
Polytechnic University CS312A: Programming Languages — Spring 2002
Prof. Boris Aronov Class page: http://cis.poly.edu/˜aronov/cs312-spring2002
Home page: http://cis.poly.edu/˜aronov Mon 2–3 Wed 2–4 RH705
Office: LC236 (718) 260-3092 Office hours: just drop by, except Tue
email: aronov@poly.edu

Homework #1
Assigned February 19, 2002. Due March 4, 2002.

Note: The homework must be brought to class or dropped off at Prof. Aronov’s office or in his
mailbox at the department. No electronic submission of this homework is accepted. NO late

homeworks are accepted.

Problem 1: Associativity, precedences, and ASTsRecall the grammar introduced in class to solve
the ambiguity problem for simple arithmetic expressions:

E → T
| E + T
| E - T

T → F
| T * F
| T / F

F → 〈id〉
| 〈num〉
| (E)

As before,〈id〉 stands for an identifier and〈num〉 stands for a number. Drawboth the full
parse treeand the abstract syntax tree for the following expressions:

1. 1

2. 3+ q ∗ 1

3. 1∗ (3 ∗ j)

4. (3− 4) ∗ (5 + 6)

5. ((((i))))

Please remember that parentheses are not necessary in ASTs, as grouping is already repre-
sented in the structure of the tree. After working through these examples, I hope you realize
why parse trees are not used to store the syntax information, after parsing is done.

1

Problem 2: Parse treesConsider the following BNF grammar:

〈statement〉 → “ {” 〈statement list〉 “ }”
| loop 〈statement list〉 forever
| repeat 〈statement list〉 until 〈expression〉 end loop
| if “(” 〈expression〉 “)” 〈statement list〉 end if
| if “(” 〈expression〉 “)” 〈statement list〉 else〈statement list〉 end if
| 〈id〉 “←” 〈expression〉
| 〈nothing〉

〈statement list〉 → 〈statement〉
| 〈statement〉 “;” 〈statement list〉

〈expression〉 → 〈id〉 | 〈num〉
| “(” 〈expression〉 “)”
| 〈expression〉 〈binary operator〉 〈expression〉

〈binary operator〉 → “+” | “−” | “/” | “×” | “<” | “=” | “>”

Terminals areboldfaced keywords,〈id〉 (for an identifier),〈num〉 (for a numeric constant:
one or more digits), the arithmetic operations, and punctuation. All other grammar symbols
are terminals. Use standard precedences to disambiguate arithmetic expressions (compar-
isons after add/subtract after divide/multiply). Symbol “=” stands for the Boolean equality
test operator. Starting symbol of the grammar is〈statement〉.

For each string given draw itsfull parse tree:

1. loop forever

2. i ← 1

3. {i ← j + 2}
4. {i ← 1; repeati ← i × 2 until i < n end loop}
5. if (i × j − k = m/n + 3) repeatj ← j − 3; k← k + 2 until k < j end loop else if (k > 2)

elsei ← 2 end if end if
(Yes, this is a syntactically correct input and, yes, it is very messy! Do this one on a
separate page, please!)

Problem 3: Extended BNF (EBNF) Write a grammar in EBNF that corresponds to the BNF
grammar in Problem 2. Aim for a compact but readable grammar. Use quotation marks,
if necessary, to distinguish special EBNF characters and punctuation in the language you are
defining.

2

Problem 4: Regular expressionsWrite a regular expression matching each of the following classes
of strings, and no other string.

1. All alphanumeric strings starting with an upper case letter and ending in a digit.

2. All legal Pascal comments: a comment starts with a “{”, ends with “}”, and does not
contain a “}” inside.

3. Numbers with floating point, andat leastone digiteither beforeor after it, e.g. “.9”
and “9.” are legal but “.” by itself is not.

4. All strings that are valid arithmetic expressions given by grammar in Problem 1, but
without parentheses (more precisely, we use the same grammar, but the ruleF → (E)
is removed).(Hint: look at the EBNF version of the grammar. Rewrite it as one big
rule and then turn it into a regular expression.)

5. All strings of lowercase lettersnot containing the wordnice. (Tricky.)

3

