comparison may not be entirely appropriate since thepectral signature peakfat= 1/3, which is obviously related
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to the triplet nature of the genetic code. Beyond this, howeveranalysis shows that some of these genes have highly restricted
the reasons for the distinction between coding and non-codingmino acid usage.) Given the fact that we do not yet know all
genomic sequences are less clear. From our present analy#iisit goes into the making of a gene and how a typical gene
of coding sequences with widely differing base composition evolved and, further, that all genes may not necessarily obey
the periodicity appears not to be a consequence of codon biathe same rules, it is inevitable that different gene-prediction
In numerical experiments (see Figure 4) when this bias waprograms would have varying degrees of success. The
removed—Dby using all codons corresponding to a giverconcurrent application of a combination of methods on a
amino acid with equal frequency—we observed that thegiven sequence should circumvent the limitations of indivi-
resulting genomic sequences continued to show a sharp pedkial methods (Fickett, 1996).
at f = 1/3, although with changed. The peak remained It has often been emphasized [see, for example, Fickett
prominent even when the nucleotide sequence was changéti996)] that the gene sample available in current databases is
completely by assigning arbitrary codons to a given amingerhaps atypical, and this can affect the performance of gene-
acid, or when the four-symbol sequence was mapped into finding algorithms. In this regard, an advantage of the method
two-symbol (purine—pyrimidine) sequence. These experiproposed here is that it does not require a training set, which
ments suggest that the periodicity may be a consequence ofakes it independent of new sequences being added to
the amino acid sequence in naturally occurring proteinglatabases. The measure exploited in this work is universal,
(Zhurkin, 1981) which manifests itself as a bias in the use ofand should prove useful as new and unusual organisms are
certain triplets in the coding regions of genomic DNA. studied and novel sequences become available for analysis.
The gene-detection methodology presented here, GeneScan,
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