Computer Programming Curvefit Data n = 3 xi: 3 5 4 => 3 4 5 yi: 7 2 6 => 2 6 7 ?x = 12 ?y = 15 ?x2 = 50 ?y2 = 89 ?xy =55 _ _ __ _ __ _ __ _ x = 4 y = 5 ?x2 = 16.6 ????????y2 = 29.6 xy =18.3 x median = 4 y median = 6 No x mode No y mode x range = 2 y range = 5 _ _ x variance = .6 y variance = 4.6 sx = .81649658092 sy = 2.1602468995 zx1 = -1.2247448714 zy1 = .92582009977 zx2 = 1.2247448714 zy2 = -1.3887301497 zx3 = 0 zy3 = .46291004989 r = -.9449118252 m = -2.5 Function Least-squares fit Linear: y = -2.5 x + 15 1.5 Exponential: y = 5.3649109468 * 5.3452248382 x 4.1662427650 Power: y = 110.00741656 * x –2.3619962645 5.0549795591 Computer Programming Curvefit Data n = 4 xi: 3.5 2 4 2 => 2 2 3.5 4 yi: 8 3 8 3 => 3 3 8 8 ?x = 11.5 ?y = 22 ?x2 = 36.25 ?y2 = 146 ?xy =72 _ _ __ __ __ x = 2.875 y = 5.5 ?x2 = 9.0625 ??y2 = 36.5 xy =18 x median = 2.75 y median = 5.5 x mode = 2 y modes = 3 and 8 x range = 2 y range = 5 x variance = .796875 y variance = 6.25 sx = .89267855357 sy = 2.5 zx1 = .70014004201 zy1 = 1 zx2 = -.98019605882 zy2 = -1 zx3 = 1.2602520756 zy3 = 1 zx4 = -.98019605882 zy4 = -1 r = .98019605882 m = 2.7450980392 y = 2.7450980392 x – 2.3921568627 Function Least-squares fit Linear: y = 2.7450980392 x – 2.3921568627 0.98039215687 Exponential: y = 1.0417013095 * 1.7134253436 x 2.2657566282 Power: y = 1.0494303705 * x 1.5310755640 1.3195492675