Polytechnic University CS312A: Programming Languages — Spring 2002

Prof. Boris Aronov Class page: httfwis.poly.edyiaronoycs312-spring2002
Home page: httgycis.poly.edyiaronov Mon 2—-3 Wed 2—4 RH705
Office: LC236 (718) 260-3092 f@ce hours: just drop by, except Tue

email: aronov@poly.edu

Homework #1
Assigned February 19, 2002. Due March 4, 2002.

Note: The homework must be brought to class or dropp@oProf. Aronov’s dfice or in his

mailbox at the department. No electronic submission of this homework is accepted. NO late
homeworks are accepted.

Problem 1: Associativity, precedences, and AST&ecall the grammar introduced in class to solve
the ambiguity problem for simple arithmetic expressions:

E —- T
| E+T
| E-T

T

——
.

F — (id)
|
|

As before(id) stands for an identifier anghum) stands for a number. Drataoth the full
parse treendthe abstract syntax tree for the following expressions:

1.1

2. 3+0=x1

3. 1% (3%)

4. 3-4)«(5+6)
()

($2]

Please remember that parentheses are not necessary in ASTs, as grouping is already repre-
sented in the structure of the tree. After working through these examples, | hope you realize
why parse trees are not used to store the syntax information, after parsing is done.

Problem 2: Parse treesConsider the following BNF grammar:

(statement —
|
|
|
|
|
|

(statementlist —
|

(expressioh —
|
|

(binary operator —

“{" (statement list"}”

loop (statement listforever

repeat (statement listuntil (expressiopend loop

if “(" (expressioh”)” (statement listend if

if “(" (expressiof”)” (statement listelse(statement listend if
(id) “«<" (expression

(nothing

(statement
(statement”;” (statement list

(id) | (num
“(” (expression“)”
(expressiop(binary operator{expressioh

u+” |((_11 |u/11 |“XH |u<n |H:H |u>”

Terminals areboldfaced keywords(id) (for an identifier),{num) (for a numeric constant:

one or more digits), the arithmetic operations, and punctuation. All other grammar symbols
are terminals. Use standard precedences to disambiguate arithmetic expressions (compar-
isons after ad@ubtract after dividenultiply). Symbol ‘=" stands for the Boolean equality

test operator. Starting symbol of the gramma(sisitemenjt

For each string given draw itsll parse tree:

1. loop forever
i1

{i—j+2

{i « 1;repeai < i x2 untili <n end loop}
if(ixj—k=m/n+3)repeatj « j—3;k «— k+ 2 untilk < j end loop else ifk > 2)

elsei « 2 end if end if
(Yes, this is a syntactically correct input and, yes, it is very messy! Do this one on a
separate page, please!)

Problem 3: Extended BNF (EBNF) Write a grammar in EBNF that corresponds to the BNF
grammar in Problem 2. Aim for a compact but readable grammar. Use quotation marks,
if necessary, to distinguish special EBNF characters and punctuation in the language you are

defining.

Problem 4: Regular expressionsWrite a regular expression matching each of the following classes
of strings, and no other string.

1.
2.

All alphanumeric strings starting with an upper case letter and ending in a digit.

All legal Pascal comments: a comment starts witH’a €énds with ‘}”, and does not
contain a 3” inside.

. Numbers with floating point, anak leastone digiteither beforeor after it, e.g. “.9”

and “9.” are legal but “.” by itself is not.

. All strings that are valid arithmetic expressions given by grammar in Problem 1, but

without parentheses (more precisely, we use the same grammar, but the-rulg)
is removed).(Hint: look at the EBNF version of the grammar. Rewrite it as one big
rule and then turn it into a regular expression.)

All strings of lowercase lettersot containing the worahice. (Tricky.)

