1) Standard form (arrange polymonial in order of decreasing powers)
Example: ax2+bx+c
2) GCF (Greatest Common
Factor or common
monomial
factor)
What divides into all of the
terms exactly (divisible)?
Examples: x2+2x 3x2-12x 50x2-48 72x4-12x3+18x2 axn+abxn-1 x(x+2) 3x(x-4) 2(25x2-24) 6x2(12x2-2x+3) axn-1(x+b)
3) Difference of two squares
(binomial
- this step may repeat)
Take the square root of
the a and c terms. One factor
is the sum of the square roots,
the other is the
difference.
Example: x2-9 25x2-16 16x4-625 a2x2-b2y2 (x+3)(x-3) (5x+4)(5x-4) (4x2+25)(4x2-25) (ax+by)(ax-by) (4x2+25)(2x+5)(2x-5)
4) Perfect square
(trinomial
- may repeat back to step 3)
Take the square root of the a and c terms. The b term is twice
the product of the terms of
the two identical factors.
Examples: x2+2x+1 9x2-24x+16 256x4-800xy+625y4 ax2+abxy+b2 (x+1)(x+1) (3x-4)(3x-4) (16x2-25y2)(16x2-25y2) (ax+by)(ax+by) or (x+1)2 or (3x-4)2 or (16x2-25y2)2 or (ax+by)2Hints:
5a) Factorable trinomial; a=1 (may repeat back to step 3)
What factors of c add up to b?
Examples: x2+3x+2 x2-5x+6 x2+2x-15 x2-x-12 x2+(a-b)x-ab (x+2)(x+1) (x-3)(x-2) (x+5)(x-3) (x+3)(x-4) (x+a)(x-b)
5b) Factorable trinomial; a>1 (may repeat back to step 3)
What combination of factors of a and factors of c add up to b?
Examples: 3x2+7x+2 x2-16x+15 48x2-6x-15 abx2+(bc-ad)x-cd (3x+1)(x+2) (2x-3)(2x-5) (5x+4)(3x-2) (ax+c)(bx-d)
Last updated 4/8/97 - 5/31/2000.